Making sense of irrational numbers - Ganesh Pai

1,902,849 views ・ 2016-05-23

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Nancy JIANG 校对人员: Runyu Hu
00:06
Like many heroes of Greek myths,
0
6951
1762
正如希腊神话中许多英雄一样
00:08
the philosopher Hippasus was rumored to have been mortally punished by the gods.
1
8713
5217
哲学家希帕索斯被传说要接受神的惩罚
00:13
But what was his crime?
2
13930
1676
但他错在哪儿了呢
00:15
Did he murder guests,
3
15606
1351
是他杀人了
00:16
or disrupt a sacred ritual?
4
16957
2517
还是他破坏了神圣的仪式
00:19
No, Hippasus's transgression was a mathematical proof:
5
19474
4050
都不是 希帕索斯的罪源于一个数学证明
00:23
the discovery of irrational numbers.
6
23524
3059
无理数的发现
00:26
Hippasus belonged to a group called the Pythagorean mathematicians
7
26583
3728
希帕索是毕达哥拉斯学派中的一员
00:30
who had a religious reverence for numbers.
8
30311
2611
他们对于数字有着宗教般的崇敬
00:32
Their dictum of, "All is number,"
9
32922
2541
他们的格言“万物皆数”
00:35
suggested that numbers were the building blocks of the Universe
10
35463
3550
暗示着他们认为数字是宇宙建立的基石
00:39
and part of this belief was that everything from cosmology and metaphysics
11
39013
4304
而且他们也相信任何事物 从宇宙研究到音乐发展
00:43
to music and morals followed eternal rules
12
43317
3160
从形而上学到道德观念
00:46
describable as ratios of numbers.
13
46477
3698
归根到底都是数字比例的问题
00:50
Thus, any number could be written as such a ratio.
14
50175
3313
因此,任何数字都可以被写成一个比例(分数)
00:53
5 as 5/1,
15
53488
2507
5就是5/1
00:55
0.5 as 1/2
16
55995
3090
0.5就是1/2
00:59
and so on.
17
59085
1420
等等
01:00
Even an infinitely extending decimal like this could be expressed exactly as 34/45.
18
60505
7402
甚至一个可以被无限延伸的十进制数字 也可以被准确表示成34/45
01:07
All of these are what we now call rational numbers.
19
67907
3514
这些数字都被称为有理数
01:11
But Hippasus found one number that violated this harmonious rule,
20
71421
4630
而希帕索斯却发现了一个背离这种和谐规律的数字
01:16
one that was not supposed to exist.
21
76051
2774
一个本不该存在的数字
01:18
The problem began with a simple shape,
22
78825
2570
这个问题起源于一个非常简单的图形
01:21
a square with each side measuring one unit.
23
81395
3710
一个四边长度均为单位1的正方形
01:25
According to Pythagoras Theorem,
24
85105
1793
根据毕达哥拉斯的理论
01:26
the diagonal length would be square root of two,
25
86898
3285
这个正方形的对角线长度应该为根号二
01:30
but try as he might, Hippasus could not express this as a ratio of two integers.
26
90183
5345
但是无论希帕索斯如何尝试 都不能将根号二变为两个整数的比例形式
01:35
And instead of giving up, he decided to prove it couldn't be done.
27
95528
4311
他并没有选择放弃 而是决定证明这个数字确实无法被比例表示出来
01:39
Hippasus began by assuming that the Pythagorean worldview was true,
28
99839
4357
希帕索斯首先假设毕达哥拉斯的“万物皆数”的观点是正确的
01:44
that root 2 could be expressed as a ratio of two integers.
29
104196
4949
根号二是可以被表示成两个整数的比例
01:49
He labeled these hypothetical integers p and q.
30
109145
3836
他假设这两个整数分别为p和q
01:52
Assuming the ratio was reduced to its simplest form,
31
112981
3377
假定这个比例已经被最简化
01:56
p and q could not have any common factors.
32
116358
3599
因此,p和q应该没有相同约数
01:59
To prove that root 2 was not rational,
33
119957
3030
要证明根号二并不是有理数
02:02
Hippasus just had to prove that p/q cannot exist.
34
122987
5087
希帕索斯只需要证明p/q并不存在即可
02:08
So he multiplied both sides of the equation by q
35
128074
3348
他将等号两侧均乘以q
02:11
and squared both sides.
36
131422
1869
然后两侧均计算平方
02:13
which gave him this equation.
37
133291
2029
得到了这样一个等式
02:15
Multiplying any number by 2 results in an even number,
38
135320
3954
任何数字乘以2的结果都是偶数
02:19
so p^2 had to be even.
39
139274
3058
所以p的平方是偶数
02:22
That couldn't be true if p was odd
40
142332
2383
如果p是奇数,则p的平方不可能为偶数
02:24
because an odd number times itself is always odd,
41
144715
3439
因为奇数乘以本身,得到的还是奇数
02:28
so p was even as well.
42
148154
2548
所以p也应该是一个偶数
02:30
Thus, p could be expressed as 2a, where a is an integer.
43
150702
5474
因此,p可以表示为2a 其中a也是一个整数
02:36
Substituting this into the equation and simplifying
44
156176
2898
把这个等式带入原来的方程,并简化
02:39
gave q^2 = 2a^2
45
159074
4174
得到:q^2 = 2a^2
02:43
Once again, two times any number produces an even number,
46
163248
3932
再一次,任何数字乘以2得到的结果为偶数
02:47
so q^2 must have been even,
47
167180
2741
所以q的平方一定是偶数
02:49
and q must have been even as well,
48
169921
2091
那么q也一定是偶数
02:52
making both p and q even.
49
172012
2381
这就得到p和q都是偶数的结果
02:54
But if that was true, then they had a common factor of two,
50
174393
3317
但如果这是正确的话 p和q就有一个共同的因子2
02:57
which contradicted the initial statement,
51
177710
2866
和最初的题设矛盾
03:00
and that's how Hippasus concluded that no such ratio exists.
52
180576
4220
至此,希帕索斯得以证明这样的比例是不存在的
03:04
That's called a proof by contradiction,
53
184796
1960
这被称为矛盾证明法
03:06
and according to the legend,
54
186756
1478
而根据传说
03:08
the gods did not appreciate being contradicted.
55
188234
3219
上帝并不喜欢矛盾的存在
03:11
Interestingly, even though we can't express irrational numbers
56
191453
3475
有趣的是,即便我们无法将无理数
03:14
as ratios of integers,
57
194928
1874
表示称为整数的比例
03:16
it is possible to precisely plot some of them on the number line.
58
196802
4089
我们却可以将它准确表现在图形之中
03:20
Take root 2.
59
200891
1258
以根号二为例
03:22
All we need to do is form a right triangle with two sides each measuring one unit.
60
202149
5695
我们需要做的就是准确的画出一个 两条直角边均为单位一的三角形
03:27
The hypotenuse has a length of root 2, which can be extended along the line.
61
207844
4752
他的的斜边的长度就是单位根号二 这同时也可以被延伸下去
03:32
We can then form another right triangle
62
212596
2548
我们可以继续画另外一个直角三角形
03:35
with a base of that length and a one unit height,
63
215144
3347
其中一条边以刚才的斜边为基础,另一条边长度为单位一
03:38
and its hypotenuse would equal root three,
64
218491
2644
这个三角形的斜边程度就是单位根号三
03:41
which can be extended along the line, as well.
65
221135
2797
它同时还可以继续被延展下去
03:43
The key here is that decimals and ratios are only ways to express numbers.
66
223932
5021
关键问题是 小数和分数都只是表现数字的方法之一
03:48
Root 2 simply is the hypotenuse of a right triangle
67
228953
3995
根号二只是一个边长为单位一的直角三角形的
03:52
with sides of a length one.
68
232948
1927
斜边长度罢了
03:54
Similarly, the famous irrational number pi
69
234875
3384
相似的,著名的无理数pi
03:58
is always equal to exactly what it represents,
70
238259
2869
也是与它描述的图形关系一样
04:01
the ratio of a circle's circumference to its diameter.
71
241128
3442
代表者圆周长和半径的比例
04:04
Approximations like 22/7,
72
244570
2995
近似值 22/7 或者 355/133
04:07
or 355/113 will never precisely equal pi.
73
247565
6142
是永远无法准确的表达出pi值的
04:13
We'll never know what really happened to Hippasus,
74
253707
2511
我们永远也无法知道在希帕索斯身上到底发生过什么
04:16
but what we do know is that his discovery revolutionized mathematics.
75
256218
4447
但是我们知道他的发现带动了整个数学界的革命
04:20
So whatever the myths may say, don't be afraid to explore the impossible.
76
260665
4271
所以无论神话里面怎么说 永远不要害怕去探索不可能
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7