Making sense of irrational numbers - Ganesh Pai

1,907,529 views ・ 2016-05-23

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Helen Lin 審譯者: Max Chern
00:06
Like many heroes of Greek myths,
0
6951
1762
如同許多希臘神話的英雄,
00:08
the philosopher Hippasus was rumored to have been mortally punished by the gods.
1
8713
5217
哲學家 希帕索斯 謠傳被眾神處死,
00:13
But what was his crime?
2
13930
1676
但他犯了什麼罪?
00:15
Did he murder guests,
3
15606
1351
他是謀殺了賓客
00:16
or disrupt a sacred ritual?
4
16957
2517
或妨礙神聖的宗教儀式?
00:19
No, Hippasus's transgression was a mathematical proof:
5
19474
4050
不是!希帕索斯的罪行 是一個數學的驗證:
00:23
the discovery of irrational numbers.
6
23524
3059
無理數的發現。
00:26
Hippasus belonged to a group called the Pythagorean mathematicians
7
26583
3728
希帕索斯屬於一群 稱為「畢達哥拉斯學派」的數學家,
00:30
who had a religious reverence for numbers.
8
30311
2611
他們對數字有著虔誠的敬畏。
00:32
Their dictum of, "All is number,"
9
32922
2541
他們的格言「萬物皆數」,
00:35
suggested that numbers were the building blocks of the Universe
10
35463
3550
認為數字是宇宙的主要組成部分,
00:39
and part of this belief was that everything from cosmology and metaphysics
11
39013
4304
這信仰的一部分是 萬物從宇宙學與形上學
00:43
to music and morals followed eternal rules
12
43317
3160
到音樂與倫理道德都遵循 可描寫成 ‘數字比例’ 的永恆規則 。
00:46
describable as ratios of numbers.
13
46477
3698
00:50
Thus, any number could be written as such a ratio.
14
50175
3313
因此,任何數字都能寫成這樣的比例,
00:53
5 as 5/1,
15
53488
2507
5 寫成 5/1,
00:55
0.5 as 1/2
16
55995
3090
0.5 寫成 1/2,
00:59
and so on.
17
59085
1420
等等。
01:00
Even an infinitely extending decimal like this could be expressed exactly as 34/45.
18
60505
7402
甚至像這個無限延伸的小數 也能以 34/45 來表示。
01:07
All of these are what we now call rational numbers.
19
67907
3514
現在我們稱這些為 有理數 (rational numbers)。
01:11
But Hippasus found one number that violated this harmonious rule,
20
71421
4630
但 希帕索斯 發現一個數字, 它違反這個和諧的規則,
01:16
one that was not supposed to exist.
21
76051
2774
那數字被認為不該存在。
01:18
The problem began with a simple shape,
22
78825
2570
這問題源自一個簡單的圖形,
01:21
a square with each side measuring one unit.
23
81395
3710
一個正方形其每邊長為 1 單位。
01:25
According to Pythagoras Theorem,
24
85105
1793
根據勾股定理(Pythagorean theorem),
01:26
the diagonal length would be square root of two,
25
86898
3285
對角線長度等於 √2 ,
01:30
but try as he might, Hippasus could not express this as a ratio of two integers.
26
90183
5345
不管怎樣努力,希帕索斯 無法用兩個整數的比例來表示 √2 ,
01:35
And instead of giving up, he decided to prove it couldn't be done.
27
95528
4311
他不放棄, 決定去證明它無法以比例表示。
01:39
Hippasus began by assuming that the Pythagorean worldview was true,
28
99839
4357
希帕索斯 首先假設 畢達哥拉斯的世界觀是正確的,
01:44
that root 2 could be expressed as a ratio of two integers.
29
104196
4949
就是 √2 可用兩個整數的比例來表示,
01:49
He labeled these hypothetical integers p and q.
30
109145
3836
他將這兩個假設的整數 命名為 p 及 q 。
01:52
Assuming the ratio was reduced to its simplest form,
31
112981
3377
假設這比例已被最簡化,
01:56
p and q could not have any common factors.
32
116358
3599
P 和 q 之間沒有任何共同因子,
01:59
To prove that root 2 was not rational,
33
119957
3030
欲證明 √2 不是有理數,
02:02
Hippasus just had to prove that p/q cannot exist.
34
122987
5087
希帕索斯 只要去證明 p/q 不可能存在。
02:08
So he multiplied both sides of the equation by q
35
128074
3348
所以他在方程式的兩邊都乘上 q,
02:11
and squared both sides.
36
131422
1869
然後兩邊平方,
02:13
which gave him this equation.
37
133291
2029
他得到這樣的方程式。
02:15
Multiplying any number by 2 results in an even number,
38
135320
3954
任何數字乘上 2 都會變成偶數,
02:19
so p^2 had to be even.
39
139274
3058
所以 p^2 必定是偶數,
02:22
That couldn't be true if p was odd
40
142332
2383
若 p 為奇數,那不可能是對的,
02:24
because an odd number times itself is always odd,
41
144715
3439
因為奇數自己相乘,永遠是奇數,
02:28
so p was even as well.
42
148154
2548
所以 p 也是偶數,
02:30
Thus, p could be expressed as 2a, where a is an integer.
43
150702
5474
因此,p 可以 2a 表示,a 是一個整數。
02:36
Substituting this into the equation and simplifying
44
156176
2898
將這帶入方程式並簡化,
02:39
gave q^2 = 2a^2
45
159074
4174
得到 q^2 = 2a^2
02:43
Once again, two times any number produces an even number,
46
163248
3932
再次,2 乘上任何數字會變成偶數,
02:47
so q^2 must have been even,
47
167180
2741
所以 q^2 一定是偶數,
02:49
and q must have been even as well,
48
169921
2091
而 q 一定也是偶數,
02:52
making both p and q even.
49
172012
2381
如此使得 p 和 q 都是偶數。
02:54
But if that was true, then they had a common factor of two,
50
174393
3317
但如果這是正確的, 那它們之間會有 2 的共同因子,
02:57
which contradicted the initial statement,
51
177710
2866
這與最初的假設相違背,
03:00
and that's how Hippasus concluded that no such ratio exists.
52
180576
4220
這就是希帕索斯推斷 這種比例不存在的方法,
03:04
That's called a proof by contradiction,
53
184796
1960
就是所謂的反證法 (Proof by contradiction)。
03:06
and according to the legend,
54
186756
1478
根據傳說
03:08
the gods did not appreciate being contradicted.
55
188234
3219
眾神並不樂見被反駁。
03:11
Interestingly, even though we can't express irrational numbers
56
191453
3475
有趣的是,雖然我們無法 用整數的比例來表示無理數,
03:14
as ratios of integers,
57
194928
1874
03:16
it is possible to precisely plot some of them on the number line.
58
196802
4089
但其中某些可正確地標定在數軸上。
03:20
Take root 2.
59
200891
1258
以 √2 為例,
03:22
All we need to do is form a right triangle with two sides each measuring one unit.
60
202149
5695
我們只須畫一個直角三角形, 其兩邊長各為 1 單位,
03:27
The hypotenuse has a length of root 2, which can be extended along the line.
61
207844
4752
其斜邊長則為 √2 , 可延伸畫在數軸上,
03:32
We can then form another right triangle
62
212596
2548
然後,我們再畫另一個直角三角形,
03:35
with a base of that length and a one unit height,
63
215144
3347
底為那個斜邊長 √2,高為 1 單位,
03:38
and its hypotenuse would equal root three,
64
218491
2644
所成斜邊就等於 √3 ,
03:41
which can be extended along the line, as well.
65
221135
2797
也可延伸畫在數軸上。
03:43
The key here is that decimals and ratios are only ways to express numbers.
66
223932
5021
這裡的關鍵是 小數和比例是唯一表示數字的方法,
03:48
Root 2 simply is the hypotenuse of a right triangle
67
228953
3995
而 √2 只是兩邊長度為 1 的 直角三角形之斜邊。
03:52
with sides of a length one.
68
232948
1927
03:54
Similarly, the famous irrational number pi
69
234875
3384
同樣地,著名的無理數 π (pi)
03:58
is always equal to exactly what it represents,
70
238259
2869
總是正好等於
04:01
the ratio of a circle's circumference to its diameter.
71
241128
3442
一個圓的圓周與其半徑的比例。
04:04
Approximations like 22/7,
72
244570
2995
近似值例如 22/7
04:07
or 355/113 will never precisely equal pi.
73
247565
6142
或 355/113 都不能準確地等於 π 。
04:13
We'll never know what really happened to Hippasus,
74
253707
2511
我們永遠不會知道 希帕索斯到底發生什麼事,
04:16
but what we do know is that his discovery revolutionized mathematics.
75
256218
4447
但我們確實知道 他的發現徹底改變了數學。
04:20
So whatever the myths may say, don't be afraid to explore the impossible.
76
260665
4271
所以不管神話是怎麼說, 不要畏懼探索不可能的事物。
翻譯:Helen Lin
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7