Making sense of irrational numbers - Ganesh Pai

1,910,349 views ・ 2016-05-23

TED-Ed


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Tamara Rabuzin Recezent: Ivan Stamenković
00:06
Like many heroes of Greek myths,
0
6951
1762
Kao i mnoge heroje grčke mitologije,
00:08
the philosopher Hippasus was rumored to have been mortally punished by the gods.
1
8713
5217
priča se da su i filozofa Hipasusa bogovi kaznili smrću.
00:13
But what was his crime?
2
13930
1676
Ali koji je bio njegov zločin?
00:15
Did he murder guests,
3
15606
1351
Je li usmrtio goste
00:16
or disrupt a sacred ritual?
4
16957
2517
ili pak oskvrnuo sveti ritual?
00:19
No, Hippasus's transgression was a mathematical proof:
5
19474
4050
Ne, Hipasusov prijestup bio je matematički dokaz:
00:23
the discovery of irrational numbers.
6
23524
3059
otkriće iracionalnih brojeva.
00:26
Hippasus belonged to a group called the Pythagorean mathematicians
7
26583
3728
Hipasus je pripadao skupini zvanoj Pitagorejska škola
00:30
who had a religious reverence for numbers.
8
30311
2611
čiji članovi su prema brojevima imali vjersko štovanje.
00:32
Their dictum of, "All is number,"
9
32922
2541
Izreka "U biti svega je broj",
00:35
suggested that numbers were the building blocks of the Universe
10
35463
3550
sugerira da su brojevi građevne jedinice Svemira
00:39
and part of this belief was that everything from cosmology and metaphysics
11
39013
4304
a vjeruje se da sve, od kozmologije i metafizike
00:43
to music and morals followed eternal rules
12
43317
3160
do glazbe i morala, slijedi vječna pravila
00:46
describable as ratios of numbers.
13
46477
3698
koja se mogu prikazati pomoću omjera dva broja.
00:50
Thus, any number could be written as such a ratio.
14
50175
3313
Dakle, svaki broj može se prikazati pomoću razlomka.
00:53
5 as 5/1,
15
53488
2507
5 kao 5/1,
00:55
0.5 as 1/2
16
55995
3090
0.5 kao 1/2
00:59
and so on.
17
59085
1420
i tako dalje.
01:00
Even an infinitely extending decimal like this could be expressed exactly as 34/45.
18
60505
7402
Čak i decimalni broj s beskonačnim zapisom poput ovog može se zapisati kao 34/45
01:07
All of these are what we now call rational numbers.
19
67907
3514
Takve brojeve zovemo racionalni brojevi.
01:11
But Hippasus found one number that violated this harmonious rule,
20
71421
4630
Ali Hipasus je pronašao jedan broj koji narušava ovaj sklad,
01:16
one that was not supposed to exist.
21
76051
2774
jedan koji ne bi trebao postojati.
01:18
The problem began with a simple shape,
22
78825
2570
Problem je započeo s jednostavnim oblikom,
01:21
a square with each side measuring one unit.
23
81395
3710
kvadratom s duljinom stranice 1.
01:25
According to Pythagoras Theorem,
24
85105
1793
Prema Pitagorinom teoremu,
01:26
the diagonal length would be square root of two,
25
86898
3285
duljina dijagonale je kvadratni korijen iz 2,
01:30
but try as he might, Hippasus could not express this as a ratio of two integers.
26
90183
5345
ali koliko god pokušavao, Hipasus ga nije mogao izraziti kao omjer dvaju brojeva.
01:35
And instead of giving up, he decided to prove it couldn't be done.
27
95528
4311
Umjesto da odustane, odlučio je dokazati da to nije ni moguće učiniti.
01:39
Hippasus began by assuming that the Pythagorean worldview was true,
28
99839
4357
Pretpostavio je da je Pitagorejsko vjerovanje točno,
01:44
that root 2 could be expressed as a ratio of two integers.
29
104196
4949
i da se korijen iz 2 može prikazati kao omjer dvaju brojeva.
01:49
He labeled these hypothetical integers p and q.
30
109145
3836
Označio je ta dva broja s p i q.
01:52
Assuming the ratio was reduced to its simplest form,
31
112981
3377
Pod pretpostavkom da je razlomak skraćen do kraja,
01:56
p and q could not have any common factors.
32
116358
3599
p i q ne mogu imati zajedničkih djelitelja.
01:59
To prove that root 2 was not rational,
33
119957
3030
Da bi dokazao da korijen iz 2 nije racionalan
02:02
Hippasus just had to prove that p/q cannot exist.
34
122987
5087
Hipasus je morao pokazati da p/q ne može postojati.
02:08
So he multiplied both sides of the equation by q
35
128074
3348
Pomnožio je obje strane jednakosti s q
02:11
and squared both sides.
36
131422
1869
i kvadrirao obje strane,
02:13
which gave him this equation.
37
133291
2029
čime je dobio ovu jednadžbu.
02:15
Multiplying any number by 2 results in an even number,
38
135320
3954
Množenje obiju strana s 2 daje parni broj,
02:19
so p^2 had to be even.
39
139274
3058
pa p^2 mora biti paran.
02:22
That couldn't be true if p was odd
40
142332
2383
To nije moguće ako je p neparan
02:24
because an odd number times itself is always odd,
41
144715
3439
jer je neparan broj puta taj broj uvijek neparan,
02:28
so p was even as well.
42
148154
2548
pa je p također paran.
02:30
Thus, p could be expressed as 2a, where a is an integer.
43
150702
5474
Dakle, p se može prikazati kao 2a, gdje je a neki broj.
02:36
Substituting this into the equation and simplifying
44
156176
2898
Uvrštavanjem ovog u jednadžbu i pojednostavljivanjem
02:39
gave q^2 = 2a^2
45
159074
4174
dobije se q^2=2a^2
02:43
Once again, two times any number produces an even number,
46
163248
3932
Ponovno, dva puta neki broj daje paran broj,
02:47
so q^2 must have been even,
47
167180
2741
pa q^2 mora biti paran,
02:49
and q must have been even as well,
48
169921
2091
a q je također paran,
02:52
making both p and q even.
49
172012
2381
pa su onda i p i q parni.
02:54
But if that was true, then they had a common factor of two,
50
174393
3317
Ali ako je to točno, onda oni imaju zajednički djelitelj 2,
02:57
which contradicted the initial statement,
51
177710
2866
što je u kontradikciji s pretpostavkom,
03:00
and that's how Hippasus concluded that no such ratio exists.
52
180576
4220
te je tako Hipasus zaključio da takav omjer ne može postojati.
03:04
That's called a proof by contradiction,
53
184796
1960
To se zove dokaz kontradikcijom,
03:06
and according to the legend,
54
186756
1478
i prema legendi,
03:08
the gods did not appreciate being contradicted.
55
188234
3219
bogovima se nije svidjelo da im se proturječi.
03:11
Interestingly, even though we can't express irrational numbers
56
191453
3475
Zanimljivo, iako ne možemo izraziti iracionalne brojeve
03:14
as ratios of integers,
57
194928
1874
pomoću razlomaka,
03:16
it is possible to precisely plot some of them on the number line.
58
196802
4089
moguće je prikazati ih na brojevnom pravcu.
03:20
Take root 2.
59
200891
1258
Uzmimo korijen iz 2.
03:22
All we need to do is form a right triangle with two sides each measuring one unit.
60
202149
5695
Sve što trebamo je nacrtati pravokutni trokut s katetama duljine 1.
03:27
The hypotenuse has a length of root 2, which can be extended along the line.
61
207844
4752
Duljina hipotenuze je korijen iz 2, i može se nanijeti na brojevni pravac.
03:32
We can then form another right triangle
62
212596
2548
Zatim možemo nacrtati još jedan pravokutni trokut
03:35
with a base of that length and a one unit height,
63
215144
3347
s jednom katetom te duljine i jednom duljine 1,
03:38
and its hypotenuse would equal root three,
64
218491
2644
a hipotenuza će iznositi korijen iz 3,
03:41
which can be extended along the line, as well.
65
221135
2797
što se također može nanijeti na pravac.
03:43
The key here is that decimals and ratios are only ways to express numbers.
66
223932
5021
Ključ je u tome da se može zapisati jedino u obliku razlomka ili decimalnog broja.
03:48
Root 2 simply is the hypotenuse of a right triangle
67
228953
3995
Korijen iz 2 jednostavno je duljina hipotenuze pravokutnog trokuta
03:52
with sides of a length one.
68
232948
1927
s katetama duljine 1.
03:54
Similarly, the famous irrational number pi
69
234875
3384
Slično, poznati iracionalni broj pi
03:58
is always equal to exactly what it represents,
70
238259
2869
uvijek je jednak točno onome što predstavlja,
04:01
the ratio of a circle's circumference to its diameter.
71
241128
3442
a to je omjer opsega kruga i njegovog promjera.
04:04
Approximations like 22/7,
72
244570
2995
Aproksimacije poput 22/7
04:07
or 355/113 will never precisely equal pi.
73
247565
6142
ili 355/113 nikad neće biti jednake točno pi.
04:13
We'll never know what really happened to Hippasus,
74
253707
2511
Nikad nećemo saznati što se točno dogodilo Hipasusu,
04:16
but what we do know is that his discovery revolutionized mathematics.
75
256218
4447
ali znamo da je njegovo otkriće bilo revolucionarno za matematiku.
04:20
So whatever the myths may say, don't be afraid to explore the impossible.
76
260665
4271
Dakle, bez obzira na mitove, nemojte se bojati istraživati nemoguće.
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7