Tim Berners-Lee: The next Web of open, linked data

448,250 views ・ 2009-03-13

TED


請雙擊下方英文字幕播放視頻。

譯者: Geoff Chen 審譯者: Annie Pin-Wei Ke
00:18
Time flies.
0
18330
2000
光陰似箭
00:20
It's actually almost 20 years ago
1
20330
2000
差不多是20年前
00:22
when I wanted to reframe the way we use information,
2
22330
4000
當我想重新構造我們使用資訊
00:26
the way we work together: I invented the World Wide Web.
3
26330
3000
共同工作方式的時候 - 我發明了網際網路
00:29
Now, 20 years on, at TED,
4
29330
3000
20年過去了,現在,在TED
00:32
I want to ask your help in a new reframing.
5
32330
4000
我請求你們幫助建立一個新的架構
00:37
So going back to 1989,
6
37330
4000
回到1989年
00:41
I wrote a memo suggesting the global hypertext system.
7
41330
3000
我在備忘錄中建議,使用一種全球的超連結系統
00:44
Nobody really did anything with it, pretty much.
8
44330
3000
幾乎沒有什麼人在真正用它
00:47
But 18 months later -- this is how innovation happens --
9
47330
4000
但是,18個月後 - 革新就是這麼開始的
00:51
18 months later, my boss said I could do it on the side,
10
51330
4000
18個月後,老闆說,我可以兼職做這件事
00:55
as a sort of a play project,
11
55330
2000
做一種遊戲性的計劃
00:57
kick the tires of a new computer we'd got.
12
57330
2000
就當試用我們新買來的電腦
00:59
And so he gave me the time to code it up.
13
59330
3000
他給了我些時間寫代碼
01:02
So I basically roughed out what HTML should look like:
14
62330
5000
我草擬了下HTML應該是什麼樣子
01:07
hypertext protocol, HTTP;
15
67330
3000
超文件傳輸協定 - HTTP -
01:10
the idea of URLs, these names for things
16
70330
3000
關於URLs 的想法 - 這些事物的名稱
01:13
which started with HTTP.
17
73330
2000
都是以HTTP開頭命名的
01:15
I wrote the code and put it out there.
18
75330
2000
我完成了代碼並發佈出來。
01:17
Why did I do it?
19
77330
2000
我為什麼要這麼做?
01:19
Well, it was basically frustration.
20
79330
2000
這是一個充滿挫敗感的過程
01:21
I was frustrated -- I was working as a software engineer
21
81330
4000
我感到很挫敗 - 因為我作為一個軟體工程師
01:25
in this huge, very exciting lab,
22
85330
2000
在這個令人興奮的超大實驗室中工作
01:27
lots of people coming from all over the world.
23
87330
2000
很多人從世界各地來到這裡
01:29
They brought all sorts of different computers with them.
24
89330
3000
他們的電腦各不相同
01:32
They had all sorts of different data formats,
25
92330
3000
資料格式各不相同
01:35
all sorts, all kinds of documentation systems.
26
95330
2000
檔案系統各不相同
01:37
So that, in all that diversity,
27
97330
3000
所以,這其中有很大的差異性
01:40
if I wanted to figure out how to build something
28
100330
2000
如果我想建立一點點東西
01:42
out of a bit of this and a bit of this,
29
102330
2000
在這些差異性很大的電腦上
01:44
everything I looked into, I had to connect to some new machine,
30
104330
4000
每一項我找到的資料,我不得不連接到一些新的機器
01:48
I had to learn to run some new program,
31
108330
2000
運行一些新的程式
01:50
I would find the information I wanted in some new data format.
32
110330
5000
以便我能在新的資料格式中找到我需要的資訊
01:55
And these were all incompatible.
33
115330
2000
而這些都是不相容的
01:57
It was just very frustrating.
34
117330
2000
這非常令人沮喪
01:59
The frustration was all this unlocked potential.
35
119330
2000
這種挫敗感卻正顯示出這個專案的潛力所在
02:01
In fact, on all these discs there were documents.
36
121330
3000
事實上,過去這些磁片裡全都是檔案
02:04
So if you just imagined them all
37
124330
3000
所以如果你僅僅把他們
02:07
being part of some big, virtual documentation system in the sky,
38
127330
5000
想像成天空中某些大型虛擬檔案系統的一部分
02:12
say on the Internet,
39
132330
2000
比如在網際網路上
02:14
then life would be so much easier.
40
134330
2000
生活就會簡單得多
02:16
Well, once you've had an idea like that it kind of gets under your skin
41
136330
4000
這樣,一旦你有了這樣的想法
02:20
and even if people don't read your memo --
42
140330
2000
即使人們並沒有讀到你的備忘錄
02:22
actually he did, it was found after he died, his copy.
43
142330
3000
事實上他讀到了,因為在他死後,在他的備份草稿中
02:25
He had written, "Vague, but exciting," in pencil, in the corner.
44
145330
3000
他用鉛筆在角落寫到“模糊,但是令人興奮”。
02:28
(Laughter)
45
148330
2000
(笑聲)
02:30
But in general it was difficult -- it was really difficult to explain
46
150330
4000
但一般情況下,很難有這樣的想法 – 的確很難解釋
02:34
what the web was like.
47
154330
2000
網路是什麼樣的
02:36
It's difficult to explain to people now that it was difficult then.
48
156330
2000
現在都很難向人們解釋,更別提當初了
02:38
But then -- OK, when TED started, there was no web
49
158330
3000
但是,當 TED 開始時,那時沒有網路
02:41
so things like "click" didn't have the same meaning.
50
161330
3000
所以像“點選”這樣的事情含義是不同的
02:44
I can show somebody a piece of hypertext,
51
164330
2000
我現在可以向某人展示一大堆超連結
02:46
a page which has got links,
52
166330
2000
某個包含連結的網頁
02:48
and we click on the link and bing -- there'll be another hypertext page.
53
168330
4000
我們點選一個連結,然後叮 -- 就會轉到另一個超連結的頁面
02:52
Not impressive.
54
172330
2000
沒什麼令人印象深刻的
02:54
You know, we've seen that -- we've got things on hypertext on CD-ROMs.
55
174330
3000
我們已經見到,通過超連結找到CD-ROMs中的內容
02:57
What was difficult was to get them to imagine:
56
177330
3000
困難的是把它們想像出來
03:00
so, imagine that that link could have gone
57
180330
4000
所以,想像那個連結可以到
03:04
to virtually any document you could imagine.
58
184330
2000
任何實際的你能想像得到的文件
03:07
Alright, that is the leap that was very difficult for people to make.
59
187330
4000
好的,這個跳躍對於人們是很難做到的
03:11
Well, some people did.
60
191330
2000
然而,一些人做到了
03:13
So yeah, it was difficult to explain, but there was a grassroots movement.
61
193330
3000
儘管很難解釋,但是這是一場草根運動
03:17
And that is what has made it most fun.
62
197330
4000
這正是使它好玩的地方
03:21
That has been the most exciting thing,
63
201330
2000
也是最令人激動人心的事情
03:23
not the technology, not the things people have done with it,
64
203330
2000
不是技術,不是人們用它所做的東西
03:25
but actually the community, the spirit of all these people
65
205330
2000
而是實際的交流,所有這些人的思想彙聚
03:27
getting together, sending the emails.
66
207330
2000
在一起,發送電子郵件
03:29
That's what it was like then.
67
209330
2000
這是那時的情況
03:31
Do you know what? It's funny, but right now it's kind of like that again.
68
211330
3000
你知道嗎?有趣的是,現在跟那時候又有點像了
03:34
I asked everybody, more or less, to put their documents --
69
214330
2000
我問每一個人,他們或多或少都發佈過文檔
03:36
I said, "Could you put your documents on this web thing?"
70
216330
3000
我說“你能把你的文檔放到網路上嗎?”
03:39
And you did.
71
219330
3000
然後,你做了
03:42
Thanks.
72
222330
1000
謝謝
03:43
It's been a blast, hasn't it?
73
223330
2000
這已經是一種風潮,不是嗎?
03:45
I mean, it has been quite interesting
74
225330
2000
我的意思是,它已經非常有趣
03:47
because we've found out that the things that happen with the web
75
227330
2000
因為我們發現,網路上發生的事情似乎
03:49
really sort of blow us away.
76
229330
2000
已經把我們吹到了一邊
03:51
They're much more than we'd originally imagined
77
231330
2000
現在它的功能得比我們想像的還多
03:53
when we put together the little, initial website
78
233330
2000
最初的設計只是想把檔案湊在一起
03:55
that we started off with.
79
235330
2000
在我們最初開始使用網路時
03:57
Now, I want you to put your data on the web.
80
237330
3000
現在我想讓你把你的資料放在網上
04:00
Turns out that there is still huge unlocked potential.
81
240330
4000
原來這還是有許多未釋放的潛力
04:04
There is still a huge frustration
82
244330
2000
也有很大的挫敗感
04:06
that people have because we haven't got data on the web as data.
83
246330
4000
因為我們從網上得到的資料不是我們想要的資料
04:10
What do you mean, "data"? What's the difference -- documents, data?
84
250330
2000
你說的數據是什麼?數據和文件之間有什麼區別?
04:12
Well, documents you read, OK?
85
252330
3000
文件檔是你閱讀的東西
04:15
More or less, you read them, you can follow links from them, and that's it.
86
255330
3000
或多或少,你都讀過,你可以追蹤他們的連結,就是這樣
04:18
Data -- you can do all kinds of stuff with a computer.
87
258330
2000
數據—你可以通過一台電腦使用各種資料
04:20
Who was here or has otherwise seen Hans Rosling's talk?
88
260330
6000
誰在這裡或者其他地方聽過漢斯羅素令的演講?
04:26
One of the great -- yes a lot of people have seen it --
89
266330
4000
一個偉大的 – 很多人已經看過了 –
04:30
one of the great TED Talks.
90
270330
2000
一個偉大的TED演講
04:32
Hans put up this presentation
91
272330
2000
漢斯在他的演說中
04:34
in which he showed, for various different countries, in various different colors --
92
274330
5000
使用不同的顏色表示不同的國家
04:39
he showed income levels on one axis
93
279330
3000
他在一個軸上顯示收入水準
04:42
and he showed infant mortality, and he shot this thing animated through time.
94
282330
3000
同時他用動畫按年份顯示嬰兒死亡率
04:45
So, he'd taken this data and made a presentation
95
285330
4000
他使用這些資料完成了一場演講,
04:49
which just shattered a lot of myths that people had
96
289330
3000
這個演講打破了很多人
04:52
about the economics in the developing world.
97
292330
4000
對發展中國家經濟的神話
04:56
He put up a slide a little bit like this.
98
296330
2000
他展示了一個類似的幻燈片
04:58
It had underground all the data
99
298330
2000
數據都被埋在地下
05:00
OK, data is brown and boxy and boring,
100
300330
3000
對,資料是這些棕色的、無趣的四方盒子
05:03
and that's how we think of it, isn't it?
101
303330
2000
我們就是這樣看待資料的,不是嗎?
05:05
Because data you can't naturally use by itself
102
305330
3000
因為,你不能漫無目的地使用資料
05:08
But in fact, data drives a huge amount of what happens in our lives
103
308330
4000
但事實上,資料驅動了我們的生活
05:12
and it happens because somebody takes that data and does something with it.
104
312330
3000
因為某些人使用了資料並且做了些事情
05:15
In this case, Hans had put the data together
105
315330
2000
在這個例子中,漢斯將資料放到了一起
05:17
he had found from all kinds of United Nations websites and things.
106
317330
5000
漢斯在聯合國網站找到各種資料和事物
05:22
He had put it together,
107
322330
2000
他把資料放到了一起
05:24
combined it into something more interesting than the original pieces
108
324330
3000
將它們組合起來使之比原始資料有趣得多
05:27
and then he'd put it into this software,
109
327330
5000
然後把資料放到這個軟體中
05:32
which I think his son developed, originally,
110
332330
2000
這個軟體好像原本是他兒子開發的
05:34
and produces this wonderful presentation.
111
334330
3000
最終他做出了這個美妙的簡報
05:37
And Hans made a point
112
337330
2000
最後漢斯說道
05:39
of saying, "Look, it's really important to have a lot of data."
113
339330
4000
“瞧,有大量的資料是非常重要的”
05:43
And I was happy to see that at the party last night
114
343330
3000
我高興地看到在昨天的晚會上
05:46
that he was still saying, very forcibly, "It's really important to have a lot of data."
115
346330
4000
他仍然強烈地表示“有大量資料是非常重要的”
05:50
So I want us now to think about
116
350330
2000
現在我想讓大家想的是
05:52
not just two pieces of data being connected, or six like he did,
117
352330
4000
不僅僅是兩條資料間的連接,或者像他所說的那樣六條資料
05:56
but I want to think about a world where everybody has put data on the web
118
356330
5000
而是這個世界上任何人
06:01
and so virtually everything you can imagine is on the web
119
361330
2000
都把資料和可以虛擬化的一切內容放到網路上
06:03
and then calling that linked data.
120
363330
2000
然後把它們稱為關聯資料
06:05
The technology is linked data, and it's extremely simple.
121
365330
2000
這個技術就是關聯資料,它是極其簡單的
06:07
If you want to put something on the web there are three rules:
122
367330
4000
如果你想把什麼東西放在網路,有三條規則
06:11
first thing is that those HTTP names --
123
371330
3000
第一條規則是,需要有HTTP的名字
06:14
those things that start with "http:" --
124
374330
2000
那些東西要以http:開頭
06:16
we're using them not just for documents now,
125
376330
4000
我們現在不僅對文件檔這樣用
06:20
we're using them for things that the documents are about.
126
380330
2000
對文件檔描述的事物也這樣用
06:22
We're using them for people, we're using them for places,
127
382330
2000
我們對人物、地點
06:24
we're using them for your products, we're using them for events.
128
384330
4000
產品,事件等都這樣用
06:28
All kinds of conceptual things, they have names now that start with HTTP.
129
388330
4000
所有概念化的東西現在都以HTTP開頭命名
06:32
Second rule, if I take one of these HTTP names and I look it up
130
392330
5000
第二條規則,如果我有一個HTTP名稱,然後我根據它在網路上進行查找
06:37
and I do the web thing with it and I fetch the data
131
397330
2000
我可以從網上獲取資料
06:39
using the HTTP protocol from the web,
132
399330
2000
通過HTTP協議
06:41
I will get back some data in a standard format
133
401330
3000
我將得到一些標準的格式化資料
06:44
which is kind of useful data that somebody might like to know
134
404330
5000
這些有用資料或許是關於人們希望瞭解
06:49
about that thing, about that event.
135
409330
2000
某個事物或者事件的
06:51
Who's at the event? Whatever it is about that person,
136
411330
2000
事件的主人公是誰?關於這個人的所有資訊
06:53
where they were born, things like that.
137
413330
2000
他們什麼時候出生的,等等
06:55
So the second rule is I get important information back.
138
415330
2000
所以,第二條規則就是我通過HTTP獲得了重要的資料
06:57
Third rule is that when I get back that information
139
417330
4000
第三條規則是,我得到的資訊
07:01
it's not just got somebody's height and weight and when they were born,
140
421330
3000
不僅僅是某人的身高、體重和出生日期
07:04
it's got relationships.
141
424330
2000
還有資料間的關係
07:06
Data is relationships.
142
426330
2000
數據是有關聯的
07:08
Interestingly, data is relationships.
143
428330
2000
很有趣,數據是有關聯的
07:10
This person was born in Berlin; Berlin is in Germany.
144
430330
4000
這個人出生在柏林,柏林在德國
07:14
And when it has relationships, whenever it expresses a relationship
145
434330
3000
當數據是有關聯時,無論何時它表現出這種關聯
07:17
then the other thing that it's related to
146
437330
3000
另一件與之有關聯的事物
07:20
is given one of those names that starts HTTP.
147
440330
4000
就以HTTP開頭命名
07:24
So, I can go ahead and look that thing up.
148
444330
2000
所以,我可以直接去找那件事
07:26
So I look up a person -- I can look up then the city where they were born; then
149
446330
3000
比如,我查一個人 -- 我查他出生的城市
07:29
I can look up the region it's in, and the town it's in,
150
449330
3000
這個城市的所在區域,城市的城鎮
07:32
and the population of it, and so on.
151
452330
3000
人口等等
07:35
So I can browse this stuff.
152
455330
2000
這樣我就能流覽這些資訊
07:37
So that's it, really.
153
457330
2000
真的,就是這樣
07:39
That is linked data.
154
459330
2000
這就是關聯資料
07:41
I wrote an article entitled "Linked Data" a couple of years ago
155
461330
3000
我多年前在一篇文章中給它命名為“關聯資料”
07:44
and soon after that, things started to happen.
156
464330
4000
之後不久,有些事開始發生了
07:48
The idea of linked data is that we get lots and lots and lots
157
468330
4000
關聯資料的想法就像我們得到了很多很多
07:52
of these boxes that Hans had,
158
472330
2000
就像漢斯的那些盒子
07:54
and we get lots and lots and lots of things sprouting.
159
474330
2000
很多很多的事物開始發芽生長
07:56
It's not just a whole lot of other plants.
160
476330
3000
它帶給我們相當多的植物
07:59
It's not just a root supplying a plant,
161
479330
2000
不僅僅是一個根供給一個植物
08:01
but for each of those plants, whatever it is --
162
481330
3000
對於這的每一個植物,無論它是什麼
08:04
a presentation, an analysis, somebody's looking for patterns in the data --
163
484330
3000
一場演說,一個分析,某些人查看數據資料的樣式
08:07
they get to look at all the data
164
487330
3000
它們都著眼於所有的數據
08:10
and they get it connected together,
165
490330
2000
並且它們把數據聯繫起來
08:12
and the really important thing about data
166
492330
2000
關於數據真正重要的是
08:14
is the more things you have to connect together, the more powerful it is.
167
494330
2000
你把很多東西聯繫起來,數據就更加有價值
08:16
So, linked data.
168
496330
2000
所以,關聯資料
08:18
The meme went out there.
169
498330
2000
由此而來
08:20
And, pretty soon Chris Bizer at the Freie Universitat in Berlin
170
500330
4000
很快,來自柏林自由大學的克里斯拜澤
08:24
who was one of the first people to put interesting things up,
171
504330
2000
做為第一人把有趣的東西放在一起
08:26
he noticed that Wikipedia --
172
506330
2000
他注意到維琪百科
08:28
you know Wikipedia, the online encyclopedia
173
508330
3000
一部線上百科全書
08:31
with lots and lots of interesting documents in it.
174
511330
2000
有很多有趣的文檔
08:33
Well, in those documents, there are little squares, little boxes.
175
513330
4000
在這些文檔中,有些小方格子和小盒子
08:37
And in most information boxes, there's data.
176
517330
3000
在多數的資訊方格中,就有資料
08:40
So he wrote a program to take the data, extract it from Wikipedia,
177
520330
4000
他寫了 一個程式將資料從維琪百科中提取出來
08:44
and put it into a blob of linked data
178
524330
2000
然後將它放到關聯資料的組別中
08:46
on the web, which he called dbpedia.
179
526330
3000
在網路上,被他稱之為dbpedia(資料庫百科)
08:49
Dbpedia is represented by the blue blob in the middle of this slide
180
529330
4000
這張幻燈片中部藍色的blob表示Dbpedia
08:53
and if you actually go and look up Berlin,
181
533330
2000
如果你去查詢柏林
08:55
you'll find that there are other blobs of data
182
535330
2000
你會發現還有其他的資料
08:57
which also have stuff about Berlin, and they're linked together.
183
537330
3000
也有柏林的資訊,它們被聯繫到了一起
09:00
So if you pull the data from dbpedia about Berlin,
184
540330
3000
所以,如果你要從dbpedia中摘出關於柏林的資料
09:03
you'll end up pulling up these other things as well.
185
543330
2000
你也最終會摘出其他內容
09:05
And the exciting thing is it's starting to grow.
186
545330
3000
令人興奮的事情是它正在成長
09:08
This is just the grassroots stuff again, OK?
187
548330
2000
這又是一個草根做的事情,對嗎?
09:10
Let's think about data for a bit.
188
550330
3000
讓我們多想想資料
09:13
Data comes in fact in lots and lots of different forms.
189
553330
3000
資料實際上來源於很多很多不同的形式
09:16
Think of the diversity of the web. It's a really important thing
190
556330
3000
想想網路的多樣性,很重要的一點
09:19
that the web allows you to put all kinds of data up there.
191
559330
3000
網路允許你將各式各樣的資料放在一起
09:22
So it is with data. I could talk about all kinds of data.
192
562330
2000
說到資料,我能說出各種各樣的數據
09:25
We could talk about government data, enterprise data is really important,
193
565330
4000
我們可以說政府資料,企業資料真的很重要
09:29
there's scientific data, there's personal data,
194
569330
3000
還有科學資料,個人資料
09:32
there's weather data, there's data about events,
195
572330
2000
天氣資料,關於事件的資料
09:34
there's data about talks, and there's news and there's all kinds of stuff.
196
574330
4000
關於談話的資料,還有新聞和各種類似的東西
09:38
I'm just going to mention a few of them
197
578330
3000
我只提到了一小部分資料
09:41
so that you get the idea of the diversity of it,
198
581330
2000
你們就可以看出其多樣性
09:43
so that you also see how much unlocked potential.
199
583330
4000
所以你可以看到其中的潛力
09:47
Let's start with government data.
200
587330
2000
讓我們從政府資料說起
09:49
Barack Obama said in a speech,
201
589330
2000
美國總統巴拉克歐巴馬在一場演講上表示
09:51
that he -- American government data would be available on the Internet
202
591330
5000
美國政府的資料將在互聯網上被應用
09:56
in accessible formats.
203
596330
2000
以一種可訪問的形式
09:58
And I hope that they will put it up as linked data.
204
598330
2000
而我希望他們會將這些訊息以關聯資料放上去
10:00
That's important. Why is it important?
205
600330
2000
這非常重要,難道不是嗎?
10:02
Not just for transparency, yeah transparency in government is important,
206
602330
3000
不僅僅是為了透明性,透明性對政府很重要
10:05
but that data -- this is the data from all the government departments
207
605330
3000
尤其是從政府部門出來的資料更重要
10:08
Think about how much of that data is about how life is lived in America.
208
608330
5000
想想有多少關係到在美國如何生活的資料
10:13
It's actual useful. It's got value.
209
613330
2000
它的確很有用,很有價值
10:15
I can use it in my company.
210
615330
2000
我可以把它用在我的公司
10:17
I could use it as a kid to do my homework.
211
617330
2000
我可以像個小孩子般把它用在我的家庭作業中
10:19
So we're talking about making the place, making the world run better
212
619330
3000
所以,我們談論的是讓世界變得更好
10:22
by making this data available.
213
622330
2000
通過將這些資料變得更有用
10:24
In fact if you're responsible -- if you know about some data
214
624330
4000
事實上,如果你們在負責 - 如果你知道一些資料
10:28
in a government department, often you find that
215
628330
2000
關於政府的, 你經常會發現
10:30
these people, they're very tempted to keep it --
216
630330
3000
有些人,他們會被這些資料所吸引
10:33
Hans calls it database hugging.
217
633330
3000
漢斯稱之為資料庫擁抱
10:36
You hug your database, you don't want to let it go
218
636330
2000
你擁抱你的資料庫,你不會放它走
10:38
until you've made a beautiful website for it.
219
638330
2000
直到你為它建立了一個漂亮的網站
10:40
Well, I'd like to suggest that rather --
220
640330
2000
嗯,我想建議的是,除了建一個漂亮的網站
10:42
yes, make a beautiful website,
221
642330
2000
是的,建一個漂亮的網站
10:44
who am I to say don't make a beautiful website?
222
644330
2000
我沒說不要建一個漂亮的網站
10:46
Make a beautiful website, but first
223
646330
3000
建一個漂亮的網站,但是首先
10:49
give us the unadulterated data,
224
649330
3000
要給我們純粹的數據
10:52
we want the data.
225
652330
2000
我們要的是數據
10:54
We want unadulterated data.
226
654330
2000
我們要純粹的數據
10:56
OK, we have to ask for raw data now.
227
656330
3000
好,現在我們不得不要求原始數據了
10:59
And I'm going to ask you to practice that, OK?
228
659330
2000
我要請你們練習一下,好嗎?
11:01
Can you say "raw"?
229
661330
1000
請說“原始”
11:02
Audience: Raw.
230
662330
1000
原始
11:03
Tim Berners-Lee: Can you say "data"?
231
663330
1000
請說“數據”
11:04
Audience: Data.
232
664330
1000
數據
11:05
TBL: Can you say "now"?
233
665330
1000
請說‘現在“
11:06
Audience: Now!
234
666330
1000
現在
11:07
TBL: Alright, "raw data now"!
235
667330
2000
好,原始數據現在!
11:09
Audience: Raw data now!
236
669330
2000
原始數據現在!
11:11
Practice that. It's important because you have no idea the number of excuses
237
671330
4000
這樣練習是非常重要的
11:15
people come up with to hang onto their data
238
675330
2000
因為你不知道那些擁有數據的人
11:17
and not give it to you, even though you've paid for it as a taxpayer.
239
677330
4000
有多少理由拒絕將數據給你,甚至你作為一個納稅人是為此付了錢的
11:21
And it's not just America. It's all over the world.
240
681330
2000
這不僅僅存在於美國,全世界都一樣
11:23
And it's not just governments, of course -- it's enterprises as well.
241
683330
3000
也不僅僅在政府,當然也存在於企業。
11:26
So I'm just going to mention a few other thoughts on data.
242
686330
3000
我還想再談談關於數據的其他想法
11:29
Here we are at TED, and all the time we are very conscious
243
689330
5000
在TED,我們一直關注於
11:34
of the huge challenges that human society has right now --
244
694330
5000
人類社會目前所面臨的巨大問題
11:39
curing cancer, understanding the brain for Alzheimer's,
245
699330
3000
癌症治療,瞭解阿爾茨海默病
11:42
understanding the economy to make it a little bit more stable,
246
702330
3000
瞭解經濟好讓它穩定點
11:45
understanding how the world works.
247
705330
2000
瞭解世界是如何運轉的
11:47
The people who are going to solve those -- the scientists --
248
707330
2000
那些致力於解決這些問題的科學家
11:49
they have half-formed ideas in their head,
249
709330
2000
他們腦海中有些還不成熟的想法
11:51
they try to communicate those over the web.
250
711330
3000
他們試圖在網路上與他人交流
11:54
But a lot of the state of knowledge of the human race at the moment
251
714330
3000
但是現狀是很多人類的知識
11:57
is on databases, often sitting in their computers,
252
717330
3000
現在都在資料庫中,放在他們的電腦裡
12:00
and actually, currently not shared.
253
720330
3000
現在實際上也沒被共用
12:03
In fact, I'll just go into one area --
254
723330
3000
事實上,我就從一個方面來說明 -
12:06
if you're looking at Alzheimer's, for example,
255
726330
2000
如果你在研究阿爾茨海默病,以此為例,
12:08
drug discovery -- there is a whole lot of linked data which is just coming out
256
728330
3000
以藥物發現為例 -- 這個領域具有相當多的剛剛出現的關聯資料
12:11
because scientists in that field realize
257
731330
2000
因為這個領域的科學家們意識到
12:13
this is a great way of getting out of those silos,
258
733330
3000
關聯資料是一種很好的方法,可以説明他們擺脫資料孤島
12:16
because they had their genomics data in one database
259
736330
4000
因為他們在一個資料庫中建立了基因圖組
12:20
in one building, and they had their protein data in another.
260
740330
3000
他們在另一個資料庫中建立蛋白質數據
12:23
Now, they are sticking it onto -- linked data --
261
743330
3000
現在,他們將基因圖組和蛋白質數據形成了關聯資料
12:26
and now they can ask the sort of question, that you probably wouldn't ask,
262
746330
3000
然後他們現在可以問一些特定的問題,也許你不會問
12:29
I wouldn't ask -- they would.
263
749330
2000
我也不會問,但是他們會
12:31
What proteins are involved in signal transduction
264
751330
2000
哪些蛋白質參與信號轉導
12:33
and also related to pyramidal neurons?
265
753330
2000
並且也和錐體神經元相關?
12:35
Well, you take that mouthful and you put it into Google.
266
755330
3000
當你將這個問題放到Google上搜索
12:38
Of course, there's no page on the web which has answered that question
267
758330
3000
自然沒有回答結果的頁面
12:41
because nobody has asked that question before.
268
761330
2000
因為之前沒有人問過這樣的問題
12:43
You get 223,000 hits --
269
763330
2000
雖然你得到了223,000個結果
12:45
no results you can use.
270
765330
2000
但是沒有一個你用得上
12:47
You ask the linked data -- which they've now put together --
271
767330
3000
當你查詢關聯資料 -- 現在他們已經被放到了一起
12:50
32 hits, each of which is a protein which has those properties
272
770330
4000
命中32個結果,每一個結果都是與特性相關的蛋白質
12:54
and you can look at.
273
774330
2000
並且你可以查看
12:56
The power of being able to ask those questions, as a scientist --
274
776330
3000
做為一個科學家, 詢問那些問題的能力
12:59
questions which actually bridge across different disciplines --
275
779330
2000
那些問題基本上都是跨學科的問題
13:01
is really a complete sea change.
276
781330
3000
是非常徹底的重大改變
13:04
It's very very important.
277
784330
2000
這是非常非常重要的
13:06
Scientists are totally stymied at the moment --
278
786330
2000
科學家們那時完全陷入了困境
13:08
the power of the data that other scientists have collected is locked up
279
788330
5000
因為其他科學家搜集的資料,其價值被鎖起來了
13:13
and we need to get it unlocked so we can tackle those huge problems.
280
793330
3000
我們需要將之解鎖,以便處理那些重大問題
13:16
Now if I go on like this, you'll think that all the data comes from huge institutions
281
796330
4000
現在,如果我繼續像這樣講,你們會覺得這些數據都是從大機構得來的
13:20
and has nothing to do with you.
282
800330
3000
和你沒有一點關係
13:23
But, that's not true.
283
803330
2000
但是,這種想法並不對
13:25
In fact, data is about our lives.
284
805330
2000
事實上,數據關乎我們的生活
13:27
You just -- you log on to your social networking site,
285
807330
3000
你剛剛登陸了你的社交網站
13:30
your favorite one, you say, "This is my friend."
286
810330
2000
你最喜歡的一個,你說“這是我朋友”
13:32
Bing! Relationship. Data.
287
812330
3000
叮!關聯,資料
13:35
You say, "This photograph, it's about -- it depicts this person. "
288
815330
3000
你說“這副照片,是這個人的”
13:38
Bing! That's data. Data, data, data.
289
818330
3000
叮!那是數據。數據,數據,數據
13:41
Every time you do things on the social networking site,
290
821330
2000
每次你在社交網站上做的事
13:43
the social networking site is taking data and using it -- re-purposing it --
291
823330
4000
社交網站就獲取資料並利用它
13:47
and using it to make other people's lives more interesting on the site.
292
827330
4000
重新設計資料的目的是為了讓這個網站的其他人過得更有趣
13:51
But, when you go to another linked data site --
293
831330
2000
但是,當你上另一個關聯資料網站
13:53
and let's say this is one about travel,
294
833330
3000
假設是一個旅遊網站
13:56
and you say, "I want to send this photo to all the people in that group,"
295
836330
3000
你說“我想把這張照片發給那個組裡的所有人”
13:59
you can't get over the walls.
296
839330
2000
但你卻無法翻過這些牆
14:01
The Economist wrote an article about it, and lots of people have blogged about it --
297
841330
2000
經濟學家曾經寫了一篇關於這個問題的文章,並且許多人也發了相關部落格表示出
14:03
tremendous frustration.
298
843330
1000
巨大的挫敗感
14:04
The way to break down the silos is to get inter-operability
299
844330
2000
打破孤島的方式是實現交互操作
14:06
between social networking sites.
300
846330
2000
在這些社交網站之間
14:08
We need to do that with linked data.
301
848330
2000
我們需要通過關聯資料做這件事
14:10
One last type of data I'll talk about, maybe it's the most exciting.
302
850330
3000
最後一種我將要談到的資料,也許是最令人激動的
14:13
Before I came down here, I looked it up on OpenStreetMap
303
853330
3000
在我來這之前,我通過OpenStreetMap查找了一下
14:16
The OpenStreetMap's a map, but it's also a Wiki.
304
856330
2000
OpenStreetMap是一個地圖,但同樣也是一個維琪
14:18
Zoom in and that square thing is a theater -- which we're in right now --
305
858330
3000
放大這個方塊,這是一個劇場 -- 就是我們現在所處的地方 --
14:21
The Terrace Theater. It didn't have a name on it.
306
861330
2000
特羅斯劇場(位於加州長灘市)。它現在還沒有被標上名字
14:23
So I could go into edit mode, I could select the theater,
307
863330
2000
所以我可以到編輯模式,選擇劇場
14:25
I could add down at the bottom the name, and I could save it back.
308
865330
5000
然後在底下填上名字,然後保存它
14:30
And now if you go back to the OpenStreetMap. org,
309
870330
3000
現在你再去訪問OpenStreetMap.org
14:33
and you find this place, you will find that The Terrace Theater has got a name.
310
873330
3000
你找到這個地方,你會發現它現在有名字了
14:36
I did that. Me!
311
876330
2000
是我做的,是我!
14:38
I did that to the map. I just did that!
312
878330
2000
我在地圖上標的,剛剛做的
14:40
I put that up on there. Hey, you know what?
313
880330
2000
我把它標注在那裡。嗨,你知道嗎
14:42
If I -- that street map is all about everybody doing their bit
314
882330
3000
如果除了我,每個人都在這個地圖上標注一點
14:45
and it creates an incredible resource
315
885330
3000
將會產生難以置信的資源
14:48
because everybody else does theirs.
316
888330
3000
因為其他每個人都做了
14:51
And that is what linked data is all about.
317
891330
3000
這就是關聯資料
14:54
It's about people doing their bit
318
894330
3000
每個人都做一點
14:57
to produce a little bit, and it all connecting.
319
897330
3000
生成一點內容,然後把它們連接起來
15:00
That's how linked data works.
320
900330
3000
關聯資料就是這樣工作的
15:03
You do your bit. Everybody else does theirs.
321
903330
4000
你做一些,每個人都做一些
15:07
You may not have lots of data which you have yourself to put on there
322
907330
4000
也許你的資料在關聯資料中只是很小一部分
15:11
but you know to demand it.
323
911330
3000
但你知道你需要它
15:14
And we've practiced that.
324
914330
2000
我們已經在實踐了
15:16
So, linked data -- it's huge.
325
916330
4000
關聯資料 -- 是非常巨大的
15:20
I've only told you a very small number of things
326
920330
3000
我只能告訴你很小一部分
15:23
There are data in every aspect of our lives,
327
923330
2000
我們生活的每個方面
15:25
every aspect of work and pleasure,
328
925330
3000
工作和快樂的每個方面
15:28
and it's not just about the number of places where data comes,
329
928330
3000
不管是資料出處的有多少
15:31
it's about connecting it together.
330
931330
3000
關鍵是把它聯繫起來
15:34
And when you connect data together, you get power
331
934330
3000
當你把數據聯繫起來
15:37
in a way that doesn't happen just with the web, with documents.
332
937330
3000
你能從這樣的方式中獲取在網路或文檔中無法獲取的力量
15:40
You get this really huge power out of it.
333
940330
4000
你能從中得到巨大的力量
15:44
So, we're at the stage now
334
944330
3000
現在我們處在一個階段
15:47
where we have to do this -- the people who think it's a great idea.
335
947330
4000
我們必須要做的階段 -- 那些認為這是個偉大想法的人們
15:51
And all the people -- and I think there's a lot of people at TED who do things because --
336
951330
3000
而且所有人 -- 我想在 TED 的大部分人
15:54
even though there's not an immediate return on the investment
337
954330
2000
他們做事情並不是為了要使投資得到立即的回報
15:56
because it will only really pay off when everybody else has done it --
338
956330
3000
因為只有當每個人都這麼做了才會有所回報
15:59
they'll do it because they're the sort of person who just does things
339
959330
4000
他們將會這麼做,因為他們是那類人
16:03
which would be good if everybody else did them.
340
963330
3000
那類希望每個人都參與進來而讓事情變好的人
16:06
OK, so it's called linked data.
341
966330
2000
OK,這就是關聯資料
16:08
I want you to make it.
342
968330
2000
我希望你參與
16:10
I want you to demand it.
343
970330
2000
我希望你需要它
16:12
And I think it's an idea worth spreading.
344
972330
2000
我也認為這個想法值得宣揚
16:14
Thanks.
345
974330
1000
謝謝
16:15
(Applause)
346
975330
3000
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog