Making sense of irrational numbers - Ganesh Pai

1,910,349 views ใƒป 2016-05-23

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Ido Dekkers ืขืจื™ื›ื”: Roni Ravia
00:06
Like many heroes of Greek myths,
0
6951
1762
ื›ืžื• ื’ื™ื‘ื•ืจื™ื ืจื‘ื™ื ืžื”ืžื™ืชื•ืœื•ื’ื™ื” ื”ื™ื•ื•ื ื™ืช
00:08
the philosopher Hippasus was rumored to have been mortally punished by the gods.
1
8713
5217
ืžืืžื™ื ื™ื ืฉื”ืคื™ืกื•ืœื•ืฃ ื”ื™ื•ื•ื ื™ ื”ื™ืคืกื•ืก ื ืขื ืฉ ื‘ืขื•ื ืฉ ืžื•ื•ืช ืขืœ ื™ื“ื™ ื”ืืœื™ื.
00:13
But what was his crime?
2
13930
1676
ืื‘ืœ ืžื” ื”ื™ื” ื”ืคืฉืข ืฉืœื•?
00:15
Did he murder guests,
3
15606
1351
ื”ืื ื”ื•ื ืจืฆื—,
00:16
or disrupt a sacred ritual?
4
16957
2517
ืื• ื”ืคืจื™ืข ืœื˜ืงืก ืงื“ื•ืฉ?
00:19
No, Hippasus's transgression was a mathematical proof:
5
19474
4050
ืœื, ื”ืคืฉืข ืฉืœ ื”ื™ืคืกื•ืก ื”ื™ื” ื”ื•ื›ื—ื” ืžืชืžื˜ื™ืช:
00:23
the discovery of irrational numbers.
6
23524
3059
ื”ื’ื™ืœื•ื™ ืฉืœ ืžืกืคืจื™ื ืœื ืจืฆื™ื•ื ืœื™ื.
00:26
Hippasus belonged to a group called the Pythagorean mathematicians
7
26583
3728
ื”ื™ืคืกื•ืก ื”ื™ื” ืฉื™ื™ืš ืœืงื‘ื•ืฆื” ืฉื ืงืจืื” ื”ืžืชืžื˜ื™ืงืื™ื ื”ืคื™ืชื’ื•ืจืื™ื
00:30
who had a religious reverence for numbers.
8
30311
2611
ืฉื”ื™ืชื” ืœื”ื ื”ืขืจืฆื” ืœืžืกืคืจื™ื.
00:32
Their dictum of, "All is number,"
9
32922
2541
ื”ืฆื”ืจืชื: "ื”ื›ืœ ื–ื” ืžืกืคืจ"
00:35
suggested that numbers were the building blocks of the Universe
10
35463
3550
ืจืžื–ื” ืฉื”ืžืกืคืจื™ื ื”ื™ื• ืื‘ื ื™ ื”ื™ืกื•ื“ ืฉืœ ื”ื™ืงื•ื
00:39
and part of this belief was that everything from cosmology and metaphysics
11
39013
4304
ื•ื—ืœืง ืžื”ืืžื•ื ื” ื”ื–ื• ื”ื™ืชื” ืฉื”ื›ืœ, ื”ื—ืœ ืžืงื•ืกืžื•ืœื•ื’ื™ื” ื•ืžื˜ืืคื™ื–ื™ืงื”
00:43
to music and morals followed eternal rules
12
43317
3160
ื•ื›ืœื” ื‘ืžื•ื–ื™ืงื” ื•ืžื•ืจืœ ื ื”ื’ื• ืขืœ ืคื™ ื—ื•ืงื™ื ื ืฆื—ื™ื™ื
00:46
describable as ratios of numbers.
13
46477
3698
ื”ืžืชื•ืืจื™ื ื›ื™ื—ืก ื‘ื™ืŸ ืžืกืคืจื™ื.
00:50
Thus, any number could be written as such a ratio.
14
50175
3313
ืœืคื™ ื–ืืช, ื›ืœ ืžืกืคืจ ื”ื™ื” ื™ื›ื•ืœ ืœื”ื›ืชื‘ ื›ื™ื—ืก ื‘ื™ืŸ ืžืกืคืจื™ื.
00:53
5 as 5/1,
15
53488
2507
5 ื›- 5/1.
00:55
0.5 as 1/2
16
55995
3090
0.5 ื›- 1/2
00:59
and so on.
17
59085
1420
ื•ื›ืš ื”ืœืื”.
01:00
Even an infinitely extending decimal like this could be expressed exactly as 34/45.
18
60505
7402
ืืคื™ืœื• ืžืกืคืจื™ื ืขืฉืจื•ื ื™ื™ื ืื™ื ืกื•ืคื™ื™ื ืžืขื™ืŸ ื–ื” ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืžื•ื‘ืขื™ื ื›- 34/45.
01:07
All of these are what we now call rational numbers.
19
67907
3514
ื›ืœ ืืœื” ืงืจื•ื™ื™ื ื›ื™ื•ื ืžืกืคืจื™ื ืจืฆื™ื•ื ืœื™ื™ื.
01:11
But Hippasus found one number that violated this harmonious rule,
20
71421
4630
ืื‘ืœ ื”ื™ืคืกื•ืก ืžืฆื ืžืกืคืจ ืื—ื“ ืฉื”ืคืจ ืืช ื”ื—ื•ืง ื”ื”ืจืžื•ื ื™ ื”ื–ื”,
01:16
one that was not supposed to exist.
21
76051
2774
ืžืกืคืจ ืฉืœื ื”ื™ื” ืืžื•ืจ ืœื”ื™ื•ืช ืงื™ื™ื.
01:18
The problem began with a simple shape,
22
78825
2570
ื”ื‘ืขื™ื” ื”ืชื—ื™ืœื” ืขื ืฆื•ืจื” ืคืฉื•ื˜ื”,
01:21
a square with each side measuring one unit.
23
81395
3710
ืžืจื•ื‘ืข ืฉืื•ืจืš ื›ืœ ืื—ืช ืžืฆืœืขื•ืชื™ื• ื”ื•ื 1.
01:25
According to Pythagoras Theorem,
24
85105
1793
ืœืคื™ ืžืฉืคื˜ ืคื™ืชื’ื•ืจืก,
01:26
the diagonal length would be square root of two,
25
86898
3285
ืื•ืจืš ื”ืืœื›ืกื•ืŸ ื”ื•ื ืฉื•ืจืฉ ืจื™ื‘ื•ืขื™ ืฉืœ 2,
01:30
but try as he might, Hippasus could not express this as a ratio of two integers.
26
90183
5345
ืื‘ืœ ื›ื›ืœ ืฉื ื™ืกื”, ื”ื™ืคืกื•ืก ืœื ื”ื™ื” ื™ื›ื•ืœ ืœื”ื‘ื™ืข ืื•ืชื• ื›ื™ื—ืก ื‘ื™ืŸ ืฉื ื™ ืžืกืคืจื™ื ืฉืœืžื™ื.
01:35
And instead of giving up, he decided to prove it couldn't be done.
27
95528
4311
ื•ื‘ืžืงื•ื ืœื•ื•ืชืจ, ื”ื•ื ื”ื—ืœื™ื˜ ืœื”ื•ื›ื™ื— ืฉื–ื” ื‘ืœืชื™ ืืคืฉืจื™.
01:39
Hippasus began by assuming that the Pythagorean worldview was true,
28
99839
4357
ื”ื™ืคืกื•ืก ืคืชื— ื‘ื”ื ื—ื” ืฉื”ืฉืงืคืช ื”ืขื•ืœื ื”ืคื™ืชื’ื•ืจืื™ืช ื”ื™ื™ืชื” ื ื›ื•ื ื” -
01:44
that root 2 could be expressed as a ratio of two integers.
29
104196
4949
ืฉื ื™ืชืŸ ืœื”ื‘ื™ืข ืฉื•ืจืฉ ืจื™ื‘ื•ืขื™ ืฉืœ 2 ื›ื™ื—ืก ื‘ื™ืŸ ืฉื ื™ ืžืกืคืจื™ื ืฉืœืžื™ื.
01:49
He labeled these hypothetical integers p and q.
30
109145
3836
ื”ื•ื ืกื™ืžืŸ ืืช ืฉื ื™ ื”ืžืกืคืจื™ื ื”ื”ื™ืคื•ืชื˜ื™ื™ื ื”ืืœื” ื›-p ื•-q.
01:52
Assuming the ratio was reduced to its simplest form,
31
112981
3377
ื‘ื”ื ื—ื” ืฉื”ื™ื—ืก ืฆื•ืžืฆื ืœืฆื•ืจืชื• ื”ืคืฉื•ื˜ื” ื‘ื™ื•ืชืจ,
01:56
p and q could not have any common factors.
32
116358
3599
ืœ-p ื•-q ืœื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ื’ื•ืจืžื™ื ืžืฉื•ืชืคื™ื.
01:59
To prove that root 2 was not rational,
33
119957
3030
ื›ื“ื™ ืœื”ื•ื›ื™ื— ืฉืฉื•ืจืฉ 2 ืื™ื ื• ืžืกืคืจ ืจืฆื™ื•ื ืœื™,
02:02
Hippasus just had to prove that p/q cannot exist.
34
122987
5087
ื”ื™ืคืกื•ืก ืจืง ื”ื™ื” ืฆืจื™ืš ืœื”ื•ื›ื™ื— ืฉ-p/q ืœื ื™ื›ื•ืœ ืœื”ืชืงื™ื™ื.
02:08
So he multiplied both sides of the equation by q
35
128074
3348
ืื– ื”ื•ื ื”ื›ืคื™ืœ ืืช ืฉื ื™ ื”ืฆื“ื“ื™ื ืฉืœ ื”ืžืฉื•ื•ืื” ื‘-q
02:11
and squared both sides.
36
131422
1869
ื•ื”ืขืœื” ื‘ืจื™ื‘ื•ืข ืืช ืฉื ื™ ื”ืฆื“ื“ื™ื.
02:13
which gave him this equation.
37
133291
2029
ืžื” ืฉื ืชืŸ ืœื• ืืช ื”ืžืฉื•ื•ืื” ื”ื–ื•.
02:15
Multiplying any number by 2 results in an even number,
38
135320
3954
ืžื›ืคืœืช ื›ืœ ืžืกืคืจ ืฉื”ื•ื ืคื™ 2 ื ื•ืชื ืช ืžืกืคืจ ื–ื•ื’ื™,
02:19
so p^2 had to be even.
39
139274
3058
ืื– p ื‘ืจื™ื‘ื•ืข ื—ื™ื™ื‘ ืœื”ื™ื•ืช ื–ื•ื’ื™.
02:22
That couldn't be true if p was odd
40
142332
2383
ื–ื” ืœื ื™ื›ื•ืœ ืœื”ื™ื•ืช ื ื›ื•ืŸ ืื p ื”ื•ื ืื™ ื–ื•ื’ื™
02:24
because an odd number times itself is always odd,
41
144715
3439
ื‘ื’ืœืœ ืฉืžื›ืคืœืช ืžืกืคืจ ืื™ ื–ื•ื’ื™ ื‘ืขืฆืžื• ื ื•ืชื ืช ืชืžื™ื“ ืžืกืคืจ ืื™ ื–ื•ื’ื™,
02:28
so p was even as well.
42
148154
2548
ืื– ื’ื p ื—ื™ื™ื‘ ืœื”ื™ื•ืช ื–ื•ื’ื™.
02:30
Thus, p could be expressed as 2a, where a is an integer.
43
150702
5474
ืœื›ืŸ, p ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžื•ื‘ืข ื› 2a ื›ืฉ-a ื”ื•ื ืžืกืคืจ ืฉืœื.
02:36
Substituting this into the equation and simplifying
44
156176
2898
ืื ืžื›ื ื™ืกื™ื ื–ืืช ืœืžืฉื•ื•ืื” ื•ืžืคืฉื˜ื™ื
02:39
gave q^2 = 2a^2
45
159074
4174
ื ืงื‘ืœ q^2 = 2a^2
02:43
Once again, two times any number produces an even number,
46
163248
3932
ืฉื•ื‘, 2 ื›ืคื•ืœ ื›ืœ ืžืกืคืจ ืฉื”ื•ื ื ื•ืชืŸ ืžืกืคืจ ื–ื•ื’ื™,
02:47
so q^2 must have been even,
47
167180
2741
ืื– q^2 ื—ื™ื™ื‘ ืœื”ื™ื•ืช ื–ื•ื’ื™,
02:49
and q must have been even as well,
48
169921
2091
ื•-q ื—ื™ื™ื‘ ืœื”ื™ื•ืช ื’ื ื”ื•ื ื–ื•ื’ื™,
02:52
making both p and q even.
49
172012
2381
ืžื” ืฉื”ื•ืคืš ื’ื ืืช p ื•ื’ื ืืช q ืœื–ื•ื’ื™ื™ื.
02:54
But if that was true, then they had a common factor of two,
50
174393
3317
ืื‘ืœ ืื ื–ื” ื ื›ื•ืŸ, ืื– ื™ืฉ ืœื”ื ื’ื•ืจื ืžืฉื•ืชืฃ - 2,
02:57
which contradicted the initial statement,
51
177710
2866
ืžื” ืฉืกื•ืชืจ ืืช ื”ื”ื ื—ื” ื”ืจืืฉื•ื ื™ืช,
03:00
and that's how Hippasus concluded that no such ratio exists.
52
180576
4220
ื•ื›ืš ื”ื™ืคืกื•ืก ืงื‘ืข ืฉื™ื—ืก ื›ื–ื” ืœื ืงื™ื™ื.
03:04
That's called a proof by contradiction,
53
184796
1960
ื–ื” ื ืงืจื ื”ื•ื›ื—ื” ืขืœ ื™ื“ื™ ืฉืœื™ืœื”,
03:06
and according to the legend,
54
186756
1478
ื•ืœืคื™ ื”ืื’ื“ื”,
03:08
the gods did not appreciate being contradicted.
55
188234
3219
ื”ืืœื™ื ืœื ืงื™ื‘ืœื• ื‘ื‘ืจื›ื” ืืช ืกืชื™ืจืช ื“ื‘ืจื™ื”ื.
03:11
Interestingly, even though we can't express irrational numbers
56
191453
3475
ืžืขื ื™ื™ืŸ, ืฉืœืžืจื•ืช ืฉืื™ื ื ื• ื™ื›ื•ืœื™ื ืœื”ื‘ื™ืข ืžืกืคืจื™ื ืœื ืจืฆื™ื•ื ืœื™ื™ื
03:14
as ratios of integers,
57
194928
1874
ื›ื™ื—ืก ืฉืœ ืฉื ื™ ืžืกืคืจื™ื ืฉืœืžื™ื,
03:16
it is possible to precisely plot some of them on the number line.
58
196802
4089
ืขื“ื™ื™ืŸ ื ื™ืชืŸ ืœืžืงื ื›ืžื” ืžื”ื ื‘ืžื“ื•ื™ื™ืง ืขืœ ืฆื™ืจ ื”ืžืกืคืจื™ื.
03:20
Take root 2.
59
200891
1258
ืงื—ื• ืืช ืฉื•ืจืฉ 2.
03:22
All we need to do is form a right triangle with two sides each measuring one unit.
60
202149
5695
ื›ืœ ืฉืฆืจื™ืš ืœืขืฉื•ืช ื–ื” ืœื™ืฆื•ืจ ืžืฉื•ืœืฉ ื™ืฉืจ ื–ื•ื™ืช ืขื ืฉืชื™ ืฆืœืขื•ืช ืฉืื•ืจื›ืŸ ื™ื—ื™ื“ื” ืื—ืช.
03:27
The hypotenuse has a length of root 2, which can be extended along the line.
61
207844
4752
ืœื™ืชืจ ื™ืฉ ืื•ืจืš ืฉืœ ืฉื•ืจืฉ 2, ื•ื ื™ืชืŸ ืœืžืงืžื• ืœืื•ืจืš ื”ืฆื™ืจ.
03:32
We can then form another right triangle
62
212596
2548
ื‘ื”ืžืฉืš ื ื™ืชืŸ ืœื™ืฆื•ืจ ืžืฉื•ืœืฉ ื™ืฉืจ ื–ื•ื™ืช ื ื•ืกืฃ
03:35
with a base of that length and a one unit height,
63
215144
3347
ืขื ื‘ืกื™ืก ื‘ืื•ืจืš ื›ื–ื” ื•ื’ื•ื‘ื” ืฉืœ ื™ื—ื™ื“ื” ืื—ืช,
03:38
and its hypotenuse would equal root three,
64
218491
2644
ื•ื”ื™ืชืจ ืฉืœื• ื™ื”ื™ื” ืฉื•ื•ื” ืœืฉื•ืจืฉ ืฉืœื•ืฉ,
03:41
which can be extended along the line, as well.
65
221135
2797
ืฉื ื™ืชืŸ ื’ื ืื•ืชื• ืœืžืงื ืขืœ ื”ืฆื™ืจ.
03:43
The key here is that decimals and ratios are only ways to express numbers.
66
223932
5021
ืžื” ืฉื—ืฉื•ื‘ ื”ื•ื ืฉืžืกืคืจื™ื ืขืฉืจื•ื ื™ื™ื ื•ืฉื‘ืจื™ื ื”ื ืจืง ื“ืจื›ื™ื ืœื”ื‘ืขืช ืžืกืคืจื™ื.
03:48
Root 2 simply is the hypotenuse of a right triangle
67
228953
3995
ืฉื•ืจืฉ 2 ื”ื•ื ืคืฉื•ื˜ ื”ื™ืชืจ ืฉืœ ืžืฉื•ืœืฉ ื™ืฉืจ ื–ื•ื™ืช
03:52
with sides of a length one.
68
232948
1927
ืฉืื•ืจืš ืฉืชื™ื™ื ืžืฆืœืขื•ืชื™ื• 1.
03:54
Similarly, the famous irrational number pi
69
234875
3384
ื‘ื“ื•ืžื”, ื”ืžืกืคืจ ื”ืœื ืจืฆื™ื•ื ืœื™ ื”ืžืคื•ืจืกื ืคื™ื™
03:58
is always equal to exactly what it represents,
70
238259
2869
ืชืžื™ื“ ืฉื•ื•ื” ื‘ื“ื™ื•ืง ืœืžื” ืฉื”ื•ื ืžื™ื™ืฆื’,
04:01
the ratio of a circle's circumference to its diameter.
71
241128
3442
ื”ื™ื—ืก ื‘ื™ืŸ ื”ื™ืงืฃ ืžืขื’ืœ ืœืงื•ื˜ืจื•.
04:04
Approximations like 22/7,
72
244570
2995
ืงื™ืจื•ื‘ื™ื ื›ืžื• 22/7
04:07
or 355/113 will never precisely equal pi.
73
247565
6142
ืื• 355/113, ืืฃ ืคืขื ืœื ื™ื”ื™ื• ืฉื•ื•ื™ื ื‘ื“ื™ื•ืง ืœืคื™ื™.
04:13
We'll never know what really happened to Hippasus,
74
253707
2511
ืœืขื•ืœื ืœื ื ื“ืข ืžื” ื‘ืืžืช ืงืจื” ืœื”ื™ืคืกื•ืก,
04:16
but what we do know is that his discovery revolutionized mathematics.
75
256218
4447
ืื‘ืœ ืžื” ืฉื›ืŸ ื™ื•ื“ืขื™ื ื–ื” ืฉื”ื’ื™ืœื•ื™ ืฉืœื• ืฉื™ื ื” ืœื’ืžืจื™ ืืช ืคื ื™ ื”ืžืชืžื˜ื™ืงื”.
04:20
So whatever the myths may say, don't be afraid to explore the impossible.
76
260665
4271
ืื– ืœื ืžืฉื ื” ืžื” ื”ื™ื ื”ืืžื•ื ื” ื”ืจื•ื•ื—ืช, ืืœ ืชืคื—ื“ื• ืœื—ืงื•ืจ ืืช ื”ื‘ืœืชื™ ืืคืฉืจื™.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7