Will there be another pandemic in your lifetime?

475,138 views ใƒป 2022-11-10

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Danielle Elbaz ืขืจื™ื›ื”: zeeva livshitz
00:06
The Black Death.
0
6919
1210
ื”ืžื’ืคื” ื”ืฉื—ื•ืจื”.
00:08
The 1918 Flu Pandemic.
1
8379
1835
ืžื’ืคืช ื”ืฉืคืขืช ื‘-1918.
00:10
COVID-19.
2
10339
1168
COVID-19.
00:11
We tend to think of these catastrophic, world-changing pandemics
3
11883
3545
ืื ื—ื ื• ื ื•ื˜ื™ื ืœื—ืฉื•ื‘ ืขืœ ื”ืžื’ืคื•ืช ื”ืงื˜ืกื˜ืจื•ืคืœื™ื•ืช ื•ืžืฉื ื•ืช ืกื“ืจื™ ืขื•ืœื ื”ืืœื”
00:15
as very unlikely events.
4
15428
2294
ื›ืขืœ ืื™ืจื•ืขื™ื ื‘ืขืœื™ ืกื‘ื™ืจื•ืช ื ืžื•ื›ื”.
00:18
But between 1980 and 2020,
5
18389
2503
ืื‘ืœ ื‘ื™ืŸ 1980 ื•-2020,
00:20
at least three diseases emerged that caused global pandemics.
6
20892
3837
ืœืคื—ื•ืช ืฉืœื•ืฉ ืžื—ืœื•ืช ื”ืชื’ืœื• ืฉื’ืจืžื• ืœืžื’ืคื•ืช ืขื•ืœืžื™ื•ืช.
00:24
COVID-19, yes, but also the 2009 swine flu and HIV/AIDS.
7
24729
4921
COVID-19, ื ื›ื•ืŸ, ืื‘ืœ ื’ื ืฉืคืขืช ื”ื—ื–ื™ืจื™ื ื•-HIV/ืื™ื™ื“ืก.
00:29
Disease outbreaks are surprisingly common.
8
29942
2378
ื”ืชืคืจืฆื•ืช ืฉืœ ืžื—ืœื•ืช ื”ื™ื ื“ื‘ืจ ื“ื™ ื ืคื•ืฅ ืœืžืจื‘ื” ื”ืคืœื.
00:32
Over the past four centuries,
9
32528
1544
ื‘ืžื”ืœืš ืืจื‘ืข ื”ืžืื•ืช ื”ืื—ืจื•ื ื•ืช,
00:34
the longest stretch of time without a documented outbreak
10
34072
3128
ืคืจืง ื”ื–ืžืŸ ื”ืืจื•ืš ื‘ื™ื•ืชืจ ื‘ื• ืœื ืชื•ืขื“ื” ื›ืœ ื”ืชืคืจืฆื•ืช ืžื—ืœื”
00:37
that killed at least 10,000 people was just four years.
11
37200
4296
ืฉื”ืจื’ื” ืœืคื—ื•ืช 10,000 ืื ืฉื™ื ื ืžืฉืš ืจืง ืืจื‘ืข ืฉื ื™ื.
00:42
As bad as these smaller outbreaks are,
12
42038
2169
ืขื“ ื›ืžื” ืฉื”ื”ืชืคืจืฆื•ื™ื•ืช ื”ืงื˜ื ื•ืช ื”ืืœื” ืžืกื•ื›ื ื•ืช,
00:44
theyโ€™re far less deadly than a COVID-19-level pandemic.
13
44207
3086
ื”ืŸ ื”ืจื‘ื” ืคื—ื•ืช ืงื˜ืœื ื™ื•ืช ืžืžื’ืคื” ื‘ืงื ื” ืžื™ื“ื” ืฉืœ COVID-19.
00:47
In fact, many people born after the 1918 flu lived their entire lives
14
47627
4629
ืœืžืขืฉื”, ื”ืจื‘ื” ืื ืฉื™ื ืฉื ื•ืœื“ื• ืœืื—ืจ ืžื’ืคืช ื”ืฉืคืขืช ื‘-1918 ื”ืขื‘ื™ืจื• ืืช ื—ื™ื™ื”ื
00:52
without experiencing a similar world-changing pandemic.
15
52256
3295
ื‘ืœื™ ืœื—ื•ื•ืช ืžื’ืคื” ืžืฉื ื” ืกื“ืจื™ ืขื•ืœื ื“ื•ืžื” ืœื”.
00:55
Whatโ€™s the probability that you do, too?
16
55843
2253
ืžื” ื”ืกื‘ื™ืจื•ืช ืฉืืชื ืชื—ื•ื• ื–ืืช?
00:58
There are several ways to answer this question.
17
58387
2253
ื™ืฉ ื›ืžื” ื“ืจื›ื™ื ื›ื“ื™ ืœืขื ื•ืช ืขืœ ื”ืฉืืœื” ื”ื–ืืช.
01:00
You could look at history.
18
60640
1668
ืชื•ื›ืœื• ืœื”ืชื‘ื•ื ืŸ ื‘ื”ื™ืกื˜ื•ืจื™ื”.
01:02
A team of scientists and engineers who took this approach
19
62308
2878
ืฆื•ื•ืช ืฉืœ ืžื“ืขื ื™ื ื•ืžื”ื ื“ืกื™ื ืœืงื—ื• ืืช ื”ืžื™ื“ืข ื”ื–ื”
01:05
catalogued all documented epidemics and pandemics between 1600 and 1950.
20
65186
5422
ื•ื—ื™ืœืงื• ืœืงื˜ื’ื•ืจื™ื•ืช ืืช ื›ืœ ื”ืžื’ืคื•ืช ื”ืื–ื•ืจื™ื•ืช ื•ื”ืขื•ืœืžื™ื•ืช ื‘ื™ืŸ 1600 ืขื“ 1950.
01:10
They used that data to do two things.
21
70817
2085
ื”ื ื”ืฉืชืžืฉื• ื‘ื ืชื•ื ื™ื ืืœื” ืขืœ ืžื ืช ืœืขืฉื•ืช ืฉื ื™ ื“ื‘ืจื™ื.
01:13
First, to graph the likelihood that an outbreak of any size
22
73152
3587
ืชื—ื™ืœื”, ืœืฉืจื˜ื˜ ื‘ื’ืจืฃ ืืช ื”ืกื‘ื™ืจื•ืช ืฉื”ืชืคืจืฆื•ืช ื‘ื›ืœ ื’ื•ื“ืœ
01:16
pops up somewhere in the world over a set period of time.
23
76739
3128
ืชืชืจื—ืฉ ื‘ืžืงื•ื ื›ืœืฉื”ื• ื‘ืขื•ืœื ื‘ืžื”ืœืš ืคืจืง ื–ืžืŸ ืžื•ื’ื“ืจ.
01:20
And second, to estimate the likelihood that that outbreak would get large enough
24
80409
4171
ื•ืฉื ื™ืช, ืœื”ืขืจื™ืš ืืช ื”ืกื‘ื™ืจื•ืช ืฉื”ื”ืชืคืจืฆื•ืช ื”ื–ื• ืชืชืจื—ื‘ ืœืงื ื” ืžื™ื“ื” ืžืกืคื™ืง ื’ื“ื•ืœ
01:24
to kill a certain percentage of the world's population.
25
84580
2753
ื›ื“ื™ ืœื”ืจื•ื’ ืื—ื•ื– ืžืกื•ื™ื ืžืื•ื›ืœื•ืกื™ื™ืช ื”ืขื•ืœื.
01:27
This graph shows that while huge pandemics are unlikely,
26
87708
3629
ืœืžืจื•ืช ืฉื”ื’ืจืฃ ื”ื–ื” ืžืจืื” ืฉื”ืกื‘ื™ืจื•ืช ืœืžื’ืคื” ื’ื“ื•ืœื” ื”ื™ื ื ืžื•ื›ื”,
01:31
they're not that unlikely.
27
91587
1627
ื”ื™ื ืœื ื‘ืœืชื™ ืกื‘ื™ืจื” ืœื—ืœื•ื˜ื™ืŸ.
01:34
The team used these two distributions to estimate that the risk
28
94048
2961
ื”ืฆื•ื•ืช ื”ืฉืชืžืฉ ื‘ืฉืชื™ ื”ื—ืœื•ืงื•ืช ื”ืืœื” ื•ื”ืขืจื™ืš ืฉื”ืกื™ื›ื•ืŸ
01:37
of a COVID-19-level pandemic is about 0.5% per year,
29
97009
4338
ืฉืชืชืคืจืฅ ืžื’ืคื” ื‘ืงื ื” ืžื™ื“ื” ืฉืœ COVID-19 ื”ื•ื 0.5% ืœืฉื ื”,
01:41
and could be as high as 1.4%
30
101347
2711
ื•ื™ื›ื•ืœ ืœื”ื’ื™ืข ืขื“ ืœื’ื•ื‘ื” ืฉืœ 1.4%
01:44
if new diseases emerge more frequently in the future.
31
104058
3087
ื‘ืžื™ื“ื” ื•ืžื—ืœื•ืช ื—ื“ืฉื•ืช ื™ืชื’ืœื• ื‘ืื•ืคืŸ ืชื“ื™ืจ ื™ื•ืชืจ ื‘ืขืชื™ื“.
01:48
And weโ€™ll come back to those numbers,
32
108104
1793
ื•ืื ื—ื ื• ืขื•ื“ ื ื—ื–ื•ืจ ืœืื•ืชื ืžืกืคืจื™ื,
01:49
but first, letโ€™s look at another way to estimate the likelihood
33
109897
3045
ืื‘ืœ ืงื•ื“ื, ื‘ื•ืื• ื ืชื‘ื•ื ืŸ ื‘ืขื•ื“ ื“ืจืš ื‘ื” ืืคืฉืจ ืœื”ืขืจื™ืš ืืช ื”ืกื‘ื™ืจื•ืช
01:52
of a future pandemic:
34
112942
1293
ืœืžื’ืคื” ืขืชื™ื“ื™ืช.
01:54
modeling one from the ground up.
35
114235
1877
ื ื“ื’ื™ื ื–ืืช ืžื”ื™ืกื•ื“.
01:56
For most pandemics to happen, a pathogen, which is a microbe that can cause disease,
36
116529
4296
ืขืœ ืžื ืช ืฉืจื•ื‘ ื”ืžื’ืคื•ืช ื™ืงืจื•, ื“ื‘ืจ ื‘ืฉื ืคืชื•ื’ืŸ, ืฉื–ื” ื—ื™ื™ื“ืง ืฉื™ื›ื•ืœ ืœื’ืจื•ื ืœืžื—ืœื”,
02:00
has to spill over from its normal host by making contact with and infecting a human.
37
120825
5547
ื—ื™ื™ื‘ ืœื”ืชืคืจืก ืžื”ื’ื•ืฃ ื‘ื• ื”ื•ื ืฉื•ื›ืŸ ืขืœ ื™ื“ื™ ื™ืฆื™ืจืช ืžื’ืข ืขื ื‘ืŸ ืื“ื ื•ืœื”ื“ื‘ื™ืง ืื•ืชื•.
02:06
Then, the pathogen has to spread widely,
38
126497
2753
ื•ืื–, ื”ืคืชื•ื’ืŸ ื—ื™ื™ื‘ ืœื”ืชืคืฉื˜ ื‘ืื•ืคืŸ ื ืจื—ื‘,
02:09
crossing international boundaries and infecting lots of people.
39
129250
3629
ืœื—ืฆื•ืช ื’ื‘ื•ืœื•ืช ื‘ื™ื ืœืื•ืžื™ื™ื ื•ืœื”ื“ื‘ื™ืง ื”ืจื‘ื” ืื ืฉื™ื.
02:13
Many variables determine whether a given spillover event becomes a pandemic.
40
133713
4588
ื”ืžื•ืŸ ืžืฉืชื ื™ื ืงื•ื‘ืขื™ื ืื ืื™ืจื•ืข ื ืชื•ืŸ ืฉืœ ื”ืชืคืจืกื•ืช ื”ื•ืคืš ืœืžื’ืคื”.
02:18
For example, the type of pathogen, how often humans come into close contact
41
138885
4296
ืœื“ื•ื’ืžื”, ืกื•ื’ ื”ืคืชื•ื’ืŸ, ื‘ืื™ื–ื• ืชื“ื™ืจื•ืช ื‘ื ื™ ืื“ื ื‘ืื• ื‘ืžื’ืข ืงืจื•ื‘
02:23
with its animal reservoir, existing immunity, and so on.
42
143181
3461
ืขื ื—ื™ื™ืช ื”ืžืื’ืจ ืฉืœื•, ื”ื—ืกื™ื ื•ืช ื”ืงื™ื™ืžืช, ื•ืขื•ื“.
02:27
Viruses are prime candidates to cause the next big pandemic.
43
147602
4087
ื•ื™ืจื•ืกื™ื ื”ื ืžื•ืขืžื“ื™ื ืžื•ื‘ื™ืœื™ื ืœื’ืจื•ื ืœืžื’ืคื” ื”ื‘ืื”.
02:31
Scientists estimate that there are about 1.7 million as-yet-undiscovered viruses
44
151856
5756
ืžื“ืขื ื™ื ืžืขืจื™ื›ื™ื ืฉื™ืฉ ื‘ืขืจืš 1.7 ืžื™ืœื™ื•ืŸ ื•ื™ืจื•ืกื™ื ืฉืขื•ื“ ืœื ื”ืชื’ืœื•
02:37
that currently infect mammals and birds,
45
157612
2544
ืฉื›ืจื’ืข ืžื“ื‘ื™ืงื™ื ื™ื•ื ืงื™ื ื•ืฆื™ืคื•ืจื™ื,
02:40
and that roughly 40% of these have the potential to spill over and infect humans.
46
160156
4921
ื•ื‘ืขืจืš ืœ-40% ืžื”ื ื™ืฉ ืคื•ื˜ื ืฆื™ืืœ ืœื”ืชืคืจืก ื•ืœื”ื“ื‘ื™ืง ื‘ื ื™ ืื“ื.
02:46
A team of scientists built a model using this information,
47
166162
2878
ืฆื•ื•ืช ืžื“ืขื ื™ื ื‘ื ื” ืžื•ื“ืœ ืชื•ืš ืฉื™ืžื•ืฉ ื‘ืžื™ื“ืข ื”ื–ื”,
02:49
as well as data about the global population, air travel networks,
48
169040
3461
ื•ื‘ืฉื™ืžื•ืฉ ื‘ื ืชื•ื ื™ื ืขืœ ื”ืื•ื›ืœื•ืกื™ื™ื” ื”ืขื•ืœืžื™ืช, ืจืฉืชื•ืช ื”ืชืขื•ืคื”,
02:52
how people move around in communities, country preparedness levels,
49
172501
3504
ืื™ืš ืื ืฉื™ื ืขื•ื‘ืจื™ื ื‘ื™ืŸ ืงื”ื™ืœื•ืช, ืจืžื•ืช ื”ืžื•ื›ื ื•ืช ืฉืœ ื”ืžื“ื™ื ื”,
02:56
and how people might respond to pandemics.
50
176005
2419
ื•ืื™ืš ืื ืฉื™ื ืขืฉื•ื™ื™ื ืœื”ื’ื™ื‘ ืœืžื’ืคื•ืช.
02:58
The model generated hundreds of thousands of virtual pandemics.
51
178799
3838
ื”ืžื•ื“ืœ ื™ืฆืจ ืžืื•ืช ืืœืคื™ื ืฉืœ ืžื’ืคื•ืช ืžื“ื•ืžื•ืช.
03:02
The scientists then used this catalog to estimate
52
182720
2586
ืœืื—ืจ ืžื›ืŸ ื”ืžื“ืขื ื™ื ื”ืฉืชืžืฉื• ื‘ืžื“ื’ื ื–ื” ื›ื“ื™ ืœื”ืขืจื™ืš
03:05
that the probability of another COVID-19-level pandemic
53
185306
3170
ืฉื”ืกื‘ื™ืจื•ืช ืฉืœ ืขื•ื“ ืžื’ื™ืคื” ื‘ืกื“ืจ ื’ื•ื“ืœ ืฉืœ COVID-19
03:08
is 2.5 to 3.3% per year.
54
188476
3253
ื”ื™ื ื‘ื™ืŸ 2.5 ืœ-3.3% ื‘ืฉื ื”.
03:12
To get a sense of how these risks play out over a lifetime,
55
192563
3379
ื›ื“ื™ ืœื”ื‘ื™ืŸ ืื™ืš ื”ืกื™ื›ื•ื ื™ื ื”ืืœื” ืžืชื‘ื˜ืื™ื ื‘ืžื”ืœืš ืชืงื•ืคื” ืฉืœ ื—ื™ื™ื ืฉืœืžื™ื
03:15
letโ€™s pick a value roughly in the middle of all these estimates: 2%.
56
195942
3628
ื ื‘ื—ืจ ืขืจืš ื‘ืกื‘ื™ื‘ื•ืช ื”ืืžืฆืข ืฉืœ ื”ื”ืขืจื›ื•ืช ื”ืืœื”: 2%.
03:19
Now letโ€™s build whatโ€™s called a probability tree diagram
57
199737
3003
ื‘ื•ืื• ื•ื ื‘ื ื” ืžื” ืฉื ืงืจื ืกื‘ื™ืจื•ืช ื‘ืชืจืฉื™ื ืขืฅ
03:22
to model all possible scenarios.
58
202740
2336
ื›ื“ื™ ืœื”ื“ื’ื™ื ืืช ื›ืœ ื”ืชืจื—ื™ืฉื™ื ื”ืืคืฉืจื™ื™ื.
03:25
The first branch of the tree represents the first year:
59
205243
3128
ื”ืขื ืฃ ื”ืจืืฉื•ืŸ ืฉืœ ื”ืขืฅ ืžื™ื™ืฆื’ ืืช ื”ืฉื ื” ื”ืจืืฉื•ื ื”:
03:28
thereโ€™s a 2% probability of experiencing a COVID-19-level pandemic,
60
208371
3920
ื™ืฉ ืกื‘ื™ืจื•ืช ืฉืœ 2% ืœื—ื•ื•ืช ืžื’ืคื” ื‘ืกื“ืจ ื’ื•ื“ืœ ืฉืœ COVID-19.
03:32
which means thereโ€™s a 98% probability of not experiencing one.
61
212500
3920
ืžื” ืฉืื•ืžืจ ืฉื™ืฉ ืกื‘ื™ืจื•ืช ืฉืœ 98% ืœื ืœื—ื•ื•ืช ื–ืืช.
03:36
Second branch, same thing,
62
216712
1710
ื‘ืขื ืฃ ื”ืฉื ื™, ืื•ืชื• ื”ื“ื‘ืจ,
03:38
Third branch, same.
63
218589
1335
ื‘ืขื ืฃ ื”ืฉืœื™ืฉื™, ื’ื.
03:39
And so on, 72 more times.
64
219924
2544
ื•ื”ืœืื”, 72 ืคืขืžื™ื.
03:42
There is only one path that results in a fully pandemic-free lifetime:
65
222718
4922
ื™ืฉ ืจืง ื“ืจืš ืื—ืช ืฉืžื•ื‘ื™ืœื” ืœื—ื™ื™ื ืœืœื ืžื’ืคื•ืช:
03:47
98%, or 0.98, multiplied by itself 75 times,
66
227848
4880
98%, ืื• 0.98 ื›ืคื•ืœ ืขืฆืžื• 75 ืคืขืžื™ื,
03:52
which comes out to roughly 22%.
67
232728
2503
ืฉื™ื•ืฆื ื‘ืขืจืš 22%.
03:55
So the likelihood of living through at least one more COVID 19-level-pandemic
68
235856
4088
ืื– ื”ืกื‘ื™ืจื•ืช ืœื—ื•ื•ืช ื‘ืžื”ืœืš ื”ื—ื™ื™ื ืœืคื—ื•ืช ืขื•ื“ ืžื’ืคื” ืื—ืช ื‘ืกื“ืจ ื’ื•ื“ืœ ืฉืœ COVID-19
03:59
in the next 75 years is 100 minus 22%, or 78%.
69
239944
5630
ื‘ืžื”ืœืš 75 ื”ืฉื ื™ื ื”ื‘ืื•ืช ื”ื™ื 100 ืคื—ื•ืช 22%, ืื• 78%.
04:05
78%!
70
245866
1127
78%!
04:07
If we use the most optimistic yearly estimateโ€” 0.5%โ€”
71
247451
4171
ืื ื ืฉืชืžืฉ ื‘ื”ืขืจื›ื” ื”ืฉื ืชื™ืช ื”ื›ื™ ืื•ืคื˜ื™ืžื™ืชโ€”0.5%โ€”
04:11
the lifetime probability drops to 31%.
72
251747
3128
ื”ื”ืกืชื‘ืจื•ืช ื™ื•ืจื“ืช ืœ31%.
04:15
If we use the most pessimistic one, it jumps to 92%.
73
255042
4129
ืื ื ืฉืชืžืฉ ื‘ื”ืขืจื›ื” ื”ื›ื™ ืคืกื™ืžื™ืช, ื–ื” ืงื•ืคืฅ ืœ92%.
04:19
Even 31% is too high to ignore;
74
259839
2669
ื’ื 31% ื–ื” ื’ื‘ื•ื” ืžื“ื™ ืžื›ื“ื™ ืœื”ืชืขืœื;
04:22
even if we get lucky, future generations might not.
75
262633
3212
ื’ื ืื ื™ื”ื™ื” ืœื ื• ืžื–ืœ, ืœื ื‘ื˜ื•ื— ืฉืœื“ื•ืจื•ืช ื”ื‘ืื™ื ื™ื”ื™ื”.
04:26
Also, pandemics are usually random, independent events:
76
266053
3712
ื‘ื ื•ืกืฃ, ืžื’ืคื•ืช ื”ืŸ ื‘ื“ืจืš ื›ืœืœ ืื™ืจื•ืขื™ื ืืงืจืื™ื™ื, ื•ื‘ืœืชื™ ืชืœื•ื™ื™ื:
04:29
so even if the yearly probability of a COVID-19-level pandemic is 1%,
77
269765
4797
ื’ื ืื ื”ื”ืกืชื‘ืจื•ืช ื”ืฉื ืชื™ืช ืฉืœ ืžื’ืคื” ื‘ืกื“ืจ ื’ื•ื“ืœ ืฉืœ COVID-19 ื”ื™ื 1%,
04:34
we could absolutely get another one in ten years.
78
274729
2836
ืื ื—ื ื• ื‘ืื•ืคืŸ ืžื•ื—ืœื˜ ืขืฉื•ื™ื™ื ืœื—ื•ื•ืช ืขื•ื“ ืื—ืช ืชื•ืš ืขืฉืจ ืฉื ื™ื.
04:38
The good news is we now have tools that make pandemics less destructive.
79
278607
3963
ื”ื—ื“ืฉื•ืช ื”ื˜ื•ื‘ื•ืช ื”ืŸ ืฉื™ืฉ ืœื ื• ื”ื™ื•ื ื›ืœื™ื ื›ื“ื™ ืœื”ืคื•ืš ืžื’ืคื•ืช ืœืคื—ื•ืช ื”ืจืกื ื™ื•ืช.
04:43
Scientists estimated that early warning systems, contact tracing,
80
283154
3628
ืžื“ืขื ื™ื ื”ืขืจื™ื›ื• ืฉืžืขืจื›ื•ืช ื”ืชืจืขื” ืžื•ืงื“ืžืช, ืžืขืงื‘ ืžื’ืขื™ื,
04:46
social distancing, and other public health measures
81
286782
2461
ืจื™ื—ื•ืง ื—ื‘ืจืชื™, ื•ืขื•ื“ ื”ืจื‘ื” ืืžืฆืขื™ื ืœื‘ืจื™ืื•ืช ื”ืฆื™ื‘ื•ืจ
04:49
saved over a million lives in just the first six months
82
289243
3253
ื”ืฆื™ืœื• ื—ื™ื™ื ืฉืœ ืœืžืขืœื” ืžืžื™ืœื™ื•ืŸ ื‘ื ื™ ืื“ื ื‘ื—ืฆื™ ื”ืฉื ื” ื”ืจืืฉื•ื ื” ื‘ืœื‘ื“
04:52
of the COVID-19 pandemic in the US,
83
292496
2419
ืฉืœ ืžื’ืคืช COVID-19 ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช,
04:55
not to mention the millions of lives saved by vaccines.
84
295333
3086
ืฉืœื ืœื“ื‘ืจ ืขืœ ืžื™ืœื™ื•ื ื™ ื”ืื ืฉื™ื ืฉื ื™ืฆืœื• ื‘ื–ื›ื•ืช ื—ื™ืกื•ื ื™ื.
04:59
One day, another pandemic will sweep the globe.
85
299587
2961
ื™ื•ื ืื—ื“, ืขื•ื“ ืžื’ืคื” ืชืกื—ืฃ ืืช ื”ืขื•ืœื.
05:02
But we can work to make that day less likely to be tomorrow.
86
302840
3462
ืื‘ืœ ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขื‘ื•ื“ ื‘ืฉื‘ื™ืœ ืกื™ื›ื•ื™ ื ืžื•ืš ืฉื”ื™ื•ื ื”ื–ื” ื™ื”ื™ื” ืžื—ืจ.
05:06
We can reduce the risk of spillover events,
87
306552
2252
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืคื—ื™ืช ืืช ื”ืกื™ื›ื•ืŸ ืœืื™ืจื•ืขื™ ื”ืชืคืจืกื•ืช,
05:08
and we can contain spillovers that do happen
88
308804
2461
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื‘ืœื•ื ืื™ืจื•ืขื™ ื”ืชืคืจืกื•ืช ืฉื›ืŸ ืงื•ืจื™ื
05:11
so they donโ€™t become full-blown pandemics.
89
311265
2544
ื›ื“ื™ ืฉื”ื ืœื ื™ื”ืคื›ื• ืœืžื’ืคื” ื‘ืกื“ืจ ื’ื•ื“ืœ ืขืฆื•ื.
05:14
Imagine how the future might look if we interacted
90
314810
2461
ื“ืžื™ื™ื ื• ืื™ืš ื™ืจืื” ื”ืขืชื™ื“ ืื ื ื•ื›ืœ ืœืชืงืฉืจ
05:17
with the animal world more carefully,
91
317271
1919
ืขื ืขื•ืœื ื”ื—ื™ื•ืช ื‘ื–ื”ื™ืจื•ืช ืจื‘ื” ื™ื•ืชืจ,
05:19
and if we had well-funded, open-access global disease monitoring programs,
92
319190
4337
ื•ืื ืชื”ื™ื” ืœื ื• ื’ื™ืฉื” ืคืชื•ื—ื” ื•ืžื™ืžื•ืŸ ื˜ื•ื‘ ืœืชื•ื›ื ื™ื•ืช ื ื™ื˜ื•ืจ ืžื—ืœื•ืช ืขื•ืœืžื™ื•ืช,
05:23
AI-powered contact tracing and isolation measures,
93
323527
2920
ืœืชื—ืงื•ืจ ืžื’ืขื™ื ื‘ืืžืฆืขื•ืช ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ื•ืœืืžืฆืขื™ ื‘ื™ื“ื•ื“,
05:26
universal vaccines, next-generation antiviral drugs,
94
326447
3295
ืœื—ื™ืกื•ื ื™ื ื›ืœืœ ืขื•ืœืžื™ื™ื, ืœืชืจื•ืคื•ืช ื ื•ื’ื“ื•ืช ื ื’ื™ืคื™ื ืžื”ื“ื•ืจ ื”ื‘ื,
05:29
and other tech we haven't even thought of.
95
329742
2127
ื•ืขื•ื“ ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืฉืืคื™ืœื• ืœื ื—ืฉื‘ื ื• ืขืœื™ื”ืŸ.
05:32
Itโ€™s in our power to change these probabilities.
96
332078
3003
ื–ื” ื‘ื™ื“ื™ื™ื ืฉืœื ื• ืœืฉื ื•ืช ืืช ื”ืกื™ื›ื•ื™ื™ื ื”ืืœื”.
05:35
So, we have a choice: we could do nothing and hope we get lucky.
97
335206
3295
ืื–, ื™ืฉ ืœื ื• ื‘ืจื™ืจื”: ื ื•ื›ืœ ืœื ืœืขืฉื•ืช ื›ืœื•ื ื•ืœืงื•ื•ืช ืฉื™ื”ื™ื” ืœื ื• ืžื–ืœ.
05:38
Or we could take the threat seriously enough
98
338501
2252
ืื• ืฉื ื•ื›ืœ ืœืงื—ืช ืžืกืคื™ืง ื‘ืจืฆื™ื ื•ืช ืืช ื”ืื™ื•ื
05:40
that it becomes a self-defeating prophecy.
99
340753
2419
ืขื“ ืฉื–ื” ื™ื”ืคื•ืš ืœื”ื™ื•ืช ื ื‘ื•ืื” ืฉืžื‘ื™ืกื” ืืช ืขืฆืžื”.
05:43
Which future would you rather live in?
100
343672
1961
ื‘ืื™ื–ื” ืขืชื™ื“ ืชืขื“ื™ืคื• ืœื—ื™ื•ืช?
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7