Tim Berners-Lee: The next Web of open, linked data

443,212 views ใƒป 2009-03-13

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yubal Masalker ืžื‘ืงืจ: Sigal Tifferet
00:18
Time flies.
0
18330
2000
ื”ื–ืžืŸ ื˜ืก.
00:20
It's actually almost 20 years ago
1
20330
2000
ื›ืžืขื˜ ืœืคื ื™ 20 ืฉื ื”,
00:22
when I wanted to reframe the way we use information,
2
22330
4000
ื›ืืฉืจ ืจืฆื™ืชื™ ืœืฉื ื•ืช ืืช ื”ื“ืจืš ื‘ื” ืื ื• ืขื•ืฉื™ื ืฉื™ืžื•ืฉ ื‘ืžื™ื“ืข,
00:26
the way we work together: I invented the World Wide Web.
3
26330
3000
ื”ื“ืจืš ื‘ื” ืื ื• ืขื•ื‘ื“ื™ื ื‘ื™ื—ื“ -- ื”ืžืฆืืชื™ ืืช ืจืฉืช ื”ืื™ื ื˜ืจื ื˜ ื”ืขื•ืœืžื™ืช (www).
00:29
Now, 20 years on, at TED,
4
29330
3000
ืขื›ืฉื™ื•, 20 ืฉื ื” ืžืื•ื—ืจ ื™ื•ืชืจ, ื‘-TED,
00:32
I want to ask your help in a new reframing.
5
32330
4000
ืื ื™ ืจื•ืฆื” ืœื‘ืงืฉ ืืช ืขื–ืจืชื›ื ื‘ื‘ื™ืฆื•ืข ืฉื™ื ื•ื™ ื—ื“ืฉ.
00:37
So going back to 1989,
6
37330
4000
ืื ื ื—ื–ื•ืจ ืœ-1989,
00:41
I wrote a memo suggesting the global hypertext system.
7
41330
3000
ื›ืชื‘ืชื™ ืชื–ื›ื™ืจ ื”ืžืฆื™ืข ืืช ืžืขืจื›ืช ื”ื”ื™ืคืจื˜ืงืกื˜ ื”ื’ืœื•ื‘ืœื™ืช.
00:44
Nobody really did anything with it, pretty much.
8
44330
3000
ืืฃ ืื—ื“ ืœื ืขืฉื” ืขื ื–ื” ื›ืžืขื˜ ื›ืœื•ื.
00:47
But 18 months later -- this is how innovation happens --
9
47330
4000
ืืš 18 ื—ื•ื“ืฉื™ื ืžืื•ื—ืจ ื™ื•ืชืจ -- ื›ืš ื—ื“ืฉื ื•ืช ืžืชืจื—ืฉืช --
00:51
18 months later, my boss said I could do it on the side,
10
51330
4000
ื”ื‘ื•ืก ืฉืœื™ ื”ืฆื™ืข ืฉืื ืกื” ืœืžืžืฉ ืืช ื”ืžืขืจื›ืช ื›ืขื‘ื•ื“ื” ืฆื“ื“ื™ืช,
00:55
as a sort of a play project,
11
55330
2000
ื‘ืžืขื™ืŸ ืคืจื•ื™ืงื˜ ื ื™ืกื•ื™ื™,
00:57
kick the tires of a new computer we'd got.
12
57330
2000
ื›ื“ื™ ืœืงื—ืช ืกื™ื‘ื•ื‘ ืขืœ ื”ืžื—ืฉื‘ ื”ื—ื“ืฉ ืฉืœื ื•.
00:59
And so he gave me the time to code it up.
13
59330
3000
ื”ื•ื ื ืชืŸ ืœื™ ืืช ื”ื–ืžืŸ ืœื›ืชื™ื‘ืช ืชื•ื›ื ื™ืช ื”ืคืจื•ื™ืงื˜.
01:02
So I basically roughed out what HTML should look like:
14
62330
5000
ืื– -- ืคืฉื•ื˜ ื›ืชื‘ืชื™ ืืช ื”ืกืงื™ืฆื” ืฉืœ ืื™ืš HTML ืืžื•ืจ ืœื”ื™ื•ืช,
01:07
hypertext protocol, HTTP;
15
67330
3000
ืคืจื•ื˜ื•ืงื•ืœ ื”ื™ืคืจื˜ืงืกื˜ -- HTTP --
01:10
the idea of URLs, these names for things
16
70330
3000
ื”ืจืขื™ื•ืŸ ืฉืœ ืงื™ืฉื•ืจื™ื -- ื”ืฉืžื•ืช ืœื“ื‘ืจื™ื
01:13
which started with HTTP.
17
73330
2000
ืฉื”ืชื—ื™ืœื• ื‘-HTTP.
01:15
I wrote the code and put it out there.
18
75330
2000
ื›ืชื‘ืชื™ ืืช ื”ืงื•ื“ ื•ืคืจืกืžืชื™ ืื•ืชื•.
01:17
Why did I do it?
19
77330
2000
ืœืžื” ืขืฉื™ืชื™ ื–ืืช?
01:19
Well, it was basically frustration.
20
79330
2000
ื‘ืขื™ืงืจ ื‘ื’ืœืœ ื”ืชืกื›ื•ืœ.
01:21
I was frustrated -- I was working as a software engineer
21
81330
4000
ื”ื™ื™ืชื™ ืžืชื•ืกื›ืœ -- ืขื‘ื“ืชื™ ื›ืžื”ื ื“ืก ืชื•ื›ื ื”
01:25
in this huge, very exciting lab,
22
85330
2000
ื‘ืžืขื‘ื“ื” ืขืฆื•ืžื” ื•ืžืื•ื“ ืžืœื”ื™ื‘ื”,
01:27
lots of people coming from all over the world.
23
87330
2000
ืขื ื”ืžื•ืŸ ืื ืฉื™ื ืžื›ืœ ืจื—ื‘ื™ ื”ืขื•ืœื.
01:29
They brought all sorts of different computers with them.
24
89330
3000
ื”ื ื”ื‘ื™ืื• ืขื™ืžื ื›ืœ ืžื™ื ื™ ืกื•ื’ื™ื ืฉืœ ืžื—ืฉื‘ื™ื.
01:32
They had all sorts of different data formats,
25
92330
3000
ื”ื™ื• ืœื”ื ื›ืœ ืžื™ื ื™ ืกื•ื’ื™ื ืฉืœ ื ืชื•ื ื™ื.
01:35
all sorts, all kinds of documentation systems.
26
95330
2000
ื›ืœ ืžื™ื ื™ ืกื•ื’ื™ื ืฉืœ ืžืขืจื›ื•ืช ืชื™ืขื•ื“.
01:37
So that, in all that diversity,
27
97330
3000
ื›ืš ืฉื‘ืชื•ืš ื›ืœ ื”ื’ื™ื•ื•ืŸ ื”ื–ื”,
01:40
if I wanted to figure out how to build something
28
100330
2000
ืื ืจืฆื™ืชื™ ืœื”ื‘ื™ืŸ ื›ื™ืฆื“ ืœื‘ื ื•ืช ืžืฉื”ื•
01:42
out of a bit of this and a bit of this,
29
102330
2000
ืžื–ื” ื•ืงืฆืช ืžื–ื”,
01:44
everything I looked into, I had to connect to some new machine,
30
104330
4000
ืœืืŸ ืฉืœื ื”ื‘ื˜ืชื™, ื”ื™ื™ืชื™ ืฆืจื™ืš ืœื”ืชื—ื‘ืจ ืœืื™ื–ื• ืžื›ื•ื ื” ื—ื“ืฉื”,
01:48
I had to learn to run some new program,
31
108330
2000
ืœืœืžื•ื“ ืœืชืคืขืœ ื›ืžื” ืชื•ื›ื ื•ืช ื—ื“ืฉื•ืช,
01:50
I would find the information I wanted in some new data format.
32
110330
5000
ืืช ื”ืžื™ื“ืข ืฉื”ื–ื“ืงืงืชื™ ืœื• ื ื™ืชืŸ ื”ื™ื” ืœืžืฆื•ื ืจืง ื‘ืื™ื–ื” ืคื•ืจืžื˜ ื ืชื•ื ื™ื ื—ื“ืฉ.
01:55
And these were all incompatible.
33
115330
2000
ื•ื›ืœ ืืœื” ืœื ื”ืชืื™ืžื• ื–ื” ืœื–ื”.
01:57
It was just very frustrating.
34
117330
2000
ื–ื” ื”ื™ื” ืคืฉื•ื˜ ืžืชืกื›ืœ.
01:59
The frustration was all this unlocked potential.
35
119330
2000
ื”ืชืกื›ื•ืœ ื”ื™ื” ืขืœ ื›ืœ ื”ืคื•ื˜ื ืฆื™ืืœ ื”ืžื‘ื•ื–ื‘ื– ื”ื–ื”.
02:01
In fact, on all these discs there were documents.
36
121330
3000
ืœืžืขืฉื”, ื‘ื›ืœ ื”ื“ื™ืกืงื™ื ื”ื™ื• ืžืกืžื›ื™ื.
02:04
So if you just imagined them all
37
124330
3000
ื›ืš ืฉืื ืจืง ื“ืžื™ื™ื ืช ืื•ืชื
02:07
being part of some big, virtual documentation system in the sky,
38
127330
5000
ืžื”ื•ื•ื™ื ื—ืœืง ืžืžืขืจื›ืช ืชื™ืขื•ื“ ื•ื™ืจื˜ื•ืืœื™ืช ื’ื“ื•ืœื” ืฉื ื‘ืฉืžื™ื™ื,
02:12
say on the Internet,
39
132330
2000
ื ืืžืจ ืขืœ ื’ื‘ื™ ื”ืื™ื ื˜ืจื ื˜,
02:14
then life would be so much easier.
40
134330
2000
ืื– ื”ื—ื™ื™ื ื”ื™ื• ื”ืจื‘ื” ื™ื•ืชืจ ืงืœื™ื.
02:16
Well, once you've had an idea like that it kind of gets under your skin
41
136330
4000
ื•ื‘ื›ืŸ, ืžื”ืจื’ืข ืฉื™ืฉ ืœืš ืจืขื™ื•ืŸ ื›ื–ื”, ื”ื•ื ืชื•ืคืก ืื•ืชืš
02:20
and even if people don't read your memo --
42
140330
2000
ื•ืืคื™ืœื• ืื ืœื ืงืจืื• ืืช ื”ืชื–ื›ื™ืจ ืฉืœืš --
02:22
actually he did, it was found after he died, his copy.
43
142330
3000
ื‘ืขืฆื ื”ื•ื ืงืจื, ื–ื” ื”ืชื’ืœื” ืœืื—ืจ ืžื•ืชื•, ื”ืขื•ืชืง ืฉืœื•.
02:25
He had written, "Vague, but exciting," in pencil, in the corner.
44
145330
3000
ื”ื•ื ื›ืชื‘ "ืžืขื•ืจืคืœ, ืืš ืžืœื”ื™ื‘" ื‘ืขื™ืคืจื•ืŸ, ื‘ืคื™ื ื”.
02:28
(Laughter)
45
148330
2000
(ืฆื—ื•ืง)
02:30
But in general it was difficult -- it was really difficult to explain
46
150330
4000
ืืš ื‘ื’ื“ื•ืœ ื–ื” ื”ื™ื” ืงืฉื” -- ื”ื™ื” ืžืžืฉ ืงืฉื” ืœื”ืกื‘ื™ืจ
02:34
what the web was like.
47
154330
2000
ืžื”ื• ื‘ื“ื™ื•ืง ื”ืื™ื ื˜ืจื ื˜.
02:36
It's difficult to explain to people now that it was difficult then.
48
156330
2000
ืงืฉื” ืœื”ืกื‘ื™ืจ ืœืื ืฉื™ื ื›ื™ื•ื ืขื“ ื›ืžื” ืงืฉื” ื–ื” ื”ื™ื” ืื–.
02:38
But then -- OK, when TED started, there was no web
49
158330
3000
ืื‘ืœ ืื–.... ืื•ืงื™ื™, ื›ืืฉืจ TED ื”ื—ืœ, ืœื ื”ื™ื” ืื™ื ื˜ืจื ื˜
02:41
so things like "click" didn't have the same meaning.
50
161330
3000
ืœื›ืŸ ืœื“ื‘ืจื™ื ื›ืžื• ืงืœื™ืง ืœื ื”ื™ืชื” ืื•ืชื” ืžืฉืžืขื•ืช.
02:44
I can show somebody a piece of hypertext,
51
164330
2000
ืื ื™ ื™ื›ื•ืœ ืœื”ืจืื•ืช ืœืžื™ืฉื”ื• ืงื˜ืข ืฉืœ ื”ื™ืคืจื˜ืงืกื˜,
02:46
a page which has got links,
52
166330
2000
ืขืžื•ื“ ื”ืžื›ื™ืœ ืงื™ืฉื•ืจื™ื,
02:48
and we click on the link and bing -- there'll be another hypertext page.
53
168330
4000
ื•ืื ื• ืžืงืœื™ืงื™ื ืขืœ ื”ืงื™ืฉื•ืจ ื•ื–ื‘ื ื’ -- ื”ื ื” ืœื• ืขืžื•ื“ ื ื•ืกืฃ.
02:52
Not impressive.
54
172330
2000
ืœื ืžืจืฉื™ื ื‘ืžื™ื•ื—ื“.
02:54
You know, we've seen that -- we've got things on hypertext on CD-ROMs.
55
174330
3000
ืืชื ื™ื•ื“ืขื™ื, ืจืื™ื ื• ืืช ื–ื” -- ื™ืฉ ืœื ื• ื“ื‘ืจื™ื ื‘ื”ื™ืคืจื˜ืงืกื˜ ืขืœ ืชืงืœื™ื˜ื•ืจื™ื.
02:57
What was difficult was to get them to imagine:
56
177330
3000
ืžื” ืฉื”ื™ื” ืงืฉื” ื–ื” ืœื’ืจื•ื ืœื”ื ืœื“ืžื™ื™ืŸ
03:00
so, imagine that that link could have gone
57
180330
4000
ืฉื”ืงื™ืฉื•ืจ ื”ื–ื” ื™ื›ื•ืœ ื”ื™ื” ืœืœื›ืช
03:04
to virtually any document you could imagine.
58
184330
2000
ืœื›ืœ ืžืกืžืš ืฉื ื™ืชืŸ ืœื“ืžื™ื™ืŸ.
03:07
Alright, that is the leap that was very difficult for people to make.
59
187330
4000
ื–ื• ื”ืงืคื™ืฆื” ืฉื”ื™ืชื” ืงืฉื” ืœื”ืจื‘ื” ืื ืฉื™ื ืœื‘ืฆืข.
03:11
Well, some people did.
60
191330
2000
ื˜ื•ื‘, ื›ืžื” ืื ืฉื™ื ื›ืŸ ื”ืฆืœื™ื—ื•.
03:13
So yeah, it was difficult to explain, but there was a grassroots movement.
61
193330
3000
ื•ื‘ื›ืœ ื–ืืช, ื”ื™ื” ืงืฉื” ืœื”ืกื‘ื™ืจ ื–ืืช, ืืš ื”ื™ืชื” ืชื ื•ืขื” ืžืชื—ืช ืœืคื ื™-ื”ืฉื˜ื—.
03:17
And that is what has made it most fun.
62
197330
4000
ื•ื–ื” ื”ื™ื” ืžื” ืฉื”ืคืš ื–ืืช ืœื”ื ืื” ื’ื“ื•ืœื”.
03:21
That has been the most exciting thing,
63
201330
2000
ื–ื” ื”ื™ื” ื”ื“ื‘ืจ ื”ืžืจื’ืฉ ื‘ื™ื•ืชืจ,
03:23
not the technology, not the things people have done with it,
64
203330
2000
ืœื ื”ื˜ื›ื ื•ืœื•ื’ื™ื”, ืœื ื”ื“ื‘ืจื™ื ืฉืื ืฉื™ื ืขืฉื• ืขื ื–ื”,
03:25
but actually the community, the spirit of all these people
65
205330
2000
ืืœื ื”ืงื”ื™ืœื” ืขืฆืžื”, ื”ืจื•ื— ืฉืœ ื”ืื ืฉื™ื
03:27
getting together, sending the emails.
66
207330
2000
ืฉื”ืชื›ื ืกื• ื‘ื™ื—ื“, ืฉืœื—ื• ืื™-ืžื™ื™ืœื™ื.
03:29
That's what it was like then.
67
209330
2000
ื›ืš ื–ื” ื”ื™ื” ืื–.
03:31
Do you know what? It's funny, but right now it's kind of like that again.
68
211330
3000
ืืชื ื™ื•ื“ืขื™ื ืžื”? ื–ื” ืžืฆื—ื™ืง, ืื‘ืœ ืขื›ืฉื™ื• ืฉื•ื‘ ื–ื” ืื•ืชื• ื”ื“ื‘ืจ.
03:34
I asked everybody, more or less, to put their documents --
69
214330
2000
ื‘ื™ืงืฉืชื™ ืžื›ื•ืœื, ืคื—ื•ืช ืื• ื™ื•ืชืจ, ืœืฉื™ื ืืช ืžืกืžื›ื™ื”ื --
03:36
I said, "Could you put your documents on this web thing?"
70
216330
3000
ืฉืืœืชื™, "ื”ืื ืชื•ื›ืœื• ืœืฉื™ื ืืช ืžืกืžื›ื™ื›ื ื‘ืจืฉืช ื”ื–ื•?"
03:39
And you did.
71
219330
3000
ื•ืืชื ื‘ื™ืฆืขืชื.
03:42
Thanks.
72
222330
1000
ืชื•ื“ื”.
03:43
It's been a blast, hasn't it?
73
223330
2000
ื–ื” ื”ื™ื” ืคื™ืฆื•ืฅ, ืœื?
03:45
I mean, it has been quite interesting
74
225330
2000
ื›ืœื•ืžืจ, ื–ื” ื”ื™ื” ื“ื™ ืžืขื ื™ื™ืŸ
03:47
because we've found out that the things that happen with the web
75
227330
2000
ืžืื—ืจ ื•ืžืฆืื ื• ืฉื”ื“ื‘ืจื™ื ืฉืงื•ืจื™ื ืขื ื”ืจืฉืช
03:49
really sort of blow us away.
76
229330
2000
ืคืฉื•ื˜ ืžื“ื”ื™ืžื™ื ืื•ืชื ื•.
03:51
They're much more than we'd originally imagined
77
231330
2000
ื”ื ื”ืจื‘ื” ื™ื•ืชืจ ืžืžื” ืฉื“ืžื™ื™ื ื ื• ื‘ื”ืชื—ืœื”
03:53
when we put together the little, initial website
78
233330
2000
ื›ืืฉืจ ื™ืฆืจื ื• ืืช ื”ืืชืจ ื”ืจืืฉื•ืŸ
03:55
that we started off with.
79
235330
2000
ืฉื”ืชื—ืœื ื• ืื™ืชื•.
03:57
Now, I want you to put your data on the web.
80
237330
3000
ื›ืขืช, ื‘ืจืฆื•ื ื™ ืฉืชืขืœื• ืืช ื”ื ืชื•ื ื™ื ืฉืœื›ื ืœืจืฉืช.
04:00
Turns out that there is still huge unlocked potential.
81
240330
4000
ืžืชื‘ืจืจ ืฉื™ืฉ ืขื“ื™ื™ืŸ ื”ืžื•ืŸ ืคื•ื˜ื ืฆื™ืืœ ืœื ืžืžื•ืžืฉ.
04:04
There is still a huge frustration
82
244330
2000
ืขื“ื™ื™ืŸ ืงื™ื™ื ืชื™ืกื›ื•ืœ ื’ื“ื•ืœ
04:06
that people have because we haven't got data on the web as data.
83
246330
4000
ืืฆืœ ืื ืฉื™ื ืžืคื ื™ ืฉืื™ืŸ ืœื ื• ื ืชื•ื ื™ื ื‘ืจืฉืช ื‘ืชื•ืจ ื ืชื•ื ื™ื.
04:10
What do you mean, "data"? What's the difference -- documents, data?
84
250330
2000
ืžื” ืคื™ืจื•ืฉ ื ืชื•ื ื™ื? ืžื” ื”ื”ื‘ื“ืœ -- ืžืกืžื›ื™ื, ื ืชื•ื ื™ื?
04:12
Well, documents you read, OK?
85
252330
3000
ืžืกืžื›ื™ื ืงื•ืจืื™ื, ื ื›ื•ืŸ?
04:15
More or less, you read them, you can follow links from them, and that's it.
86
255330
3000
ืคื—ื•ืช ืื• ื™ื•ืชืจ, ืงื•ืจืื™ื ืื•ืชื, ื ื™ืชืŸ ืœื”ื’ื™ืข ืœืงื™ืฉื•ืจื™ื ื‘ืืžืฆืขื•ืชื ื•ื–ื”ื•.
04:18
Data -- you can do all kinds of stuff with a computer.
87
258330
2000
ื ืชื•ื ื™ื -- ื ื™ืชืŸ ืœืขืฉื•ืช ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื ืขื ืžื—ืฉื‘.
04:20
Who was here or has otherwise seen Hans Rosling's talk?
88
260330
6000
ืžื™ ื”ื™ื” ื›ืืŸ ื•ืจืื” ืืช ื”ืจืฆืืชื• ืฉืœ ื”ื ืก ืจื•ื–ืœื™ื ื’?
04:26
One of the great -- yes a lot of people have seen it --
89
266330
4000
ืื—ืช ื”ื’ื“ื•ืœื•ืช -- ื”ืจื‘ื” ืื ืฉื™ื ืฆืคื• ื‘ื” --
04:30
one of the great TED Talks.
90
270330
2000
ืื—ืช ืžื”ืจืฆืื•ืช ื”-TED ื”ื’ื“ื•ืœื•ืช.
04:32
Hans put up this presentation
91
272330
2000
ื”ื ืก ื”ืขืœื” ืžืฆื’ืช ื–ื•
04:34
in which he showed, for various different countries, in various different colors --
92
274330
5000
ื‘ื” ื”ื•ื ื”ืจืื”, ืขื‘ื•ืจ ืžื“ื™ื ื•ืช ืฉื•ื ื•ืช, ื‘ืฆื‘ืขื™ื ืฉื•ื ื™ื --
04:39
he showed income levels on one axis
93
279330
3000
ื”ื•ื ื”ืจืื” ืจืžื•ืช ื”ื›ื ืกื” ืขืœ ืฆื™ืจ ืื—ื“
04:42
and he showed infant mortality, and he shot this thing animated through time.
94
282330
3000
ื•ื”ืจืื” ืชืžื•ืชืช ืชื™ื ื•ืงื•ืช ื•ื”ื•ื ืฆื™ืœื ืืช ื–ื” ื‘ืื ื™ืžืฆื™ื” ืœืื•ืจืš ื–ืžืŸ.
04:45
So, he'd taken this data and made a presentation
95
285330
4000
ื•ืžื”ื ืชื•ื ื™ื ื”ืืœื” ื”ื•ื ื”ื›ื™ืŸ ืžืฆื’ืช ืฉืคืฉื•ื˜
04:49
which just shattered a lot of myths that people had
96
289330
3000
ื ื™ืคืฆื” ื”ืจื‘ื” ืžื™ืชื•ืกื™ื ืฉื”ื™ื• ืœืื ืฉื™ื
04:52
about the economics in the developing world.
97
292330
4000
ืขืœ ื”ื›ืœื›ืœื•ืช ืฉืœ ืžื“ื™ื ื•ืช ืžืชืคืชื—ื•ืช.
04:56
He put up a slide a little bit like this.
98
296330
2000
ื”ื•ื ืฉื ืฉืงื•ืคื™ืช ืฉื“ื•ืžื” ืงืฆืช ืœื–ื•.
04:58
It had underground all the data
99
298330
2000
ืžื•ืกืชืจื™ื ื‘ื” ื›ืœ ื”ื ืชื•ื ื™ื.
05:00
OK, data is brown and boxy and boring,
100
300330
3000
ื ืชื•ื ื™ื ื”ื ื—ื•ืžื™ื, ืงื•ื‘ื™ื™ืชื™ื™ื ื•ืžืฉืขืžืžื™ื,
05:03
and that's how we think of it, isn't it?
101
303330
2000
ื•ื›ืš ืื ื• ื—ื•ืฉื‘ื™ื ืขืœื™ื”ื, ื ื›ื•ืŸ?
05:05
Because data you can't naturally use by itself
102
305330
3000
ืžื›ื™ื•ื•ืŸ ืฉืœื ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื ืชื•ื ื™ื ื›ืžื•ืช ืฉื”ื.
05:08
But in fact, data drives a huge amount of what happens in our lives
103
308330
4000
ืื‘ืœ ื”ืืžืช ื”ื™ื ืฉื ืชื•ื ื™ื ื”ื ื”ื›ื•ื— ื”ืžื ื™ืข ืžืื—ื•ืจื™ ื”ืจื‘ื” ื“ื‘ืจื™ื ืฉืžืชืจื—ืฉื™ื ื‘ื—ื™ื™ื ื•
05:12
and it happens because somebody takes that data and does something with it.
104
312330
3000
ื•ื–ื” ืงื•ืจื” ื”ื™ื•ืช ื•ืžื™ืฉื”ื• ืœื•ืงื— ืืช ื”ื ืชื•ื ื™ื ื•ืขื•ืฉื” ืื™ืชื ืžืฉื”ื•.
05:15
In this case, Hans had put the data together
105
315330
2000
ื‘ืžืงืจื” ื–ื”, ื”ื ืก ืฉื ืืช ื”ื ืชื•ื ื™ื
05:17
he had found from all kinds of United Nations websites and things.
106
317330
5000
ืฉื”ื•ื ืžืฆื ื‘ื›ืœ ืžื™ื ื™ ืืชืจื™ื ืฉืœ ืื•"ื ื•ื›ืืœื•, ื‘ื™ื—ื“.
05:22
He had put it together,
107
322330
2000
ื”ื•ื ืฉื ืื•ืชื ื‘ื™ื—ื“,
05:24
combined it into something more interesting than the original pieces
108
324330
3000
ืขื™ืฆื‘ ืื•ืชื ืœืžืฉื”ื• ื™ื•ืชืจ ืžืขื ื™ื™ืŸ ืžืืฉืจ ื”ืžืจื›ื™ื‘ื™ื ื”ืžืงื•ืจื™ื™ื
05:27
and then he'd put it into this software,
109
327330
5000
ื•ืื– ื”ื›ื ื™ืก ืืช ื›ืœ ื–ื” ืœืชื•ื›ื ื” ื–ื•,
05:32
which I think his son developed, originally,
110
332330
2000
ืฉืœืคื™ ื“ืขืชื™ ื‘ื ื• ืคื™ืชื— ืื•ืชื” ื‘ืžืงื•ืจ,
05:34
and produces this wonderful presentation.
111
334330
3000
ื•ื™ืฆืจ ืืช ื”ืžืฆื’ืช ื”ื ืคืœืื” ื”ื–ื•.
05:37
And Hans made a point
112
337330
2000
ื•ื”ื ืก ื”ื“ื’ื™ืฉ ื ืงื•ื“ื” ืื—ืช
05:39
of saying, "Look, it's really important to have a lot of data."
113
339330
4000
ื‘ืื•ืžืจื•, "ืชืจืื•, ื–ื” ื‘ืืžืช ื—ืฉื•ื‘ ืฉื™ืฉ ื”ืจื‘ื” ื ืชื•ื ื™ื."
05:43
And I was happy to see that at the party last night
114
343330
3000
ืฉืžื—ืชื™ ืœืจืื•ืช ืฉื‘ืžืกื™ื‘ื” ืืžืฉ
05:46
that he was still saying, very forcibly, "It's really important to have a lot of data."
115
346330
4000
ื”ื•ื ืขื“ื™ื™ืŸ ื˜ืขืŸ ื‘ืœื”ื˜ ืฉื–ื” ืžืื•ื“ ื—ืฉื•ื‘ ืฉื™ืฉ ื”ืจื‘ื” ื ืชื•ื ื™ื.
05:50
So I want us now to think about
116
350330
2000
ืœื›ืŸ ืื ื™ ืจื•ืฆื” ืฉื ื—ืฉื•ื‘ ืขื›ืฉื™ื•
05:52
not just two pieces of data being connected, or six like he did,
117
352330
4000
ืœื ืจืง ืื•ื“ื•ืช ืฉื ื™ ื—ืœืงื™ ื ืชื•ื ื™ื ืฉืžืชื—ื‘ืจื™ื, ืื• ืฉื™ืฉื” ื›ืคื™ ืฉื”ื•ื ืขืฉื”,
05:56
but I want to think about a world where everybody has put data on the web
118
356330
5000
ืืœื ืื ื™ ืจื•ืฆื” ืœื—ืฉื•ื‘ ืขืœ ืขื•ืœื ื‘ื• ื›ืœ ืื—ื“ ืฆืจื™ืš ืœื”ืขืœื•ืช ื ืชื•ื ื™ื ืœืจืฉืช
06:01
and so virtually everything you can imagine is on the web
119
361330
2000
ื•ื›ืš, ื‘ืกื•ืฃ, ื›ืœ ื“ื‘ืจ ืฉื ื™ืชืŸ ืœื“ืžื™ื™ืŸ ื™ื”ื™ื” ื‘ืจืฉืช,
06:03
and then calling that linked data.
120
363330
2000
ื•ืื– ื ืงืจื ืœื–ื” ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื -- linked data.
06:05
The technology is linked data, and it's extremely simple.
121
365330
2000
ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื™ื ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื, ื•ื–ื” ืคืฉื•ื˜ ื‘ื™ื•ืชืจ.
06:07
If you want to put something on the web there are three rules:
122
367330
4000
ืื ืžืขืœื™ื ืžืฉื”ื• ืœืจืฉืช, ื™ืฉื ื ืฉืœื•ืฉื” ื—ื•ืงื™ื:
06:11
first thing is that those HTTP names --
123
371330
3000
ื—ื•ืง ืจืืฉื•ืŸ ื”ื•ื ืฉืื•ืชื ืฉืžื•ืช HTTP --
06:14
those things that start with "http:" --
124
374330
2000
ืื•ืชื ื“ื‘ืจื™ื ืฉืžืชื—ื™ืœื™ื ื‘-":http" --
06:16
we're using them not just for documents now,
125
376330
4000
ืื ื• ืžืฉืชืžืฉื™ื ื‘ื”ื ืขื›ืฉื™ื• ืœื ืจืง ืœืžืกืžื›ื™ื, ืืœื ืื ื• ืžืฉืชืžืฉื™ื ื‘ื”ื
06:20
we're using them for things that the documents are about.
126
380330
2000
ืขื‘ื•ืจ ื“ื‘ืจื™ื ืฉื”ืžืกืžื›ื™ื ืžืชืืจื™ื.
06:22
We're using them for people, we're using them for places,
127
382330
2000
ืื ื• ืžืฉืชืžืฉื™ื ื‘ื”ื ื‘ืฉื‘ื™ืœ ืื ืฉื™ื, ื‘ืฉื‘ื™ืœ ืžืงื•ืžื•ืช,
06:24
we're using them for your products, we're using them for events.
128
384330
4000
ื‘ืฉื‘ื™ืœ ื”ืžื•ืฆืจื™ื ืฉืœื›ื, ื‘ืฉื‘ื™ืœ ืžืื•ืจืขื•ืช.
06:28
All kinds of conceptual things, they have names now that start with HTTP.
129
388330
4000
ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื ื”ื ื•ื’ืขื™ื ืœืชืคื™ืกื”, ื™ืฉ ืœื”ื ืขื›ืฉื™ื• ืฉืžื•ืช ื”ืžืชื—ื™ืœื™ื ื‘-HTTP.
06:32
Second rule, if I take one of these HTTP names and I look it up
130
392330
5000
ื—ื•ืง ืฉื ื™: ืื ืœื•ืงื—ื™ื ืื—ื“ ืžืฉืžื•ืช ื”-HTTP ื”ืืœื” ื•ืžื—ืคืฉื™ื ืื•ืชื•
06:37
and I do the web thing with it and I fetch the data
131
397330
2000
ื•ื’ื•ืœืฉื™ื ืืœื™ื• ื•ืžื‘ื™ืื™ื ืืช ื”ื ืชื•ื ื™ื
06:39
using the HTTP protocol from the web,
132
399330
2000
ื‘ืขื–ืจืช ืคืจื•ื˜ื•ืงื•ืœ ื”-HTTP ืžื”ืจืฉืช,
06:41
I will get back some data in a standard format
133
401330
3000
ื™ื’ื™ืขื• ืืœื™ื™ ื ืชื•ื ื™ื ื‘ืคื•ืจืžื˜ ืกื˜ื ื“ืจื˜ื™
06:44
which is kind of useful data that somebody might like to know
134
404330
5000
ืฉื–ื” ืžื™ื“ืข ืฉื™ืžื•ืฉื™ ืฉืื•ืœื™ ืžื™ืฉื”ื• ื™ืจืฆื” ืœื“ืขืช ืื•ื“ื•ืช ื“ื‘ืจ ืžืกื•ื™ื™ื,
06:49
about that thing, about that event.
135
409330
2000
ืื•ื“ื•ืช ืื™ืจื•ืข ืžืกื•ื™ื™ื.
06:51
Who's at the event? Whatever it is about that person,
136
411330
2000
ืžื™ ื ืžืฆื ื‘ืื™ืจื•ืข? ื›ืœ ื“ื‘ืจ ืขืœ ืื“ื ืžืกื•ื™ื™ื,
06:53
where they were born, things like that.
137
413330
2000
ื”ื™ื›ืŸ ืžื™ืฉื”ื• ื ื•ืœื“, ื“ื‘ืจื™ื ื›ืืœื”.
06:55
So the second rule is I get important information back.
138
415330
2000
ื›ืš ืฉื”ื—ื•ืง ื”ืฉื ื™ ื”ื•ื ืฉืžืงื‘ืœื™ื ื—ื–ืจื” ืžื™ื“ืข ื—ืฉื•ื‘.
06:57
Third rule is that when I get back that information
139
417330
4000
ื—ื•ืง ืฉืœื™ืฉื™ ื”ื•ื ืฉื›ืืฉืจ ืžืงื‘ืœื™ื ื—ื–ืจื” ืื•ืชื• ืžื™ื“ืข,
07:01
it's not just got somebody's height and weight and when they were born,
140
421330
3000
ื–ื” ืœื ืจืง ื’ื•ื‘ื” ื•ืžืฉืงืœ ืฉืœ ืžื™ืฉื”ื• ื•ืชืืจื™ืš ื”ืœื™ื“ื” ืฉืœื•,
07:04
it's got relationships.
141
424330
2000
ืืœื ืฉื™ืฉ ืœื• ื’ื ืงืฉืจื™ื.
07:06
Data is relationships.
142
426330
2000
ื ืชื•ื ื™ื ื–ื” ืงืฉืจื™ื.
07:08
Interestingly, data is relationships.
143
428330
2000
ื‘ืื•ืคืŸ ืžืขื ื™ื™ืŸ, ื ืชื•ื ื™ื ื–ื” ืงืฉืจื™ื.
07:10
This person was born in Berlin; Berlin is in Germany.
144
430330
4000
ืื“ื ื–ื” ื ื•ืœื“ ื‘ื‘ืจืœื™ืŸ, ื‘ืจืœื™ืŸ ื–ื” ื’ืจืžื ื™ื”.
07:14
And when it has relationships, whenever it expresses a relationship
145
434330
3000
ื•ื›ืืฉืจ ื™ืฉ ืœื• ืงืฉืจื™ื, ื›ืืฉืจ ื”ื•ื ืžื‘ื˜ื ืงืฉืจื™ื,
07:17
then the other thing that it's related to
146
437330
3000
ื”ื“ื‘ืจ ืฉืžืงื•ืฉืจ ืืœื™ื•
07:20
is given one of those names that starts HTTP.
147
440330
4000
ืžืงื‘ืœ ืฉื ืฉืžืชื—ื™ืœ ื‘-HTTP.
07:24
So, I can go ahead and look that thing up.
148
444330
2000
ื›ืš ื ื™ืชืŸ ืœื”ืชืงื“ื ื•ืœื—ืคืฉ ืืช ื”ื“ื‘ืจ ื”ื”ื•ื.
07:26
So I look up a person -- I can look up then the city where they were born; then
149
446330
3000
ืื ื™ ืžื—ืคืฉ ืื“ื -- ืื—ืจ-ื›ืš ื ื™ืชืŸ ืœื—ืคืฉ ืืช ื”ืขื™ืจ ื‘ื” ื”ื•ื ื ื•ืœื“.
07:29
I can look up the region it's in, and the town it's in,
150
449330
3000
ื ื™ืชืŸ ืœื—ืคืฉ ืืช ื”ืื–ื•ืจ ืฉื”ื•ื ื ืžืฆื ื‘ื• ื•ืืช ื”ืขื™ืจ,
07:32
and the population of it, and so on.
151
452330
3000
ื•ืืช ื”ืื•ื›ืœื•ืกื™ื” ืฉืœื” ื•ื›ืš ื”ืœืื”.
07:35
So I can browse this stuff.
152
455330
2000
ื ื™ืชืŸ ืœื“ืคื“ืฃ ื‘ืชื•ืš ื›ืœ ื”ื—ื•ืžืจ ื”ื–ื”.
07:37
So that's it, really.
153
457330
2000
ืื– ื–ื”ื• ื–ื”, ื‘ืืžืช.
07:39
That is linked data.
154
459330
2000
ืืœื” ื”ื ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื.
07:41
I wrote an article entitled "Linked Data" a couple of years ago
155
461330
3000
ื›ืชื‘ืชื™ ืžืืžืจ ืฉื›ื•ืชืจืชื• "ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื" ืœืคื ื™ ื›ืžื” ืฉื ื™ื
07:44
and soon after that, things started to happen.
156
464330
4000
ื•ืžื™ื™ื“ ืœืื—ืจ-ืžื›ืŸ, ื“ื‘ืจื™ื ื”ื—ืœื• ืœืงืจื•ืช.
07:48
The idea of linked data is that we get lots and lots and lots
157
468330
4000
ื”ืจืขื™ื•ืŸ ื‘ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื ื”ื•ื ืฉืื ื• ืžืงื‘ืœื™ื ื”ืžื•ืŸ, ื”ืžื•ืŸ
07:52
of these boxes that Hans had,
158
472330
2000
ืชื™ื‘ื•ืช ื›ืžื• ืฉื”ื™ื• ืœื”ื ืก,
07:54
and we get lots and lots and lots of things sprouting.
159
474330
2000
ื•ืžืงื‘ืœื™ื ื”ืžื•ืŸ, ื”ืžื•ืŸ ื“ื‘ืจื™ื ืฉืžืกืชืขืคื™ื ืžื–ื”.
07:56
It's not just a whole lot of other plants.
160
476330
3000
ื–ื” ืœื ืจืง ื”ืžื•ืŸ ืฆืžื—ื™ื ื—ื“ืฉื™ื ืœื’ืžืจื™.
07:59
It's not just a root supplying a plant,
161
479330
2000
ื–ื” ืœื ืจืง ืฉื•ืจืฉ ืฉืžืฆืžื™ื— ืฆืžื—,
08:01
but for each of those plants, whatever it is --
162
481330
3000
ืืœื ืฉืœื›ืœ ืื—ื“ ืžื”ืฆืžื—ื™ื, ืžื” ืฉื–ื” ืœื ื™ื”ื™ื” --
08:04
a presentation, an analysis, somebody's looking for patterns in the data --
163
484330
3000
ืžืฆื’ืช, ืื ืœื™ื–ื”, ืžื™ืฉื”ื• ืฉืžื—ืคืฉ ืชื‘ื ื™ื•ืช ืฉืœ ื ืชื•ื ื™ื --
08:07
they get to look at all the data
164
487330
3000
ืžืงื‘ืœื™ื ืžื‘ื˜ ืœืชื•ืš ื›ืœืœ ื”ื ืชื•ื ื™ื
08:10
and they get it connected together,
165
490330
2000
ื•ืžืงื‘ืœื™ื ืื•ืชื ืžืงื•ืฉืจื™ื ื‘ื™ื—ื“.
08:12
and the really important thing about data
166
492330
2000
ื•ื”ื“ื‘ืจ ื”ื‘ืืžืช ื—ืฉื•ื‘ ื‘ืงืฉืจ ืœื ืชื•ื ื™ื
08:14
is the more things you have to connect together, the more powerful it is.
167
494330
2000
ื”ื•ื ืฉื›ื›ืœ ืฉื™ืฉ ื™ื•ืชืจ ื“ื‘ืจื™ื ืฉืฆืจื™ื›ื™ื ืœืงืฉืจื ื‘ื™ื—ื“,
08:16
So, linked data.
168
496330
2000
ืขื•ืฆืžืชื ื’ื‘ื•ื”ื” ื™ื•ืชืจ. ื•ื›ืš ื’ื ื”ื ืชื•ื ื™ื ื”ืžืงื•ืฉืจื™ื.
08:18
The meme went out there.
169
498330
2000
ื”ืขื™ืงืจื•ืŸ ืคืจืฅ ื›ืืŸ ื”ื—ื•ืฆื”.
08:20
And, pretty soon Chris Bizer at the Freie Universitat in Berlin
170
500330
4000
ื“ื™ ืžื”ืจ, ื›ืจื™ืก ื‘ื™ืฆืจ ืžืื•ื ื™ื‘ืจืกื™ื˜ืช ืคืจื™ืื™ื™ ื‘ื‘ืจืœื™ืŸ
08:24
who was one of the first people to put interesting things up,
171
504330
2000
ืฉื”ื™ื” ืื—ื“ ื”ืจืืฉื•ื ื™ื ืฉื”ืขืœื” ื“ื‘ืจื™ื ืžืขื ื™ื™ื ื™ื ืœืจืฉืช,
08:26
he noticed that Wikipedia --
172
506330
2000
ืฉื ืœื‘ ืฉื•ื™ืงื™ืคื“ื™ื” --
08:28
you know Wikipedia, the online encyclopedia
173
508330
3000
ืืชื ื™ื•ื“ืขื™ื ื•ื™ืงื™ืคื“ื™ื”, ื”ืื ืฆื™ืงืœื•ืคื“ื™ื” ื”ืžืงื•ื•ื ืช
08:31
with lots and lots of interesting documents in it.
174
511330
2000
ื”ืžื›ื™ืœื” ื”ืžื•ืŸ ืžืกืžื›ื™ื ืžืขื ื™ื™ื ื™ื.
08:33
Well, in those documents, there are little squares, little boxes.
175
513330
4000
ื•ื‘ื›ืŸ, ื‘ืื•ืชื ืžืกืžื›ื™ื, ื™ืฉื ื ืจื™ื‘ื•ืขื™ื ืงื˜ื ื™ื, ืชื™ื‘ื•ืช ืงื˜ื ื•ืช.
08:37
And in most information boxes, there's data.
176
517330
3000
ื•ื‘ืจื•ื‘ ืชื™ื‘ื•ืช ื”ืžื™ื“ืข ื ืžืฆืื™ื ื ืชื•ื ื™ื.
08:40
So he wrote a program to take the data, extract it from Wikipedia,
177
520330
4000
ื”ื•ื ื›ืชื‘ ืชื•ื›ื ื™ืช ืฉืชื™ืงื— ืืช ื”ื ืชื•ื ื™ื, ืชืฉืœื•ืฃ ืื•ืชื ืžื•ื™ืงื™ืคื“ื™ื”,
08:44
and put it into a blob of linked data
178
524330
2000
ื•ืชืฉื™ื ืื•ืชื ื‘ืชืจืฉื™ื ืฉืœ ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื
08:46
on the web, which he called dbpedia.
179
526330
3000
ื‘ืจืฉืช, ื•ื”ื•ื ืงืจื ืœื–ื” dbpedia.
08:49
Dbpedia is represented by the blue blob in the middle of this slide
180
529330
4000
Dbpedia ืžื•ืฆื’ืช ื‘ืืžืฆืขื•ืช ื”ืขื™ื’ื•ืœ ื”ื›ื—ื•ืœ ื‘ืžืจื›ื– ื”ืฉืงื•ืคื™ืช
08:53
and if you actually go and look up Berlin,
181
533330
2000
ื•ืื ืžืžืฉ ื ื™ื’ืฉื™ื ื•ืžื—ืคืฉื™ื ืืช ื‘ืจืœื™ืŸ,
08:55
you'll find that there are other blobs of data
182
535330
2000
ื ืžืฆื ืฉื™ืฉื ื ืขื™ื’ื•ืœื™ื ื ื•ืกืคื™ื ืฉืœ ื ืชื•ื ื™ื
08:57
which also have stuff about Berlin, and they're linked together.
183
537330
3000
ืฉื’ื ืœื”ื ื™ืฉ ื—ื•ืžืจ ืขืœ ื‘ืจืœื™ืŸ, ื•ื”ื ืžืงื•ืฉืจื™ื ื™ื—ื“.
09:00
So if you pull the data from dbpedia about Berlin,
184
540330
3000
ืื ืฉื•ืœืคื™ื ืืช ื”ื ืชื•ื ื™ื ืž-dbpedia ืขืœ ื‘ืจืœื™ืŸ,
09:03
you'll end up pulling up these other things as well.
185
543330
2000
ื ื’ื™ืข ืœื›ืš ืฉื ืฉืœื•ืฃ ื’ื ืืช ื”ื“ื‘ืจื™ื ื”ืื—ืจื™ื.
09:05
And the exciting thing is it's starting to grow.
186
545330
3000
ื•ืžื” ืฉืžืจื’ืฉ ื‘ื›ืœ ื”ืกื™ืคื•ืจ ื”ื•ื ืฉื–ื” ืžืชื—ื™ืœ ืœื’ื“ื•ืœ.
09:08
This is just the grassroots stuff again, OK?
187
548330
2000
ื–ื” ืฉื•ื‘ ืื•ืชื• ื—ื•ืžืจ ื‘ืกื™ืกื™.
09:10
Let's think about data for a bit.
188
550330
3000
ื‘ื•ืื• ื ื—ืฉื•ื‘ ืจื’ืข ืขืœ ื ืชื•ื ื™ื.
09:13
Data comes in fact in lots and lots of different forms.
189
553330
3000
ื ืชื•ื ื™ื ืžื’ื™ืขื™ื ื‘ืขืฆื ื‘ื”ืžื•ืŸ ืฆื•ืจื•ืช ืฉื•ื ื•ืช.
09:16
Think of the diversity of the web. It's a really important thing
190
556330
3000
ืชื—ืฉื‘ื• ืขืœ ื”ืžื’ื•ื•ืŸ ืฉื™ืฉ ื‘ืจืฉืช, ื–ื” ื“ื‘ืจ ื‘ืืžืช ื—ืฉื•ื‘
09:19
that the web allows you to put all kinds of data up there.
191
559330
3000
ืฉื”ืจืฉืช ืžืืคืฉืจืช ืœื ื• ืœื”ืขืœื•ืช ื›ืœ ืžื™ื ื™ ื ืชื•ื ื™ื.
09:22
So it is with data. I could talk about all kinds of data.
192
562330
2000
ื™ื›ื•ืœืชื™ ืœื“ื‘ืจ ืขืœ ื›ืœ ืกื•ื’ื™ ื”ื ืชื•ื ื™ื.
09:25
We could talk about government data, enterprise data is really important,
193
565330
4000
ื™ื›ื•ืœืชื™ ืœื“ื‘ืจ ืขืœ ื ืชื•ื ื™ื ืฉืœ ืžืžืฉืœื”, ื ืชื•ื ื™ ื—ื‘ืจื•ืช ื—ืฉื•ื‘ื™ื ืžืื•ื“,
09:29
there's scientific data, there's personal data,
194
569330
3000
ื™ืฉ ื ืชื•ื ื™ื ืžื“ืขื™ื™ื, ื™ืฉ ื ืชื•ื ื™ื ืื™ืฉื™ื™ื,
09:32
there's weather data, there's data about events,
195
572330
2000
ื™ืฉ ื ืชื•ื ื™ ืžื–ื’-ืื•ื™ืจ, ื™ืฉ ื ืชื•ื ื™ื ืขืœ ืื™ืจื•ืขื™ื,
09:34
there's data about talks, and there's news and there's all kinds of stuff.
196
574330
4000
ื™ืฉ ื ืชื•ื ื™ ื”ืจืฆืื•ืช, ื™ืฉ ื ืชื•ื ื™ ื—ื“ืฉื•ืช ื•ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื ืื—ืจื™ื.
09:38
I'm just going to mention a few of them
197
578330
3000
ืื–ื›ื™ืจ ืจืง ื›ืžื” ืžื”ื
09:41
so that you get the idea of the diversity of it,
198
581330
2000
ื›ืš ืฉืชืงื‘ืœื• ืžื•ืฉื’ ืขืœ ื”ื’ื™ื•ื•ืŸ ืฉืœื”ื,
09:43
so that you also see how much unlocked potential.
199
583330
4000
ื›ื“ื™ ืฉืชื•ื›ืœื• ืœื”ืจื’ื™ืฉ ืืช ืžื™ื“ืช ื”ืคื•ื˜ื ืฆื™ืืœ ื”ืขืฆื•ืจ ืฉืงื™ื™ื.
09:47
Let's start with government data.
200
587330
2000
ื ืชื—ื™ืœ ืขื ื ืชื•ื ื™ ืžืžืฉืœื”.
09:49
Barack Obama said in a speech,
201
589330
2000
ื‘ืจืง ืื•ื‘ืืžื” ืืžืจ, ื‘ื ืื•ืžื•,
09:51
that he -- American government data would be available on the Internet
202
591330
5000
ืฉื ืชื•ื ื™ ืžืžืฉืœ ืืžืจื™ืงืื™ ื™ื”ื™ื• ื–ืžื™ื ื™ื ื‘ืื™ื ื˜ืจื ื˜
09:56
in accessible formats.
203
596330
2000
ื‘ืคื•ืจืžื˜ื™ื ื ื’ื™ืฉื™ื.
09:58
And I hope that they will put it up as linked data.
204
598330
2000
ืื ื™ ืžืงื•ื” ืฉื”ื ื™ืฉื™ืžื• ืื•ืชื ื›ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื.
10:00
That's important. Why is it important?
205
600330
2000
ื–ื” ื—ืฉื•ื‘. ืžื“ื•ืข ื–ื” ื—ืฉื•ื‘?
10:02
Not just for transparency, yeah transparency in government is important,
206
602330
3000
ืœื ืจืง ื‘ื’ืœืœ ืฉืงื™ืคื•ืช. ืื›ืŸ ืฉืงื™ืคื•ืช ืฉืœ ืžืžืฉืœ ื”ื™ื ื—ืฉื•ื‘ื”,
10:05
but that data -- this is the data from all the government departments
207
605330
3000
ืื‘ืœ ืืœื” ื ืชื•ื ื™ื ืžื›ืœ ืžืฉืจื“ื™ ื”ืžืžืฉืœื”.
10:08
Think about how much of that data is about how life is lived in America.
208
608330
5000
ืชื—ืฉื‘ื• ื›ืžื” ืžื”ื ืชื•ื ื™ื ื”ืืœื” ื ื•ื’ืขื™ื ืœืื•ืคืŸ ื‘ื• ืื ื• ื—ื™ื™ื ื‘ืืจื”"ื‘.
10:13
It's actual useful. It's got value.
209
613330
2000
ืœืžืขืฉื” ื”ื ืชื•ื ื™ื ืžื•ืขื™ืœื™ื. ื™ืฉ ืœื”ื ืขืจืš.
10:15
I can use it in my company.
210
615330
2000
ืื ื™ ื™ื›ื•ืœ ืœื”ืฉืชืžืฉ ื‘ื”ื ื‘ื—ื‘ืจื” ืฉืœื™.
10:17
I could use it as a kid to do my homework.
211
617330
2000
ืื ื™ ื™ื›ื•ืœ ืœื”ืฉืชืžืฉ ื‘ื”ื ื‘ืชื•ืจ ื™ืœื“ ืœื”ื›ื ืช ืฉื™ืขื•ืจื™ ื‘ื™ืช.
10:19
So we're talking about making the place, making the world run better
212
619330
3000
ื›ืš ืฉืื ื• ืžื“ื‘ืจื™ื ืขืœ ืœื”ืคื•ืš ืืช ื”ืขื•ืœื ืฉื™ืคืขืœ ื˜ื•ื‘ ื™ื•ืชืจ
10:22
by making this data available.
213
622330
2000
ืขืœ-ื™ื“ื™ ื–ื” ืฉื ื”ืคื•ืš ืืช ื”ื ืชื•ื ื™ื ื”ืืœื” ืœื–ืžื™ื ื™ื.
10:24
In fact if you're responsible -- if you know about some data
214
624330
4000
ืื ืืชื ื™ื•ื“ืขื™ื ืฉืงื™ื™ืžื™ื ื ืชื•ื ื™ื ืžืกื•ื™ื™ืžื™ื ื‘ืžืฉืจื“ ืžืžืฉืœืชื™,
10:28
in a government department, often you find that
215
628330
2000
ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ืืชื ืžื’ืœื™ื
10:30
these people, they're very tempted to keep it --
216
630330
3000
ืฉืื ืฉื™ื ืืœื”, ืื•ื”ื‘ื™ื ืœืฉืžื•ืจ ืื•ืชื --
10:33
Hans calls it database hugging.
217
633330
3000
ื”ื ืก ืงื•ืจื ืœื–ื” ืœื—ื‘ืง ืืช ื”ื ืชื•ื ื™ื.
10:36
You hug your database, you don't want to let it go
218
636330
2000
ืžื—ื‘ืงื™ื ืืช ื”ื ืชื•ื ื™ื ื•ืœื ืžืฉื—ืจืจื™ื ืื•ืชื
10:38
until you've made a beautiful website for it.
219
638330
2000
ืขื“ ืฉื™ื•ืฆืจื™ื ื‘ืฉื‘ื™ืœื ืืชืจ ื™ืคื”.
10:40
Well, I'd like to suggest that rather --
220
640330
2000
ื•ื‘ื›ืŸ, ื”ื™ื™ืชื™ ืจื•ืฆื” ืœื”ืฆื™ืข ื‘ืžืงื•ื --
10:42
yes, make a beautiful website,
221
642330
2000
ื‘ืกื“ืจ, ืชื‘ื ื• ืืชืจ ื™ืคื”,
10:44
who am I to say don't make a beautiful website?
222
644330
2000
ืžื™ ืื ื™ ืฉืื’ื™ื“ ืœื ืœื‘ื ื•ืช ืืชืจ ื™ืคื”?
10:46
Make a beautiful website, but first
223
646330
3000
ืชื‘ื ื• ืืชืจ ื™ืคื”, ืื‘ืœ ืงื•ื“ื
10:49
give us the unadulterated data,
224
649330
3000
ืชืชื ื• ืœื ื• ื ืชื•ื ื™ื ื˜ื”ื•ืจื™ื.
10:52
we want the data.
225
652330
2000
ืื ื• ืจื•ืฆื™ื ืืช ื”ื ืชื•ื ื™ื ื”ืืœื”.
10:54
We want unadulterated data.
226
654330
2000
ืื ื• ืจื•ืฆื™ื ื ืชื•ื ื™ื ื˜ื”ื•ืจื™ื.
10:56
OK, we have to ask for raw data now.
227
656330
3000
ื˜ื•ื‘, ืžืขื›ืฉื™ื• ืขืœื™ื ื• ืœื‘ืงืฉ ื ืชื•ื ื™ื ื’ื•ืœืžื™ื™ื.
10:59
And I'm going to ask you to practice that, OK?
228
659330
2000
ืื ื™ ืื‘ืงืฉื›ื ืœื”ืชืืžืŸ ืขืœ ื–ื”, ื˜ื•ื‘?
11:01
Can you say "raw"?
229
661330
1000
ืชื’ื™ื“ื• "ื’ื•ืœืžื™".
11:02
Audience: Raw.
230
662330
1000
ืงื”ืœ: ื’ื•ืœืžื™.
11:03
Tim Berners-Lee: Can you say "data"?
231
663330
1000
ื˜ื™ื ื‘ืจื ืจืก-ืœื™: ื”ืื ืชื•ื›ืœื• ืœื•ืžืจ "ื ืชื•ื ื™ื"?
11:04
Audience: Data.
232
664330
1000
ืงื”ืœ: ื ืชื•ื ื™ื.
11:05
TBL: Can you say "now"?
233
665330
1000
ื˜.ื‘.ืœ.: ื”ืื ืชื•ื›ืœื• ืœื•ืžืจ "ืขื›ืฉื™ื•"?
11:06
Audience: Now!
234
666330
1000
ืงื”ืœ: ืขื›ืฉื™ื•!
11:07
TBL: Alright, "raw data now"!
235
667330
2000
ื˜.ื‘.ืœ.: ื˜ื•ื‘, ื ืชื•ื ื™ื ื’ื•ืœืžื™ื™ื ืขื›ืฉื™ื•!
11:09
Audience: Raw data now!
236
669330
2000
ืงื”ืœ: ื ืชื•ื ื™ื ื’ื•ืœืžื™ื™ื ืขื›ืฉื™ื•!
11:11
Practice that. It's important because you have no idea the number of excuses
237
671330
4000
ืชืชืืžื ื• ืขืœ ื–ื”. ื–ื” ื—ืฉื•ื‘ ืžื›ื™ื•ื•ืŸ ืฉืื™ืŸ ืœื›ื ืžื•ืฉื’ ื›ืžื” ืชื™ืจื•ืฆื™ื
11:15
people come up with to hang onto their data
238
675330
2000
ืื ืฉื™ื ืžืžืฆื™ืื™ื ื›ื“ื™ ืœื”ื—ื–ื™ืง ื‘ื ืชื•ื ื™ื ืฉืœื”ื
11:17
and not give it to you, even though you've paid for it as a taxpayer.
239
677330
4000
ื•ืœื ืœืชืช ืœื›ื ืื•ืชื, ืืฃ ืขืœ-ืคื™ ืฉืฉื™ืœืžืชื ืขื‘ื•ืจื ื‘ืชื•ืจ ืžืฉืœืžื™-ืžื™ืกื™ื.
11:21
And it's not just America. It's all over the world.
240
681330
2000
ื•ื–ื” ืœื ืจืง ื‘ืืจื”"ื‘. ื›ื›ื” ื–ื” ื‘ื›ืœ ื”ืขื•ืœื.
11:23
And it's not just governments, of course -- it's enterprises as well.
241
683330
3000
ืืœื• ืœื ืจืง ืžืžืฉืœื•ืช, ืืœื ื’ื ื—ื‘ืจื•ืช.
11:26
So I'm just going to mention a few other thoughts on data.
242
686330
3000
ืœื›ืŸ ืื ื™ ื”ื•ืœืš ืœื”ืขืœื•ืช ืขื•ื“ ื›ืžื” ืžื—ืฉื‘ื•ืช ืขืœ ื ืชื•ื ื™ื.
11:29
Here we are at TED, and all the time we are very conscious
243
689330
5000
ืื ื—ื ื• ื›ืืŸ ื‘-TED, ืžื•ื“ืขื™ื ื›ืœ ื”ื–ืžืŸ
11:34
of the huge challenges that human society has right now --
244
694330
5000
ืœืืชื’ืจื™ื ื”ืขืฆื•ืžื™ื ื”ืขื•ืžื“ื™ื ื‘ืคื ื™ ื”ื—ื‘ืจื” ื”ืื ื•ืฉื™ืช ืžืžืฉ ืขื›ืฉื™ื• --
11:39
curing cancer, understanding the brain for Alzheimer's,
245
699330
3000
ืจื™ืคื•ื™ ืกืจื˜ืŸ, ื”ื‘ื ืช ื”ืžื•ื— ื‘ื”ืงืฉืจ ืฉืœ ืืœืฆื”ื™ื™ืžืจ,
11:42
understanding the economy to make it a little bit more stable,
246
702330
3000
ื”ื‘ื ืช ื”ื›ืœื›ืœื” ื›ื“ื™ ืœื”ืคื›ื” ืœืงืฆืช ื™ื•ืชืจ ื™ืฆื™ื‘ื”,
11:45
understanding how the world works.
247
705330
2000
ื”ื‘ื ื” ืฉืœ ื›ื™ืฆื“ ื”ืขื•ืœื ืคื•ืขืœ.
11:47
The people who are going to solve those -- the scientists --
248
707330
2000
ื”ืื ืฉื™ื ืฉื”ื•ืœื›ื™ื ืœืคืชื•ืจ ืืช ื›ืœ ื–ื” -- ื”ืžื“ืขื ื™ื --
11:49
they have half-formed ideas in their head,
249
709330
2000
ื™ืฉ ืœื”ื ืจืขื™ื•ื ื•ืช ืžื’ื•ื‘ืฉื™ื-ืœืžื—ืฆื” ื‘ืจืืฉื,
11:51
they try to communicate those over the web.
250
711330
3000
ื”ื ืžื ืกื™ื ืœื”ืขื‘ื™ืจื ืœืื—ืจื™ื ื“ืจืš ื”ืจืฉืช.
11:54
But a lot of the state of knowledge of the human race at the moment
251
714330
3000
ืื‘ืœ ื—ืœืง ื’ื“ื•ืœ ืžื”ื™ื“ืข ืฉืœ ื”ืื ื•ืฉื•ืช ื ื›ื•ืŸ ืœืขื›ืฉื™ื•
11:57
is on databases, often sitting in their computers,
252
717330
3000
ื ืžืฆื ื‘ื‘ืกื™ืกื™ ื ืชื•ื ื™ื, ื”ื ืžืฆืื™ื ื‘ื“ืจืš-ื›ืœืœ ื‘ืžื—ืฉื‘ื™ื”ื,
12:00
and actually, currently not shared.
253
720330
3000
ื•ืœืžืขืฉื” ืื™ื ื ืฉื™ืชื•ืคื™ื™ื ื–ื” ืขื ื–ื”.
12:03
In fact, I'll just go into one area --
254
723330
3000
ื‘ืขืฆื, ืจืง ืื›ื ืก ืœืชื—ื•ื ืื—ื“ --
12:06
if you're looking at Alzheimer's, for example,
255
726330
2000
ืœื“ื•ื’ืžื, ืื ืžื—ืคืฉื™ื ืืœืฆื”ื™ื™ืžืจ,
12:08
drug discovery -- there is a whole lot of linked data which is just coming out
256
728330
3000
ื’ื™ืœื•ื™ ืชืจื•ืคื•ืช -- ื™ืฉ ื”ืžื•ืŸ ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื ืฉืžืชื’ืœื™ื
12:11
because scientists in that field realize
257
731330
2000
ืžืื—ืจ ื•ืžื“ืขื ื™ื ื‘ืชื—ื•ื ื–ื” ืžื‘ื™ื ื™ื
12:13
this is a great way of getting out of those silos,
258
733330
3000
ืฉื–ื•ื”ื™ ื“ืจืš ื ื”ื“ืจืช ืœื”ื•ืฆื™ืื ืžืชื•ืš ื”ืžืฆื‘ื•ืจื™ื ืฉืœื”ื,
12:16
because they had their genomics data in one database
259
736330
4000
ืžืื—ืจ ื•ื”ื™ื• ื ืชื•ื ื™ ื’ื ื•ื ื‘ื‘ืกื™ืก ื ืชื•ื ื™ื ืื—ื“
12:20
in one building, and they had their protein data in another.
260
740330
3000
ื‘ืชื•ืš ื‘ื ื™ื™ืŸ ืžืกื•ื™ื™ื, ื•ื ืชื•ื ื™ ื”ืคืจื•ื˜ื™ืื™ื ื™ื ื‘ืื—ืจ.
12:23
Now, they are sticking it onto -- linked data --
261
743330
3000
ื›ืขืช ื”ื ืžื“ื‘ื™ืงื™ื ืื•ืชื ืื—ื“ ืขืœ ื”ืฉื ื™ -- ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื --
12:26
and now they can ask the sort of question, that you probably wouldn't ask,
262
746330
3000
ื•ืขื›ืฉื™ื• ื”ื ื™ื›ื•ืœื™ื ืœืฉืื•ืœ ืฉืืœื” ืฉื›ื›ืœ ื”ื ืจืื” ืืชื
12:29
I wouldn't ask -- they would.
263
749330
2000
ื•ื’ื ืื ื™ ืœื ื”ื™ื™ื ื• ืฉื•ืืœื™ื.
12:31
What proteins are involved in signal transduction
264
751330
2000
ืื™ื–ื” ืคืจื•ื˜ื™ืื™ื ื™ื ืงืฉื•ืจื™ื ื‘ื”ืขื‘ืจืช ืื•ืชื•ืช
12:33
and also related to pyramidal neurons?
265
753330
2000
ื•ื’ื ืงืฉื•ืจื™ื ื‘ื ื™ื•ืจื•ื ื™ ืคื™ืจืžื™ื“ื”?
12:35
Well, you take that mouthful and you put it into Google.
266
755330
3000
ื ื™ืงื— ืืช ื–ื” ื•ื ืงืœื™ื“ ื‘ื’ื•ื’ืœ.
12:38
Of course, there's no page on the web which has answered that question
267
758330
3000
ื‘ืจื•ืจ ืฉืื™ืŸ ืืฃ ืขืžื•ื“ ื‘ืจืฉืช ืฉืขื ื” ืขืœ ืฉืืœื” ื–ื•
12:41
because nobody has asked that question before.
268
761330
2000
ืžืื—ืจ ื•ืืฃ ืื—ื“ ืœื ืฉืืœ ืื•ืชื” ืงื•ื“ื.
12:43
You get 223,000 hits --
269
763330
2000
ืžืงื‘ืœื™ื 223,000 ืชื•ืฆืื•ืช --
12:45
no results you can use.
270
765330
2000
ืื™ืŸ ืชื•ืฆืื•ืช ืฉื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื”ื.
12:47
You ask the linked data -- which they've now put together --
271
767330
3000
ืฉื•ืืœื™ื ืืช ื”ื ืชื•ื ื™ื ื”ืžืงื•ืฉืจื™ื -- ืฉืื•ืชื ื”ื ื”ืจื›ื™ื‘ื• --
12:50
32 hits, each of which is a protein which has those properties
272
770330
4000
32 ืชื•ืฆืื•ืช, ื›ืืฉืจ ื‘ื›ืœ ืื—ืช ืžื”ืŸ ืคืจื•ื˜ืื™ืŸ ื‘ืขืœ ื”ืชื›ื•ื ื•ืช ื”ื "ืœ
12:54
and you can look at.
273
774330
2000
ื•ืฉื ื™ืชืŸ ืœื”ื‘ื™ื˜ ื‘ื•.
12:56
The power of being able to ask those questions, as a scientist --
274
776330
3000
ื”ื›ื•ื— ื‘ืœื”ื™ื•ืช ืžืกื•ื’ืœ ืœืฉืื•ืœ ืฉืืœื•ืช ื”ืœืœื•, ื‘ืชื•ืจ ืžื“ืขืŸ --
12:59
questions which actually bridge across different disciplines --
275
779330
2000
ืฉืืœื•ืช ืฉื‘ืขืฆื ืžื’ืฉืจื•ืช ื‘ื™ืŸ ืชื—ื•ืžื™ื ืฉื•ื ื™ื --
13:01
is really a complete sea change.
276
781330
3000
ื–ื” ื”ืฉื™ื ื•ื™ ื‘-'ื”' ื”ื™ื“ื™ืขื”.
13:04
It's very very important.
277
784330
2000
ื”ื•ื ืžืื•ื“ ื—ืฉื•ื‘.
13:06
Scientists are totally stymied at the moment --
278
786330
2000
ื›ื™ื•ื ื”ืžื“ืขื ื™ื ืชืงื•ืขื™ื --
13:08
the power of the data that other scientists have collected is locked up
279
788330
5000
ื”ืขื•ืฆืžื” ืฉืœ ื”ื ืชื•ื ื™ื ืฉื ืืกืคื• ืขืœ-ื™ื“ื™ ืžื“ืขื ื™ื ืื—ืจื™ื ืขื“ื™ื™ืŸ ืกื’ื•ืจื” ื•ื ืขื•ืœื”.
13:13
and we need to get it unlocked so we can tackle those huge problems.
280
793330
3000
ืื ื• ืฆืจื™ื›ื™ื ืœืฉื—ืจืจ ืื•ืชื” ื›ื“ื™ ืฉื ื•ื›ืœ ืœื”ืชืžื•ื“ื“ ืขื ื”ื‘ืขื™ื•ืช ื”ืขืฆื•ืžื•ืช.
13:16
Now if I go on like this, you'll think that all the data comes from huge institutions
281
796330
4000
ืื ืืžืฉื™ืš ื›ืš, ืชื—ืฉื‘ื• ืฉื›ืœ ื”ื ืชื•ื ื™ื ื‘ืื™ื ืžื’ื•ืคื™ื ืขื ืงื™ื™ื
13:20
and has nothing to do with you.
282
800330
3000
ื•ืฉืื™ืŸ ืœื–ื” ืงืฉืจ ืืœื™ื›ื.
13:23
But, that's not true.
283
803330
2000
ืื‘ืœ ื–ื” ืœื ื ื›ื•ืŸ.
13:25
In fact, data is about our lives.
284
805330
2000
ืœืžืขืฉื”, ื ืชื•ื ื™ื ื ื•ื’ืขื™ื ืœื—ื™ื™ื ื•.
13:27
You just -- you log on to your social networking site,
285
807330
3000
ืื ื• ืžืชื—ื‘ืจื™ื ืœืืชืจ ืฉืœ ืžืคื’ืฉื™ื ื—ื‘ืจืชื™ื™ื ืฉืœื ื•,
13:30
your favorite one, you say, "This is my friend."
286
810330
2000
ื–ื” ืฉืื”ื•ื‘ ืขืœื™ื ื•, ื•ืื•ืžืจื™ื, "ื–ื”ื• ื—ื‘ืจื™".
13:32
Bing! Relationship. Data.
287
812330
3000
ื˜ืจืื—! ืงืฉืจ. ื ืชื•ื ื™ื.
13:35
You say, "This photograph, it's about -- it depicts this person. "
288
815330
3000
ืื ื• ืื•ืžืจื™ื, " ื–ื”ื• ืฆื™ืœื•ื. ื”ื•ื ืžืจืื” ืื“ื."
13:38
Bing! That's data. Data, data, data.
289
818330
3000
ื˜ืจืื—! ื–ื” ื ืชื•ื ื™ื. ื ืชื•ื ื™ื, ื ืชื•ื ื™ื, ื ืชื•ื ื™ื.
13:41
Every time you do things on the social networking site,
290
821330
2000
ื‘ื›ืœ ืคืขื ืฉืขื•ืฉื™ื ืžืฉื”ื• ื‘ืืชืจ ืฉืœ ืžืคื’ืฉื™ื ื—ื‘ืจืชื™ื™ื,
13:43
the social networking site is taking data and using it -- re-purposing it --
291
823330
4000
ื”ืืชืจ ื ื•ื˜ืœ ื ืชื•ื ื™ื ื•ืžืฉืชืžืฉ ื‘ื”ื -- ื ื•ืชืŸ ืœื”ื ืžืฉืžืขื•ืช ื—ื“ืฉื” --
13:47
and using it to make other people's lives more interesting on the site.
292
827330
4000
ื•ืžืฉืชืžืฉ ื‘ื”ื ื›ื“ื™ ืœื”ืคื•ืš ื—ื™ื™ ืื ืฉื™ื ืื—ืจื™ื ืœื™ื•ืชืจ ืžืขื ื™ื™ื ื™ื.
13:51
But, when you go to another linked data site --
293
831330
2000
ืื‘ืœ, ื›ืืฉืจ ื ื™ื’ืฉื™ื ืœืืชืจ ืื—ืจ ืฉืœ ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื --
13:53
and let's say this is one about travel,
294
833330
3000
ื•ื ืืžืจ ืฉื”ื•ื ื‘ืขื ื™ื™ืŸ ืฉืœ ื ืกื™ืขื•ืช,
13:56
and you say, "I want to send this photo to all the people in that group,"
295
836330
3000
ื•ืื•ืžืจื™ื, "ืื ื• ืจื•ืฆื™ื ืœืฉืœื•ื— ืชืฆืœื•ื ื–ื” ืœื›ืœ ื”ืื ืฉื™ื ื‘ืงื‘ื•ืฆื” ื”ื”ื™ื,"
13:59
you can't get over the walls.
296
839330
2000
ืœื ื ื™ืชืŸ ืœืขื‘ื•ืจ ืืช ื”ื—ื•ืžื•ืช.
14:01
The Economist wrote an article about it, and lots of people have blogged about it --
297
841330
2000
ื”ืžื’ื–ื™ืŸ ืืงื•ื ื•ืžื™ืกื˜ ืคื™ืจืกื ืžืืžืจ ืขืœ ื–ื” ื•ื”ืžื•ืŸ ืื ืฉื™ื ื›ืชื‘ื• ืขืœ ื–ื” ื‘ื‘ืœื•ื’ื™ื --
14:03
tremendous frustration.
298
843330
1000
ืชื™ืกื›ื•ืœ ืื“ื™ืจ.
14:04
The way to break down the silos is to get inter-operability
299
844330
2000
ื”ื“ืจืš ืœืฉื‘ื•ืจ ืืช ื”ืžืฆื‘ื•ืจื™ื ื”ื™ื ืœืขื•ืจืจ ืคืขื™ืœื•ืช ื”ื“ื“ื™ืช
14:06
between social networking sites.
300
846330
2000
ื‘ื™ืŸ ืืชืจื™ ืžืคื’ืฉื™ื ื—ื‘ืจืชื™ื™ื.
14:08
We need to do that with linked data.
301
848330
2000
ืื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ื–ืืช ืขื ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื.
14:10
One last type of data I'll talk about, maybe it's the most exciting.
302
850330
3000
ืกื•ื’ ืื—ืจื•ืŸ ืฉืœ ื ืชื•ื ื™ื ืฉืื“ื‘ืจ ืขืœื™ื”ื, ื”ื ืื•ืœื™ ื”ืžืขื ื™ื™ื ื™ื ื‘ื™ื•ืชืจ.
14:13
Before I came down here, I looked it up on OpenStreetMap
303
853330
3000
ืœืคื ื™ ืฉื”ื’ืขืชื™ ืœื›ืืŸ, ื ื›ื ืกืชื™ ืœ-OpenStreetMap.
14:16
The OpenStreetMap's a map, but it's also a Wiki.
304
856330
2000
ื”-OpenStreetMap ื–ื• ืžืคื”, ืื‘ืœ ื”ื™ื ื’ื ื•ื™ืงื™.
14:18
Zoom in and that square thing is a theater -- which we're in right now --
305
858330
3000
ื ืชืงืจื‘ ื•ื ืจืื” ืฉืื•ืชื• ืจื™ื‘ื•ืข ื”ื•ื ืื•ืœื -- ืฉื‘ื• ืื ื• ื ืžืฆืื™ื ื›ืขืช --
14:21
The Terrace Theater. It didn't have a name on it.
306
861330
2000
ืื•ืœื "ื˜ืจืก". ืœืคื ื™ ื–ื” ืœื ื”ื™ื” ืœื• ืฉื.
14:23
So I could go into edit mode, I could select the theater,
307
863330
2000
ืื–, ื™ื›ื•ืœืชื™ ืœื”ื™ื›ื ืก ื‘ืžืฆื‘ ืฉืœ ืขืจื™ื›ื”, ืœื‘ื—ื•ืจ ืื•ืœื,
14:25
I could add down at the bottom the name, and I could save it back.
308
865330
5000
ื•ื™ื›ื•ืœืชื™ ืœื”ื•ืกื™ืฃ ื‘ืชื—ืชื™ืช ืืช ื”ืฉื ื•ื™ื›ื•ืœืชื™ ืœืฉืžื•ืจ.
14:30
And now if you go back to the OpenStreetMap. org,
309
870330
3000
ื•ื›ืขืช ืื ืชืœื›ื• ืœ-OpenStreetMap. org,
14:33
and you find this place, you will find that The Terrace Theater has got a name.
310
873330
3000
ื•ืชืžืฆืื• ืืช ื”ืžืงื•ื, ืชื’ืœื• ืฉืœืื•ืœื "ื˜ืจืก" ื™ืฉ ืฉื.
14:36
I did that. Me!
311
876330
2000
ืื ื™ ืขืฉื™ืชื™ ื–ืืช. ืื ื™!
14:38
I did that to the map. I just did that!
312
878330
2000
ืื ื™ ืขืฉื™ืชื™ ื–ืืช ื‘ืžืคื”. ืคืฉื•ื˜ ืขืฉื™ืชื™ ื–ืืช!
14:40
I put that up on there. Hey, you know what?
313
880330
2000
ืื ื™ ืฉืžืชื™ ืืช ื–ื” ืฉื. ืืชื ื™ื•ื“ืขื™ื ืžื”?
14:42
If I -- that street map is all about everybody doing their bit
314
882330
3000
ืื•ืชื” ืžืคืช ื›ื‘ื™ืฉื™ื ื”ื™ื ืื•ื“ื•ืช ื›ืœ ืื—ื“ ืฉืขื•ืฉื” ืืช ื—ืœืงื• ื”ืงื˜ืŸ
14:45
and it creates an incredible resource
315
885330
3000
ื•ื–ื” ื™ื•ืฆืจ ืžืฉืื‘ ืžื“ื”ื™ื
14:48
because everybody else does theirs.
316
888330
3000
ืžืคื ื™ ืฉื›ื•ืœื ืขื•ืฉื™ื ืืช ื—ืœืงื.
14:51
And that is what linked data is all about.
317
891330
3000
ื–ื• ื‘ื“ื™ื•ืง ื”ืžืฉืžืขื•ืช ืฉืœ ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื.
14:54
It's about people doing their bit
318
894330
3000
ื–ื” ืขืœ ืื ืฉื™ื ืฉืขื•ืฉื™ื ืืช ื—ืœืงื ื”ืงื˜ืŸ
14:57
to produce a little bit, and it all connecting.
319
897330
3000
ื›ื“ื™ ืœื™ืฆื•ืจ ืžืฉื”ื• ืงื˜ืŸ, ื•ื–ื” ื”ื›ืœ ืžืงื•ืฉืจ.
15:00
That's how linked data works.
320
900330
3000
ื–ื” ืื™ืš ืฉื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื ืขื•ื‘ื“ื™ื.
15:03
You do your bit. Everybody else does theirs.
321
903330
4000
ืืชื” ืขื•ืฉื” ืืช ื—ืœืงืš ื”ืงื˜ืŸ. ื›ื•ืœื ืขื•ืฉื™ื ืืช ืฉืœื”ื.
15:07
You may not have lots of data which you have yourself to put on there
322
907330
4000
ืื•ืœื™ ืื™ืŸ ืœืš ื”ืจื‘ื” ื ืชื•ื ื™ื ืฉืืชื” ืฆืจื™ืš ืœืฉื™ื ืฉื
15:11
but you know to demand it.
323
911330
3000
ืื‘ืœ ืืชื” ื™ื•ื“ืข ืœื“ืจื•ืฉ ืื•ืชื.
15:14
And we've practiced that.
324
914330
2000
ื”ืชืืžื ื ื• ืขืœ ื–ื”.
15:16
So, linked data -- it's huge.
325
916330
4000
ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื -- ื–ื” ืžืฉื”ื• ืขื ืง.
15:20
I've only told you a very small number of things
326
920330
3000
ืกื™ืคืจืชื™ ืœื›ื ืจืง ืžืขื˜ ืžื›ืœ ื–ื”.
15:23
There are data in every aspect of our lives,
327
923330
2000
ื ืชื•ื ื™ื ืงื™ื™ืžื™ื ื‘ื›ืœ ื”ื™ื‘ื˜ ืฉืœ ื—ื™ื™ื ื•,
15:25
every aspect of work and pleasure,
328
925330
3000
ื‘ื›ืœ ื”ื™ื‘ื˜ ืฉืœ ืขื‘ื•ื“ืชื ื• ื•ื”ื ืืชื ื•,
15:28
and it's not just about the number of places where data comes,
329
928330
3000
ื•ื–ื” ืœื ืจืง ืขื ื™ื™ืŸ ืฉืœ ืžืกืคืจ ื”ืžืงื•ืจื•ืช ืฉืžื”ื ื”ื ืชื•ื ื™ื ืžื’ื™ืขื™ื,
15:31
it's about connecting it together.
330
931330
3000
ืืœื ื–ื” ื’ื ืขื ื™ื™ืŸ ืฉืœ ืœืงืฉืจ ื‘ื™ื ื™ื”ื.
15:34
And when you connect data together, you get power
331
934330
3000
ื•ื›ืืฉืจ ืžืงืฉืจื™ื ื‘ื™ื ื™ื”ื, ืžืชืงื‘ืœืช ืขื•ืฆืžื”
15:37
in a way that doesn't happen just with the web, with documents.
332
937330
3000
ืฉืœื ืžืชืงื‘ืœืช ืจืง ืžืจืฉืช, ืื• ืžืžืกืžื›ื™ื.
15:40
You get this really huge power out of it.
333
940330
4000
ืžืžืฉ ืžืคื™ืงื™ื ื”ืจื‘ื” ืขื•ืฆืžื” ืžื”ื ืชื•ื ื™ื.
15:44
So, we're at the stage now
334
944330
3000
ื›ืš ืฉื›ืขืช ืื ื• ื ืžืฆืื™ื ื‘ืฉืœื‘
15:47
where we have to do this -- the people who think it's a great idea.
335
947330
4000
ืฉื‘ื• ืขืœื™ื ื• ืœืขืฉื•ืช ื–ืืช -- ื”ืื ืฉื™ื ื”ืกื‘ื•ืจื™ื ืฉื–ื” ืจืขื™ื•ืŸ ื’ื“ื•ืœ.
15:51
And all the people -- and I think there's a lot of people at TED who do things because --
336
951330
3000
ื•ืื ื™ ืกื‘ื•ืจ ืฉื™ืฉ ื”ืจื‘ื” ืื ืฉื™ื ื‘-TED ืฉืคื•ืขืœื™ื ื‘ื’ืœืœ --
15:54
even though there's not an immediate return on the investment
337
954330
2000
ืืฃ ืขืœ-ืคื™ ืฉืื™ืŸ ืชืžื•ืจื” ืžื™ื™ื“ื™ืช ืขืœ ื”ื”ืฉืงืขื”
15:56
because it will only really pay off when everybody else has done it --
338
956330
3000
ืžืื—ืจ ื•ื–ื” ื™ื—ื–ื™ืจ ืืช ื”ื”ืฉืงืขื” ืจืง ื›ืืฉืจ ื›ื•ืœื ื™ืขืฉื• ื–ืืช --
15:59
they'll do it because they're the sort of person who just does things
339
959330
4000
ื”ื ื™ืขืฉื• ื–ืืช ืžื›ื™ื•ื•ืŸ ืฉื”ื ืžืกื•ื’ ืื•ืชื ื”ืื ืฉื™ื ืฉืคืฉื•ื˜ ืขื•ืฉื™ื ื“ื‘ืจื™ื
16:03
which would be good if everybody else did them.
340
963330
3000
ืฉื™ื”ื™ื• ืžื•ืขื™ืœื™ื ืจืง ืื ื›ื•ืœื ื™ืขืฉื• ืื•ืชื.
16:06
OK, so it's called linked data.
341
966330
2000
ื˜ื•ื‘, ื–ื” ืžื” ืฉืงืจื•ื™ ื ืชื•ื ื™ื ืžืงื•ืฉืจื™ื.
16:08
I want you to make it.
342
968330
2000
ืื ื™ ืจื•ืฆื” ืฉืืชื ืชื™ื™ืฆืจื• ืื•ืชื.
16:10
I want you to demand it.
343
970330
2000
ืื ื™ ืจื•ืฆื” ืฉืชื“ืจืฉื• ืื•ืชื.
16:12
And I think it's an idea worth spreading.
344
972330
2000
ื•ืื ื™ ืกื‘ื•ืจ ืฉื–ื” ืจืขื™ื•ืŸ ืฉืฉื•ื•ื” ืœื”ืคื™ืฅ.
16:14
Thanks.
345
974330
1000
ืชื•ื“ื”.
16:15
(Applause)
346
975330
3000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7