Tim Berners-Lee: The next Web of open, linked data

448,250 views ・ 2009-03-13

TED


请双击下面的英文字幕来播放视频。

翻译人员: Zheng Xiao 校对人员: Halei Liu
00:18
Time flies.
0
18330
2000
光阴似箭
00:20
It's actually almost 20 years ago
1
20330
2000
差不多是20年前
00:22
when I wanted to reframe the way we use information,
2
22330
4000
当我想重新构造我们使用信息
00:26
the way we work together: I invented the World Wide Web.
3
26330
3000
协同工作方式的时候 - 我发明了万维网
00:29
Now, 20 years on, at TED,
4
29330
3000
20年过去了,现在,在TED
00:32
I want to ask your help in a new reframing.
5
32330
4000
我请求你们帮助创建新的架构
00:37
So going back to 1989,
6
37330
4000
回到1989年
00:41
I wrote a memo suggesting the global hypertext system.
7
41330
3000
我在备忘录中建议使用一种全球的超链接系统
00:44
Nobody really did anything with it, pretty much.
8
44330
3000
几乎没有什么人在真正用它
00:47
But 18 months later -- this is how innovation happens --
9
47330
4000
但是,18个月后 - 革新就是这么开始的
00:51
18 months later, my boss said I could do it on the side,
10
51330
4000
18个月后,老板说,我可以兼职做这件事
00:55
as a sort of a play project,
11
55330
2000
做一种游戏性质的项目
00:57
kick the tires of a new computer we'd got.
12
57330
2000
就拿我们新买来的电脑
00:59
And so he gave me the time to code it up.
13
59330
3000
他给了我些时间写代码实现
01:02
So I basically roughed out what HTML should look like:
14
62330
5000
我草拟了下HTML应该是什么样子
01:07
hypertext protocol, HTTP;
15
67330
3000
超文本协议 - HTTP -
01:10
the idea of URLs, these names for things
16
70330
3000
关于URLs 的想法 - 事物的名称
01:13
which started with HTTP.
17
73330
2000
这些事物都是以HTTP开头命名的
01:15
I wrote the code and put it out there.
18
75330
2000
我完成了代码并发布出来。
01:17
Why did I do it?
19
77330
2000
我为什么要这么做?
01:19
Well, it was basically frustration.
20
79330
2000
这是一个充满挫败感的过程
01:21
I was frustrated -- I was working as a software engineer
21
81330
4000
我感到很挫败 - 因为我作为名软件工程师
01:25
in this huge, very exciting lab,
22
85330
2000
工作在这个令人兴奋的超大的实验室中
01:27
lots of people coming from all over the world.
23
87330
2000
很多人从世界各地来到这里
01:29
They brought all sorts of different computers with them.
24
89330
3000
他们的电脑各不相同
01:32
They had all sorts of different data formats,
25
92330
3000
数据格式各不相同
01:35
all sorts, all kinds of documentation systems.
26
95330
2000
文件系统各不相同
01:37
So that, in all that diversity,
27
97330
3000
所以,这其中有很大的差异性
01:40
if I wanted to figure out how to build something
28
100330
2000
如果我想建立一点点东西
01:42
out of a bit of this and a bit of this,
29
102330
2000
在这些差异性很大的电脑上
01:44
everything I looked into, I had to connect to some new machine,
30
104330
4000
我要找一些数据,我不得不连接到一些新的机器
01:48
I had to learn to run some new program,
31
108330
2000
运行一些新的程序
01:50
I would find the information I wanted in some new data format.
32
110330
5000
以便我能在新的数据格式中找到一些信息
01:55
And these were all incompatible.
33
115330
2000
这些都是不兼容的
01:57
It was just very frustrating.
34
117330
2000
这非常令人沮丧
01:59
The frustration was all this unlocked potential.
35
119330
2000
这种挫败感却正显示出这个项目的潜力所在
02:01
In fact, on all these discs there were documents.
36
121330
3000
事实上,这些磁盘里全是文件
02:04
So if you just imagined them all
37
124330
3000
所以如果你仅仅把他们
02:07
being part of some big, virtual documentation system in the sky,
38
127330
5000
想象成天空中某些大型虚拟文件系统的一部分
02:12
say on the Internet,
39
132330
2000
比如Internet
02:14
then life would be so much easier.
40
134330
2000
生活就会简单得多
02:16
Well, once you've had an idea like that it kind of gets under your skin
41
136330
4000
这样,一旦你有了这样的想法
02:20
and even if people don't read your memo --
42
140330
2000
即使人们并没有读到你的备忘录
02:22
actually he did, it was found after he died, his copy.
43
142330
3000
事实上他读到了,因为在他死后,在他的草稿拷贝中
02:25
He had written, "Vague, but exciting," in pencil, in the corner.
44
145330
3000
他用铅笔在角落写到“模糊,但是令人兴奋”。
02:28
(Laughter)
45
148330
2000
(笑声)
02:30
But in general it was difficult -- it was really difficult to explain
46
150330
4000
但一般情况下,很难有这样的想法 – 的确很难解释
02:34
what the web was like.
47
154330
2000
网络是什么样的
02:36
It's difficult to explain to people now that it was difficult then.
48
156330
2000
现在都很难向人们解释,更别提当初了
02:38
But then -- OK, when TED started, there was no web
49
158330
3000
但是 - 对,当TED开始时,那时没有网络
02:41
so things like "click" didn't have the same meaning.
50
161330
3000
所以像点击这样的事情含义是不同的
02:44
I can show somebody a piece of hypertext,
51
164330
2000
我现在可以向某人展示一大堆超链接
02:46
a page which has got links,
52
166330
2000
某个包含链接的网页
02:48
and we click on the link and bing -- there'll be another hypertext page.
53
168330
4000
我们点击一个链接,然后bing -- 就会转到另一个超链接的页面
02:52
Not impressive.
54
172330
2000
没什么令人印象深刻的
02:54
You know, we've seen that -- we've got things on hypertext on CD-ROMs.
55
174330
3000
我们已经见到,通过超链接找到CD-ROMs中的内容
02:57
What was difficult was to get them to imagine:
56
177330
3000
困难的是把它们想象出来
03:00
so, imagine that that link could have gone
57
180330
4000
所以,想象那个链接可以到
03:04
to virtually any document you could imagine.
58
184330
2000
任何实际的你能想象得到的文件
03:07
Alright, that is the leap that was very difficult for people to make.
59
187330
4000
好的,这个跳跃对于人们是很难做到的
03:11
Well, some people did.
60
191330
2000
然而,一些人做到了
03:13
So yeah, it was difficult to explain, but there was a grassroots movement.
61
193330
3000
尽管很难解释,但是这是一场草根运动
03:17
And that is what has made it most fun.
62
197330
4000
这正是使它好玩的地方
03:21
That has been the most exciting thing,
63
201330
2000
也是最令人激动人心的事情
03:23
not the technology, not the things people have done with it,
64
203330
2000
不是技术,不是人们用它所做的东西
03:25
but actually the community, the spirit of all these people
65
205330
2000
而是实际的交流,所有这些人的思想汇聚
03:27
getting together, sending the emails.
66
207330
2000
在一起,发送电子邮件
03:29
That's what it was like then.
67
209330
2000
这是那时的情况
03:31
Do you know what? It's funny, but right now it's kind of like that again.
68
211330
3000
你知道吗?有趣的是,现在跟那时候又有点像了
03:34
I asked everybody, more or less, to put their documents --
69
214330
2000
我问每一个人,他们或多或少都发布过文档
03:36
I said, "Could you put your documents on this web thing?"
70
216330
3000
我说“你能把你的文档放到网络上吗?”
03:39
And you did.
71
219330
3000
然后,你做了
03:42
Thanks.
72
222330
1000
谢谢
03:43
It's been a blast, hasn't it?
73
223330
2000
这已经是一场疾风,不是吗?
03:45
I mean, it has been quite interesting
74
225330
2000
我的意思是,它已经非常有趣
03:47
because we've found out that the things that happen with the web
75
227330
2000
因为我们发现,网络上发生的事情似乎
03:49
really sort of blow us away.
76
229330
2000
已经把我们吹到了一边
03:51
They're much more than we'd originally imagined
77
231330
2000
现在它的功能得比我们想象的还多
03:53
when we put together the little, initial website
78
233330
2000
最初的设计只是想把文档放在一起
03:55
that we started off with.
79
235330
2000
在我们最初开始使用网络时
03:57
Now, I want you to put your data on the web.
80
237330
3000
现在我想让你把你的数据放在网上
04:00
Turns out that there is still huge unlocked potential.
81
240330
4000
还是有巨大的可释放潜力
04:04
There is still a huge frustration
82
244330
2000
也有很大的挫败感
04:06
that people have because we haven't got data on the web as data.
83
246330
4000
因为我们从网上得到的数据不是我们想要的数据
04:10
What do you mean, "data"? What's the difference -- documents, data?
84
250330
2000
你说的数据是什么?文档和数据之间有什么区别?
04:12
Well, documents you read, OK?
85
252330
3000
文档是你阅读的东西
04:15
More or less, you read them, you can follow links from them, and that's it.
86
255330
3000
或多或少,你都读过,你可以追踪他们的链接,就是这样
04:18
Data -- you can do all kinds of stuff with a computer.
87
258330
2000
数据—你可以通过一台电脑使用各种数据
04:20
Who was here or has otherwise seen Hans Rosling's talk?
88
260330
6000
谁在这里或者其他地方听过汉斯罗素玲的演讲?
04:26
One of the great -- yes a lot of people have seen it --
89
266330
4000
一个伟大的 – 很多人已经看过了 –
04:30
one of the great TED Talks.
90
270330
2000
一个伟大的TED演讲
04:32
Hans put up this presentation
91
272330
2000
汉斯在他的演示文档中
04:34
in which he showed, for various different countries, in various different colors --
92
274330
5000
使用不同的颜色表示不同的国家
04:39
he showed income levels on one axis
93
279330
3000
他在一个轴上显示收入水平
04:42
and he showed infant mortality, and he shot this thing animated through time.
94
282330
3000
同时他用动画按年份显示婴儿死亡率
04:45
So, he'd taken this data and made a presentation
95
285330
4000
他使用这些数据完成了一场演讲,
04:49
which just shattered a lot of myths that people had
96
289330
3000
这个演讲打破了很多人
04:52
about the economics in the developing world.
97
292330
4000
对发展中国家经济的神话
04:56
He put up a slide a little bit like this.
98
296330
2000
他展示了一个类似的幻灯片
04:58
It had underground all the data
99
298330
2000
数据都被埋在地下
05:00
OK, data is brown and boxy and boring,
100
300330
3000
对,数据是这些棕色的、无趣的四方盒子
05:03
and that's how we think of it, isn't it?
101
303330
2000
我们就是这样看待数据的,不是吗?
05:05
Because data you can't naturally use by itself
102
305330
3000
因为,你不能漫无目的地使用数据
05:08
But in fact, data drives a huge amount of what happens in our lives
103
308330
4000
但事实上,数据驱动了我们的生活
05:12
and it happens because somebody takes that data and does something with it.
104
312330
3000
因为某些人使用了数据并且做了些事情
05:15
In this case, Hans had put the data together
105
315330
2000
在这个例子中,汉斯将数据放到了一起
05:17
he had found from all kinds of United Nations websites and things.
106
317330
5000
汉斯在美国网站找到各种数据和事物
05:22
He had put it together,
107
322330
2000
他把数据放到了一起
05:24
combined it into something more interesting than the original pieces
108
324330
3000
将它们组合起来使之比原始数据有趣得多
05:27
and then he'd put it into this software,
109
327330
5000
然后把数据放到这个软件中
05:32
which I think his son developed, originally,
110
332330
2000
这个软件我觉得是他儿子开发的
05:34
and produces this wonderful presentation.
111
334330
3000
最终他做出了这个美妙的演示
05:37
And Hans made a point
112
337330
2000
最后汉斯说道
05:39
of saying, "Look, it's really important to have a lot of data."
113
339330
4000
“瞧,有大量的数据是非常重要的”
05:43
And I was happy to see that at the party last night
114
343330
3000
我高兴地看到在昨天的晚会上
05:46
that he was still saying, very forcibly, "It's really important to have a lot of data."
115
346330
4000
他仍然强烈地表示“有大量数据是非常重要的”
05:50
So I want us now to think about
116
350330
2000
现在我想让大家想的是
05:52
not just two pieces of data being connected, or six like he did,
117
352330
4000
不仅仅是两条数据间的连接,或者像他所说的那样六条数据
05:56
but I want to think about a world where everybody has put data on the web
118
356330
5000
而是这个世界上任何人
06:01
and so virtually everything you can imagine is on the web
119
361330
2000
都把数据和可以虚拟化的一切内容放到网络上
06:03
and then calling that linked data.
120
363330
2000
然后把它们称为关联数据
06:05
The technology is linked data, and it's extremely simple.
121
365330
2000
这个技术就是关联数据,它是极其简单的
06:07
If you want to put something on the web there are three rules:
122
367330
4000
如果你想把什么东西放在网络,有三条规则
06:11
first thing is that those HTTP names --
123
371330
3000
第一条规则是,需要有HTTP的名字
06:14
those things that start with "http:" --
124
374330
2000
那些东西要以http:开头
06:16
we're using them not just for documents now,
125
376330
4000
我们现在不仅对文档这样用
06:20
we're using them for things that the documents are about.
126
380330
2000
对文档描述的事物也这样用
06:22
We're using them for people, we're using them for places,
127
382330
2000
我们对人物、地点
06:24
we're using them for your products, we're using them for events.
128
384330
4000
产品,事件等都这样用
06:28
All kinds of conceptual things, they have names now that start with HTTP.
129
388330
4000
所有概念化的东西现在都以HTTP开头命名
06:32
Second rule, if I take one of these HTTP names and I look it up
130
392330
5000
第二条规则,如果我有一个HTTP名称,然后我根据它在网络上进行查找
06:37
and I do the web thing with it and I fetch the data
131
397330
2000
我可以从网上获取数据
06:39
using the HTTP protocol from the web,
132
399330
2000
通过HTTP协议
06:41
I will get back some data in a standard format
133
401330
3000
我将得到一些标准的格式化数据
06:44
which is kind of useful data that somebody might like to know
134
404330
5000
这些有用数据或许是关于人们希望了解
06:49
about that thing, about that event.
135
409330
2000
某个事物或者事件的
06:51
Who's at the event? Whatever it is about that person,
136
411330
2000
事件的主人公是谁?关于这个人的所有信息
06:53
where they were born, things like that.
137
413330
2000
他们什么时候生的,等等
06:55
So the second rule is I get important information back.
138
415330
2000
所以,第二条规则就是我通过HTTP获得了重要的数据
06:57
Third rule is that when I get back that information
139
417330
4000
第三条规则是,我得到的信息
07:01
it's not just got somebody's height and weight and when they were born,
140
421330
3000
不仅仅是某人的身高、体重和出生日期
07:04
it's got relationships.
141
424330
2000
还有数据间的关系
07:06
Data is relationships.
142
426330
2000
数据是有联系的
07:08
Interestingly, data is relationships.
143
428330
2000
很有趣,数据是有联系的
07:10
This person was born in Berlin; Berlin is in Germany.
144
430330
4000
这个人出生在柏林,柏林在德国
07:14
And when it has relationships, whenever it expresses a relationship
145
434330
3000
当数据有联系时,无论何时它表现出这种联系
07:17
then the other thing that it's related to
146
437330
3000
另一件与之有联系的事物
07:20
is given one of those names that starts HTTP.
147
440330
4000
就以HTTP开头命名
07:24
So, I can go ahead and look that thing up.
148
444330
2000
所以,我可以直接去找那件事
07:26
So I look up a person -- I can look up then the city where they were born; then
149
446330
3000
比如,我查一个人 -- 我查他出生的城市
07:29
I can look up the region it's in, and the town it's in,
150
449330
3000
这个城市的所在区域,城市的城镇
07:32
and the population of it, and so on.
151
452330
3000
人口等等
07:35
So I can browse this stuff.
152
455330
2000
这样我就能浏览这些信息
07:37
So that's it, really.
153
457330
2000
真的,就是这样
07:39
That is linked data.
154
459330
2000
这就是关联数据
07:41
I wrote an article entitled "Linked Data" a couple of years ago
155
461330
3000
我多年前在一篇文章中给它命名为“关联数据”
07:44
and soon after that, things started to happen.
156
464330
4000
之后不久,有些事开始发生了
07:48
The idea of linked data is that we get lots and lots and lots
157
468330
4000
关联数据的想法就像我们得到了很多很多
07:52
of these boxes that Hans had,
158
472330
2000
类似汉斯拥有的盒子
07:54
and we get lots and lots and lots of things sprouting.
159
474330
2000
很多很多的事物开始发芽生长
07:56
It's not just a whole lot of other plants.
160
476330
3000
它带给我们相当多的植物
07:59
It's not just a root supplying a plant,
161
479330
2000
不仅仅是一个根供给一个植物
08:01
but for each of those plants, whatever it is --
162
481330
3000
对于这的每一个植物,无论它是什么
08:04
a presentation, an analysis, somebody's looking for patterns in the data --
163
484330
3000
一个演示,一个分析,某些人查看数据的样式
08:07
they get to look at all the data
164
487330
3000
它们都着眼于所有的数据
08:10
and they get it connected together,
165
490330
2000
并且它们把数据联系起来
08:12
and the really important thing about data
166
492330
2000
关于数据真正重要的是
08:14
is the more things you have to connect together, the more powerful it is.
167
494330
2000
你把很多东西联系起来,数据就更加有价值
08:16
So, linked data.
168
496330
2000
所以,关联数据
08:18
The meme went out there.
169
498330
2000
由此而来
08:20
And, pretty soon Chris Bizer at the Freie Universitat in Berlin
170
500330
4000
很快,来自柏林自由大学的克里斯拜泽
08:24
who was one of the first people to put interesting things up,
171
504330
2000
做为第一人把有趣的东西放在一起
08:26
he noticed that Wikipedia --
172
506330
2000
他注意到维基百科
08:28
you know Wikipedia, the online encyclopedia
173
508330
3000
一部在线百科全书
08:31
with lots and lots of interesting documents in it.
174
511330
2000
有很多有趣的文档
08:33
Well, in those documents, there are little squares, little boxes.
175
513330
4000
在这些文档中,有些小方格子和小盒子
08:37
And in most information boxes, there's data.
176
517330
3000
在许多信息盒子中,就是数据
08:40
So he wrote a program to take the data, extract it from Wikipedia,
177
520330
4000
他写了 一个程序将数据从维基百科中提取出来
08:44
and put it into a blob of linked data
178
524330
2000
然后将它放到关联数据的blob(二进制大对象)中
08:46
on the web, which he called dbpedia.
179
526330
3000
在网络上,被他称之为dbpedia(数据库百科)
08:49
Dbpedia is represented by the blue blob in the middle of this slide
180
529330
4000
这张幻灯片中部蓝色的blob表示Dbpedia
08:53
and if you actually go and look up Berlin,
181
533330
2000
如果你去找柏林
08:55
you'll find that there are other blobs of data
182
535330
2000
你会发现还有其他的数据
08:57
which also have stuff about Berlin, and they're linked together.
183
537330
3000
也有柏林的信息,它们被联系到了一起
09:00
So if you pull the data from dbpedia about Berlin,
184
540330
3000
所以,如果你要从dbpedia中摘出关于柏林的数据
09:03
you'll end up pulling up these other things as well.
185
543330
2000
你也最终会摘出其他内容
09:05
And the exciting thing is it's starting to grow.
186
545330
3000
令人兴奋的事情是它正在成长
09:08
This is just the grassroots stuff again, OK?
187
548330
2000
这又是一个草根做的事情,对吗?
09:10
Let's think about data for a bit.
188
550330
3000
让我们多想想数据
09:13
Data comes in fact in lots and lots of different forms.
189
553330
3000
数据实际上来源于很多很多不同的形式
09:16
Think of the diversity of the web. It's a really important thing
190
556330
3000
想想网络的多样性,很重要的一点
09:19
that the web allows you to put all kinds of data up there.
191
559330
3000
网络允许你将各式各样的数据放在一起
09:22
So it is with data. I could talk about all kinds of data.
192
562330
2000
说到数据,我能说出各种各样的数据
09:25
We could talk about government data, enterprise data is really important,
193
565330
4000
我们可以说政府数据,企业数据真的很重要
09:29
there's scientific data, there's personal data,
194
569330
3000
还有科学数据,个人数据
09:32
there's weather data, there's data about events,
195
572330
2000
天气数据,关于事件的数据
09:34
there's data about talks, and there's news and there's all kinds of stuff.
196
574330
4000
关于谈话的数据,还有新闻和各种类似的东西
09:38
I'm just going to mention a few of them
197
578330
3000
我只提到了一小部分数据
09:41
so that you get the idea of the diversity of it,
198
581330
2000
你们就可以看出其多样性
09:43
so that you also see how much unlocked potential.
199
583330
4000
所以你可以看到其中的潜力
09:47
Let's start with government data.
200
587330
2000
让我们从政府数据说起
09:49
Barack Obama said in a speech,
201
589330
2000
让我们从政府数据说起
09:51
that he -- American government data would be available on the Internet
202
591330
5000
美国的政府数据将在互联网上被应用
09:56
in accessible formats.
203
596330
2000
以一种可访问的形式
09:58
And I hope that they will put it up as linked data.
204
598330
2000
美国的政府数据将在互联网上以一种可访问的形式被应用
10:00
That's important. Why is it important?
205
600330
2000
这非常重要,难道不是吗?
10:02
Not just for transparency, yeah transparency in government is important,
206
602330
3000
不仅仅是为了透明性,透明性对政府很重要
10:05
but that data -- this is the data from all the government departments
207
605330
3000
尤其是从政府部门出来的数据更重要
10:08
Think about how much of that data is about how life is lived in America.
208
608330
5000
想想有多少关系到在美国如何生活的数据
10:13
It's actual useful. It's got value.
209
613330
2000
它的确很有用,很有价值
10:15
I can use it in my company.
210
615330
2000
我可以把它用在我的公司
10:17
I could use it as a kid to do my homework.
211
617330
2000
我可以像个小孩子般把它用在我的家庭作业中
10:19
So we're talking about making the place, making the world run better
212
619330
3000
所以,我们谈论的是让世界变得更好
10:22
by making this data available.
213
622330
2000
通过将这些数据变得更有用
10:24
In fact if you're responsible -- if you know about some data
214
624330
4000
事实上,如果你们在负责 - 如果你知道一些数据
10:28
in a government department, often you find that
215
628330
2000
关于政府的, 你经常会发现
10:30
these people, they're very tempted to keep it --
216
630330
3000
有些人,他们会被这些数据所吸引
10:33
Hans calls it database hugging.
217
633330
3000
Hans称之为数据库拥抱
10:36
You hug your database, you don't want to let it go
218
636330
2000
你拥抱你的数据库,你不会放它走
10:38
until you've made a beautiful website for it.
219
638330
2000
直到你为它建立了一个漂亮的网站
10:40
Well, I'd like to suggest that rather --
220
640330
2000
嗯,我想建议的是,除了建一个漂亮的网站
10:42
yes, make a beautiful website,
221
642330
2000
是的,建一个漂亮的网站
10:44
who am I to say don't make a beautiful website?
222
644330
2000
我没说不要建一个漂亮的网站
10:46
Make a beautiful website, but first
223
646330
3000
建一个漂亮的网站,首先
10:49
give us the unadulterated data,
224
649330
3000
要给我们纯粹的数据
10:52
we want the data.
225
652330
2000
我们要的是数据
10:54
We want unadulterated data.
226
654330
2000
我们要纯粹的数据
10:56
OK, we have to ask for raw data now.
227
656330
3000
好,现在我们不得不要求原始数据了
10:59
And I'm going to ask you to practice that, OK?
228
659330
2000
我要请你们练习一下,好吗?
11:01
Can you say "raw"?
229
661330
1000
请说“原始”
11:02
Audience: Raw.
230
662330
1000
原始
11:03
Tim Berners-Lee: Can you say "data"?
231
663330
1000
请说“数据”
11:04
Audience: Data.
232
664330
1000
数据
11:05
TBL: Can you say "now"?
233
665330
1000
请说‘现在“
11:06
Audience: Now!
234
666330
1000
现在
11:07
TBL: Alright, "raw data now"!
235
667330
2000
好,原始数据现在!
11:09
Audience: Raw data now!
236
669330
2000
原始数据现在!
11:11
Practice that. It's important because you have no idea the number of excuses
237
671330
4000
这样练习是非常重要的
11:15
people come up with to hang onto their data
238
675330
2000
因为你不知道那些拥有数据的人
11:17
and not give it to you, even though you've paid for it as a taxpayer.
239
677330
4000
有多少理由拒绝将数据给你,甚至你作为一个纳税人是为此付了钱的
11:21
And it's not just America. It's all over the world.
240
681330
2000
这不仅仅存在于美国,全世界都一样
11:23
And it's not just governments, of course -- it's enterprises as well.
241
683330
3000
也不仅仅在政府,当然也存在于企业。
11:26
So I'm just going to mention a few other thoughts on data.
242
686330
3000
我还想再谈谈关于数据的其他想法
11:29
Here we are at TED, and all the time we are very conscious
243
689330
5000
在TED,我们一直关注于
11:34
of the huge challenges that human society has right now --
244
694330
5000
人类社会目前所面临的巨大问题
11:39
curing cancer, understanding the brain for Alzheimer's,
245
699330
3000
癌症治疗,了解阿尔茨海默病
11:42
understanding the economy to make it a little bit more stable,
246
702330
3000
了解经济好让它稳定点
11:45
understanding how the world works.
247
705330
2000
了解世界是如何运转的
11:47
The people who are going to solve those -- the scientists --
248
707330
2000
那些致力于解决这些问题的科学家
11:49
they have half-formed ideas in their head,
249
709330
2000
他们脑海中有些还不成熟的想法
11:51
they try to communicate those over the web.
250
711330
3000
他们试图在网络上与他人交流
11:54
But a lot of the state of knowledge of the human race at the moment
251
714330
3000
但是现状是很多人类的知识
11:57
is on databases, often sitting in their computers,
252
717330
3000
现在都在数据库中,放在他们的电脑里
12:00
and actually, currently not shared.
253
720330
3000
现在实际上也没被共享
12:03
In fact, I'll just go into one area --
254
723330
3000
事实上,我就从一个方面来说明 -
12:06
if you're looking at Alzheimer's, for example,
255
726330
2000
如果你在研究阿尔茨海默病,以此为例,
12:08
drug discovery -- there is a whole lot of linked data which is just coming out
256
728330
3000
以药物发现为例 -- 这个领域具有相当多的刚刚出现的关联数据
12:11
because scientists in that field realize
257
731330
2000
因为这个领域的科学家们意识到
12:13
this is a great way of getting out of those silos,
258
733330
3000
关联数据是一种很好的方法,可以帮助他们摆脱数据孤岛
12:16
because they had their genomics data in one database
259
736330
4000
因为他们在一个数据库中建立了基因图组
12:20
in one building, and they had their protein data in another.
260
740330
3000
他们在另一个数据库中建立蛋白质数据
12:23
Now, they are sticking it onto -- linked data --
261
743330
3000
现在,他们将基因图组和蛋白质数据形成了关联数据
12:26
and now they can ask the sort of question, that you probably wouldn't ask,
262
746330
3000
他们可以问排序的问题,也许你不会问
12:29
I wouldn't ask -- they would.
263
749330
2000
我不会问,但是他们会
12:31
What proteins are involved in signal transduction
264
751330
2000
哪些蛋白质参与信号转导
12:33
and also related to pyramidal neurons?
265
753330
2000
并且也和锥体神经元相关?
12:35
Well, you take that mouthful and you put it into Google.
266
755330
3000
当你将这个问题放到Google上搜索
12:38
Of course, there's no page on the web which has answered that question
267
758330
3000
自然没有回答结果的页面
12:41
because nobody has asked that question before.
268
761330
2000
因为之前没有人问过这样的问题
12:43
You get 223,000 hits --
269
763330
2000
虽然你得到了223,000个结果
12:45
no results you can use.
270
765330
2000
但是没有一个你用得上
12:47
You ask the linked data -- which they've now put together --
271
767330
3000
但是没有一个你用得上 -- 现在他们已经被放到了一起
12:50
32 hits, each of which is a protein which has those properties
272
770330
4000
命中32个结果,每一个结果都是与特征相关的蛋白质
12:54
and you can look at.
273
774330
2000
并且你可以看到
12:56
The power of being able to ask those questions, as a scientist --
274
776330
3000
做为一个科学家, 询问那些问题的能力
12:59
questions which actually bridge across different disciplines --
275
779330
2000
那些问题基本上都是跨学科的问题
13:01
is really a complete sea change.
276
781330
3000
是真正的C-change
13:04
It's very very important.
277
784330
2000
这是非常非常重要的
13:06
Scientists are totally stymied at the moment --
278
786330
2000
科学家们那时完全陷入了困境
13:08
the power of the data that other scientists have collected is locked up
279
788330
5000
因为其他科学家搜集的数据,其价值被锁起来了
13:13
and we need to get it unlocked so we can tackle those huge problems.
280
793330
3000
我们需要将之解锁,以便处理那些大问题
13:16
Now if I go on like this, you'll think that all the data comes from huge institutions
281
796330
4000
现在,如果我继续像这样讲
13:20
and has nothing to do with you.
282
800330
3000
和你没有一点关系
13:23
But, that's not true.
283
803330
2000
但是,这种想法并不对
13:25
In fact, data is about our lives.
284
805330
2000
事实上,数据关乎我们的生活
13:27
You just -- you log on to your social networking site,
285
807330
3000
你刚刚登陆了你的社会化网络站点
13:30
your favorite one, you say, "This is my friend."
286
810330
2000
你最喜欢的一个,你说“这是我朋友”
13:32
Bing! Relationship. Data.
287
812330
3000
叮!联系,数据
13:35
You say, "This photograph, it's about -- it depicts this person. "
288
815330
3000
你说“这副照片,是这个人的”
13:38
Bing! That's data. Data, data, data.
289
818330
3000
叮!那是数据。数据,数据,数据
13:41
Every time you do things on the social networking site,
290
821330
2000
每次你在社会化网络上做的事
13:43
the social networking site is taking data and using it -- re-purposing it --
291
823330
4000
社会化网络站点就获取数据并利用它
13:47
and using it to make other people's lives more interesting on the site.
292
827330
4000
重新设计数据的目的是为了让这个站点的其他人过得更有趣
13:51
But, when you go to another linked data site --
293
831330
2000
但是,当你上另一个关联数据网站
13:53
and let's say this is one about travel,
294
833330
3000
假设是一个旅游网站
13:56
and you say, "I want to send this photo to all the people in that group,"
295
836330
3000
你说“我想把这张照片发给那个组里的所有人”
13:59
you can't get over the walls.
296
839330
2000
但你却无法翻过这些墙
14:01
The Economist wrote an article about it, and lots of people have blogged about it --
297
841330
2000
经济学家曾经写了一篇关于这个问题的文章,并且许多人也发了相关博文表示出
14:03
tremendous frustration.
298
843330
1000
巨大的挫败感
14:04
The way to break down the silos is to get inter-operability
299
844330
2000
打破孤岛的方式是实现互操作
14:06
between social networking sites.
300
846330
2000
在这些社交网络之间
14:08
We need to do that with linked data.
301
848330
2000
我们需要通过关联数据做这件事
14:10
One last type of data I'll talk about, maybe it's the most exciting.
302
850330
3000
最后一种我将要谈到的数据,也许是最令人激动的
14:13
Before I came down here, I looked it up on OpenStreetMap
303
853330
3000
在我来这之前,我通过OpenStreetMap查找了一下
14:16
The OpenStreetMap's a map, but it's also a Wiki.
304
856330
2000
OpenStreetMap是一个地图,但同样也是一个维基
14:18
Zoom in and that square thing is a theater -- which we're in right now --
305
858330
3000
放大这个方块,这是一个剧场 -- 就是我们现在所处的地方 --
14:21
The Terrace Theater. It didn't have a name on it.
306
861330
2000
特伦斯剧场(位于长滩市,加利福尼亚)。它现在还没有被标上名字
14:23
So I could go into edit mode, I could select the theater,
307
863330
2000
所以我可以到编辑模式,选择剧场
14:25
I could add down at the bottom the name, and I could save it back.
308
865330
5000
然后在底下填上名字,然后保存它
14:30
And now if you go back to the OpenStreetMap. org,
309
870330
3000
现在你再去访问OpenStreetMap.org
14:33
and you find this place, you will find that The Terrace Theater has got a name.
310
873330
3000
你找到这个地方,你会发现它现在有名字了
14:36
I did that. Me!
311
876330
2000
这都是我做的
14:38
I did that to the map. I just did that!
312
878330
2000
我在地图上标的,刚刚做的
14:40
I put that up on there. Hey, you know what?
313
880330
2000
我把它标注在那里。嗨,你知道吗
14:42
If I -- that street map is all about everybody doing their bit
314
882330
3000
如果除了我,每个人都在这个地图上标注一点
14:45
and it creates an incredible resource
315
885330
3000
将会产生难以置信的资源
14:48
because everybody else does theirs.
316
888330
3000
因为其他每个人都做了
14:51
And that is what linked data is all about.
317
891330
3000
这就是关联数据
14:54
It's about people doing their bit
318
894330
3000
每个人都做一点
14:57
to produce a little bit, and it all connecting.
319
897330
3000
生成一点内容,然后把它们连接起来
15:00
That's how linked data works.
320
900330
3000
关联数据就是这样工作的
15:03
You do your bit. Everybody else does theirs.
321
903330
4000
你做一些,每个人都做一些
15:07
You may not have lots of data which you have yourself to put on there
322
907330
4000
也许你的数据在关联数据中只是很小一部分
15:11
but you know to demand it.
323
911330
3000
但你知道你需要它
15:14
And we've practiced that.
324
914330
2000
我们已经在实践了
15:16
So, linked data -- it's huge.
325
916330
4000
关联数据 -- 是非常巨大的
15:20
I've only told you a very small number of things
326
920330
3000
我只能告诉你很小一部分
15:23
There are data in every aspect of our lives,
327
923330
2000
我们生活的每个方面
15:25
every aspect of work and pleasure,
328
925330
3000
工作和快乐的每个方面
15:28
and it's not just about the number of places where data comes,
329
928330
3000
不管是数据出处的有多少
15:31
it's about connecting it together.
330
931330
3000
关键是把它联系起来
15:34
And when you connect data together, you get power
331
934330
3000
当你把数据联系起来
15:37
in a way that doesn't happen just with the web, with documents.
332
937330
3000
你能从这样的方式中获取在网络或文档中无法获取的能量
15:40
You get this really huge power out of it.
333
940330
4000
你能从中得到巨大的能量
15:44
So, we're at the stage now
334
944330
3000
现在我们处在一个阶段
15:47
where we have to do this -- the people who think it's a great idea.
335
947330
4000
我们必须要做的阶段 -- 那些认为这是个伟大想法的人们
15:51
And all the people -- and I think there's a lot of people at TED who do things because --
336
951330
3000
而且所有人 -- 我想在TED的大部分人
15:54
even though there's not an immediate return on the investment
337
954330
2000
他们做事情并不是为了要使投资得到立即的回报
15:56
because it will only really pay off when everybody else has done it --
338
956330
3000
因为只有当每个人都这么做了才会有所回报
15:59
they'll do it because they're the sort of person who just does things
339
959330
4000
他们将会这么做,因为他们是那类人
16:03
which would be good if everybody else did them.
340
963330
3000
那类希望每个人都参与进来而让事情变好的人
16:06
OK, so it's called linked data.
341
966330
2000
OK,这就是关联数据
16:08
I want you to make it.
342
968330
2000
我希望你参与
16:10
I want you to demand it.
343
970330
2000
我希望你需要它
16:12
And I think it's an idea worth spreading.
344
972330
2000
我也认为这个想法值得宣扬
16:14
Thanks.
345
974330
1000
谢谢
16:15
(Applause)
346
975330
3000
谢谢
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog