請雙擊下方英文字幕播放視頻。
譯者: Geoff Chen
審譯者: Annie Pin-Wei Ke
00:18
Time flies.
0
18330
2000
光陰似箭
00:20
It's actually almost 20 years ago
1
20330
2000
差不多是20年前
00:22
when I wanted to reframe the way we use information,
2
22330
4000
當我想重新構造我們使用資訊
00:26
the way we work together: I invented the World Wide Web.
3
26330
3000
共同工作方式的時候 - 我發明了網際網路
00:29
Now, 20 years on, at TED,
4
29330
3000
20年過去了,現在,在TED
00:32
I want to ask your help in a new reframing.
5
32330
4000
我請求你們幫助建立一個新的架構
00:37
So going back to 1989,
6
37330
4000
回到1989年
00:41
I wrote a memo suggesting the global hypertext system.
7
41330
3000
我在備忘錄中建議,使用一種全球的超連結系統
00:44
Nobody really did anything with it, pretty much.
8
44330
3000
幾乎沒有什麼人在真正用它
00:47
But 18 months later -- this is how innovation happens --
9
47330
4000
但是,18個月後 - 革新就是這麼開始的
00:51
18 months later, my boss said I could do it on the side,
10
51330
4000
18個月後,老闆說,我可以兼職做這件事
00:55
as a sort of a play project,
11
55330
2000
做一種遊戲性的計劃
00:57
kick the tires of a new computer we'd got.
12
57330
2000
就當試用我們新買來的電腦
00:59
And so he gave me the time to code it up.
13
59330
3000
他給了我些時間寫代碼
01:02
So I basically roughed out what HTML should look like:
14
62330
5000
我草擬了下HTML應該是什麼樣子
01:07
hypertext protocol, HTTP;
15
67330
3000
超文件傳輸協定 - HTTP -
01:10
the idea of URLs, these names for things
16
70330
3000
關於URLs 的想法 - 這些事物的名稱
01:13
which started with HTTP.
17
73330
2000
都是以HTTP開頭命名的
01:15
I wrote the code and put it out there.
18
75330
2000
我完成了代碼並發佈出來。
01:17
Why did I do it?
19
77330
2000
我為什麼要這麼做?
01:19
Well, it was basically frustration.
20
79330
2000
這是一個充滿挫敗感的過程
01:21
I was frustrated -- I was working as a software engineer
21
81330
4000
我感到很挫敗 - 因為我作為一個軟體工程師
01:25
in this huge, very exciting lab,
22
85330
2000
在這個令人興奮的超大實驗室中工作
01:27
lots of people coming from all over the world.
23
87330
2000
很多人從世界各地來到這裡
01:29
They brought all sorts of different computers with them.
24
89330
3000
他們的電腦各不相同
01:32
They had all sorts of different data formats,
25
92330
3000
資料格式各不相同
01:35
all sorts, all kinds of documentation systems.
26
95330
2000
檔案系統各不相同
01:37
So that, in all that diversity,
27
97330
3000
所以,這其中有很大的差異性
01:40
if I wanted to figure out how to build something
28
100330
2000
如果我想建立一點點東西
01:42
out of a bit of this and a bit of this,
29
102330
2000
在這些差異性很大的電腦上
01:44
everything I looked into, I had to connect to some new machine,
30
104330
4000
每一項我找到的資料,我不得不連接到一些新的機器
01:48
I had to learn to run some new program,
31
108330
2000
運行一些新的程式
01:50
I would find the information I wanted in some new data format.
32
110330
5000
以便我能在新的資料格式中找到我需要的資訊
01:55
And these were all incompatible.
33
115330
2000
而這些都是不相容的
01:57
It was just very frustrating.
34
117330
2000
這非常令人沮喪
01:59
The frustration was all this unlocked potential.
35
119330
2000
這種挫敗感卻正顯示出這個專案的潛力所在
02:01
In fact, on all these discs there were documents.
36
121330
3000
事實上,過去這些磁片裡全都是檔案
02:04
So if you just imagined them all
37
124330
3000
所以如果你僅僅把他們
02:07
being part of some big, virtual documentation system in the sky,
38
127330
5000
想像成天空中某些大型虛擬檔案系統的一部分
02:12
say on the Internet,
39
132330
2000
比如在網際網路上
02:14
then life would be so much easier.
40
134330
2000
生活就會簡單得多
02:16
Well, once you've had an idea like that it kind of gets under your skin
41
136330
4000
這樣,一旦你有了這樣的想法
02:20
and even if people don't read your memo --
42
140330
2000
即使人們並沒有讀到你的備忘錄
02:22
actually he did, it was found after he died, his copy.
43
142330
3000
事實上他讀到了,因為在他死後,在他的備份草稿中
02:25
He had written, "Vague, but exciting," in pencil, in the corner.
44
145330
3000
他用鉛筆在角落寫到“模糊,但是令人興奮”。
02:28
(Laughter)
45
148330
2000
(笑聲)
02:30
But in general it was difficult -- it was really difficult to explain
46
150330
4000
但一般情況下,很難有這樣的想法 – 的確很難解釋
02:34
what the web was like.
47
154330
2000
網路是什麼樣的
02:36
It's difficult to explain to people now that it was difficult then.
48
156330
2000
現在都很難向人們解釋,更別提當初了
02:38
But then -- OK, when TED started, there was no web
49
158330
3000
但是,當 TED 開始時,那時沒有網路
02:41
so things like "click" didn't have the same meaning.
50
161330
3000
所以像“點選”這樣的事情含義是不同的
02:44
I can show somebody a piece of hypertext,
51
164330
2000
我現在可以向某人展示一大堆超連結
02:46
a page which has got links,
52
166330
2000
某個包含連結的網頁
02:48
and we click on the link and bing -- there'll be another hypertext page.
53
168330
4000
我們點選一個連結,然後叮 -- 就會轉到另一個超連結的頁面
02:52
Not impressive.
54
172330
2000
沒什麼令人印象深刻的
02:54
You know, we've seen that -- we've got things on hypertext on CD-ROMs.
55
174330
3000
我們已經見到,通過超連結找到CD-ROMs中的內容
02:57
What was difficult was to get them to imagine:
56
177330
3000
困難的是把它們想像出來
03:00
so, imagine that that link could have gone
57
180330
4000
所以,想像那個連結可以到
03:04
to virtually any document you could imagine.
58
184330
2000
任何實際的你能想像得到的文件
03:07
Alright, that is the leap that was very difficult for people to make.
59
187330
4000
好的,這個跳躍對於人們是很難做到的
03:11
Well, some people did.
60
191330
2000
然而,一些人做到了
03:13
So yeah, it was difficult to explain, but there was a grassroots movement.
61
193330
3000
儘管很難解釋,但是這是一場草根運動
03:17
And that is what has made it most fun.
62
197330
4000
這正是使它好玩的地方
03:21
That has been the most exciting thing,
63
201330
2000
也是最令人激動人心的事情
03:23
not the technology, not the things people have done with it,
64
203330
2000
不是技術,不是人們用它所做的東西
03:25
but actually the community, the spirit of all these people
65
205330
2000
而是實際的交流,所有這些人的思想彙聚
03:27
getting together, sending the emails.
66
207330
2000
在一起,發送電子郵件
03:29
That's what it was like then.
67
209330
2000
這是那時的情況
03:31
Do you know what? It's funny, but right now it's kind of like that again.
68
211330
3000
你知道嗎?有趣的是,現在跟那時候又有點像了
03:34
I asked everybody, more or less, to put their documents --
69
214330
2000
我問每一個人,他們或多或少都發佈過文檔
03:36
I said, "Could you put your documents on this web thing?"
70
216330
3000
我說“你能把你的文檔放到網路上嗎?”
03:39
And you did.
71
219330
3000
然後,你做了
03:42
Thanks.
72
222330
1000
謝謝
03:43
It's been a blast, hasn't it?
73
223330
2000
這已經是一種風潮,不是嗎?
03:45
I mean, it has been quite interesting
74
225330
2000
我的意思是,它已經非常有趣
03:47
because we've found out that the things that happen with the web
75
227330
2000
因為我們發現,網路上發生的事情似乎
03:49
really sort of blow us away.
76
229330
2000
已經把我們吹到了一邊
03:51
They're much more than we'd originally imagined
77
231330
2000
現在它的功能得比我們想像的還多
03:53
when we put together the little, initial website
78
233330
2000
最初的設計只是想把檔案湊在一起
03:55
that we started off with.
79
235330
2000
在我們最初開始使用網路時
03:57
Now, I want you to put your data on the web.
80
237330
3000
現在我想讓你把你的資料放在網上
04:00
Turns out that there is still huge unlocked potential.
81
240330
4000
原來這還是有許多未釋放的潛力
04:04
There is still a huge frustration
82
244330
2000
也有很大的挫敗感
04:06
that people have because we haven't got data on the web as data.
83
246330
4000
因為我們從網上得到的資料不是我們想要的資料
04:10
What do you mean, "data"? What's the difference -- documents, data?
84
250330
2000
你說的數據是什麼?數據和文件之間有什麼區別?
04:12
Well, documents you read, OK?
85
252330
3000
文件檔是你閱讀的東西
04:15
More or less, you read them, you can follow links from them, and that's it.
86
255330
3000
或多或少,你都讀過,你可以追蹤他們的連結,就是這樣
04:18
Data -- you can do all kinds of stuff with a computer.
87
258330
2000
數據—你可以通過一台電腦使用各種資料
04:20
Who was here or has otherwise seen Hans Rosling's talk?
88
260330
6000
誰在這裡或者其他地方聽過漢斯羅素令的演講?
04:26
One of the great -- yes a lot of people have seen it --
89
266330
4000
一個偉大的 – 很多人已經看過了 –
04:30
one of the great TED Talks.
90
270330
2000
一個偉大的TED演講
04:32
Hans put up this presentation
91
272330
2000
漢斯在他的演說中
04:34
in which he showed, for various different countries, in various different colors --
92
274330
5000
使用不同的顏色表示不同的國家
04:39
he showed income levels on one axis
93
279330
3000
他在一個軸上顯示收入水準
04:42
and he showed infant mortality, and he shot this thing animated through time.
94
282330
3000
同時他用動畫按年份顯示嬰兒死亡率
04:45
So, he'd taken this data and made a presentation
95
285330
4000
他使用這些資料完成了一場演講,
04:49
which just shattered a lot of myths that people had
96
289330
3000
這個演講打破了很多人
04:52
about the economics in the developing world.
97
292330
4000
對發展中國家經濟的神話
04:56
He put up a slide a little bit like this.
98
296330
2000
他展示了一個類似的幻燈片
04:58
It had underground all the data
99
298330
2000
數據都被埋在地下
05:00
OK, data is brown and boxy and boring,
100
300330
3000
對,資料是這些棕色的、無趣的四方盒子
05:03
and that's how we think of it, isn't it?
101
303330
2000
我們就是這樣看待資料的,不是嗎?
05:05
Because data you can't naturally use by itself
102
305330
3000
因為,你不能漫無目的地使用資料
05:08
But in fact, data drives a huge amount of what happens in our lives
103
308330
4000
但事實上,資料驅動了我們的生活
05:12
and it happens because somebody takes that data and does something with it.
104
312330
3000
因為某些人使用了資料並且做了些事情
05:15
In this case, Hans had put the data together
105
315330
2000
在這個例子中,漢斯將資料放到了一起
05:17
he had found from all kinds of United Nations websites and things.
106
317330
5000
漢斯在聯合國網站找到各種資料和事物
05:22
He had put it together,
107
322330
2000
他把資料放到了一起
05:24
combined it into something more interesting than the original pieces
108
324330
3000
將它們組合起來使之比原始資料有趣得多
05:27
and then he'd put it into this software,
109
327330
5000
然後把資料放到這個軟體中
05:32
which I think his son developed, originally,
110
332330
2000
這個軟體好像原本是他兒子開發的
05:34
and produces this wonderful presentation.
111
334330
3000
最終他做出了這個美妙的簡報
05:37
And Hans made a point
112
337330
2000
最後漢斯說道
05:39
of saying, "Look, it's really important to have a lot of data."
113
339330
4000
“瞧,有大量的資料是非常重要的”
05:43
And I was happy to see that at the party last night
114
343330
3000
我高興地看到在昨天的晚會上
05:46
that he was still saying, very forcibly, "It's really important to have a lot of data."
115
346330
4000
他仍然強烈地表示“有大量資料是非常重要的”
05:50
So I want us now to think about
116
350330
2000
現在我想讓大家想的是
05:52
not just two pieces of data being connected, or six like he did,
117
352330
4000
不僅僅是兩條資料間的連接,或者像他所說的那樣六條資料
05:56
but I want to think about a world where everybody has put data on the web
118
356330
5000
而是這個世界上任何人
06:01
and so virtually everything you can imagine is on the web
119
361330
2000
都把資料和可以虛擬化的一切內容放到網路上
06:03
and then calling that linked data.
120
363330
2000
然後把它們稱為關聯資料
06:05
The technology is linked data, and it's extremely simple.
121
365330
2000
這個技術就是關聯資料,它是極其簡單的
06:07
If you want to put something on the web there are three rules:
122
367330
4000
如果你想把什麼東西放在網路,有三條規則
06:11
first thing is that those HTTP names --
123
371330
3000
第一條規則是,需要有HTTP的名字
06:14
those things that start with "http:" --
124
374330
2000
那些東西要以http:開頭
06:16
we're using them not just for documents now,
125
376330
4000
我們現在不僅對文件檔這樣用
06:20
we're using them for things that the documents are about.
126
380330
2000
對文件檔描述的事物也這樣用
06:22
We're using them for people, we're using them for places,
127
382330
2000
我們對人物、地點
06:24
we're using them for your products, we're using them for events.
128
384330
4000
產品,事件等都這樣用
06:28
All kinds of conceptual things, they have names now that start with HTTP.
129
388330
4000
所有概念化的東西現在都以HTTP開頭命名
06:32
Second rule, if I take one of these HTTP names and I look it up
130
392330
5000
第二條規則,如果我有一個HTTP名稱,然後我根據它在網路上進行查找
06:37
and I do the web thing with it and I fetch the data
131
397330
2000
我可以從網上獲取資料
06:39
using the HTTP protocol from the web,
132
399330
2000
通過HTTP協議
06:41
I will get back some data in a standard format
133
401330
3000
我將得到一些標準的格式化資料
06:44
which is kind of useful data that somebody might like to know
134
404330
5000
這些有用資料或許是關於人們希望瞭解
06:49
about that thing, about that event.
135
409330
2000
某個事物或者事件的
06:51
Who's at the event? Whatever it is about that person,
136
411330
2000
事件的主人公是誰?關於這個人的所有資訊
06:53
where they were born, things like that.
137
413330
2000
他們什麼時候出生的,等等
06:55
So the second rule is I get important information back.
138
415330
2000
所以,第二條規則就是我通過HTTP獲得了重要的資料
06:57
Third rule is that when I get back that information
139
417330
4000
第三條規則是,我得到的資訊
07:01
it's not just got somebody's height and weight and when they were born,
140
421330
3000
不僅僅是某人的身高、體重和出生日期
07:04
it's got relationships.
141
424330
2000
還有資料間的關係
07:06
Data is relationships.
142
426330
2000
數據是有關聯的
07:08
Interestingly, data is relationships.
143
428330
2000
很有趣,數據是有關聯的
07:10
This person was born in Berlin; Berlin is in Germany.
144
430330
4000
這個人出生在柏林,柏林在德國
07:14
And when it has relationships, whenever it expresses a relationship
145
434330
3000
當數據是有關聯時,無論何時它表現出這種關聯
07:17
then the other thing that it's related to
146
437330
3000
另一件與之有關聯的事物
07:20
is given one of those names that starts HTTP.
147
440330
4000
就以HTTP開頭命名
07:24
So, I can go ahead and look that thing up.
148
444330
2000
所以,我可以直接去找那件事
07:26
So I look up a person -- I can look up then the city where they were born; then
149
446330
3000
比如,我查一個人 -- 我查他出生的城市
07:29
I can look up the region it's in, and the town it's in,
150
449330
3000
這個城市的所在區域,城市的城鎮
07:32
and the population of it, and so on.
151
452330
3000
人口等等
07:35
So I can browse this stuff.
152
455330
2000
這樣我就能流覽這些資訊
07:37
So that's it, really.
153
457330
2000
真的,就是這樣
07:39
That is linked data.
154
459330
2000
這就是關聯資料
07:41
I wrote an article entitled "Linked Data" a couple of years ago
155
461330
3000
我多年前在一篇文章中給它命名為“關聯資料”
07:44
and soon after that, things started to happen.
156
464330
4000
之後不久,有些事開始發生了
07:48
The idea of linked data is that we get lots and lots and lots
157
468330
4000
關聯資料的想法就像我們得到了很多很多
07:52
of these boxes that Hans had,
158
472330
2000
就像漢斯的那些盒子
07:54
and we get lots and lots and lots of things sprouting.
159
474330
2000
很多很多的事物開始發芽生長
07:56
It's not just a whole lot of other plants.
160
476330
3000
它帶給我們相當多的植物
07:59
It's not just a root supplying a plant,
161
479330
2000
不僅僅是一個根供給一個植物
08:01
but for each of those plants, whatever it is --
162
481330
3000
對於這的每一個植物,無論它是什麼
08:04
a presentation, an analysis, somebody's looking for patterns in the data --
163
484330
3000
一場演說,一個分析,某些人查看數據資料的樣式
08:07
they get to look at all the data
164
487330
3000
它們都著眼於所有的數據
08:10
and they get it connected together,
165
490330
2000
並且它們把數據聯繫起來
08:12
and the really important thing about data
166
492330
2000
關於數據真正重要的是
08:14
is the more things you have to connect together, the more powerful it is.
167
494330
2000
你把很多東西聯繫起來,數據就更加有價值
08:16
So, linked data.
168
496330
2000
所以,關聯資料
08:18
The meme went out there.
169
498330
2000
由此而來
08:20
And, pretty soon Chris Bizer at the Freie Universitat in Berlin
170
500330
4000
很快,來自柏林自由大學的克里斯拜澤
08:24
who was one of the first people to put interesting things up,
171
504330
2000
做為第一人把有趣的東西放在一起
08:26
he noticed that Wikipedia --
172
506330
2000
他注意到維琪百科
08:28
you know Wikipedia, the online encyclopedia
173
508330
3000
一部線上百科全書
08:31
with lots and lots of interesting documents in it.
174
511330
2000
有很多有趣的文檔
08:33
Well, in those documents, there are little squares, little boxes.
175
513330
4000
在這些文檔中,有些小方格子和小盒子
08:37
And in most information boxes, there's data.
176
517330
3000
在多數的資訊方格中,就有資料
08:40
So he wrote a program to take the data, extract it from Wikipedia,
177
520330
4000
他寫了 一個程式將資料從維琪百科中提取出來
08:44
and put it into a blob of linked data
178
524330
2000
然後將它放到關聯資料的組別中
08:46
on the web, which he called dbpedia.
179
526330
3000
在網路上,被他稱之為dbpedia(資料庫百科)
08:49
Dbpedia is represented by the blue blob in the middle of this slide
180
529330
4000
這張幻燈片中部藍色的blob表示Dbpedia
08:53
and if you actually go and look up Berlin,
181
533330
2000
如果你去查詢柏林
08:55
you'll find that there are other blobs of data
182
535330
2000
你會發現還有其他的資料
08:57
which also have stuff about Berlin, and they're linked together.
183
537330
3000
也有柏林的資訊,它們被聯繫到了一起
09:00
So if you pull the data from dbpedia about Berlin,
184
540330
3000
所以,如果你要從dbpedia中摘出關於柏林的資料
09:03
you'll end up pulling up these other things as well.
185
543330
2000
你也最終會摘出其他內容
09:05
And the exciting thing is it's starting to grow.
186
545330
3000
令人興奮的事情是它正在成長
09:08
This is just the grassroots stuff again, OK?
187
548330
2000
這又是一個草根做的事情,對嗎?
09:10
Let's think about data for a bit.
188
550330
3000
讓我們多想想資料
09:13
Data comes in fact in lots and lots of different forms.
189
553330
3000
資料實際上來源於很多很多不同的形式
09:16
Think of the diversity of the web. It's a really important thing
190
556330
3000
想想網路的多樣性,很重要的一點
09:19
that the web allows you to put all kinds of data up there.
191
559330
3000
網路允許你將各式各樣的資料放在一起
09:22
So it is with data. I could talk about all kinds of data.
192
562330
2000
說到資料,我能說出各種各樣的數據
09:25
We could talk about government data, enterprise data is really important,
193
565330
4000
我們可以說政府資料,企業資料真的很重要
09:29
there's scientific data, there's personal data,
194
569330
3000
還有科學資料,個人資料
09:32
there's weather data, there's data about events,
195
572330
2000
天氣資料,關於事件的資料
09:34
there's data about talks, and there's news and there's all kinds of stuff.
196
574330
4000
關於談話的資料,還有新聞和各種類似的東西
09:38
I'm just going to mention a few of them
197
578330
3000
我只提到了一小部分資料
09:41
so that you get the idea of the diversity of it,
198
581330
2000
你們就可以看出其多樣性
09:43
so that you also see how much unlocked potential.
199
583330
4000
所以你可以看到其中的潛力
09:47
Let's start with government data.
200
587330
2000
讓我們從政府資料說起
09:49
Barack Obama said in a speech,
201
589330
2000
美國總統巴拉克歐巴馬在一場演講上表示
09:51
that he -- American government data would be available on the Internet
202
591330
5000
美國政府的資料將在互聯網上被應用
09:56
in accessible formats.
203
596330
2000
以一種可訪問的形式
09:58
And I hope that they will put it up as linked data.
204
598330
2000
而我希望他們會將這些訊息以關聯資料放上去
10:00
That's important. Why is it important?
205
600330
2000
這非常重要,難道不是嗎?
10:02
Not just for transparency, yeah transparency in government is important,
206
602330
3000
不僅僅是為了透明性,透明性對政府很重要
10:05
but that data -- this is the data from all the government departments
207
605330
3000
尤其是從政府部門出來的資料更重要
10:08
Think about how much of that data is about how life is lived in America.
208
608330
5000
想想有多少關係到在美國如何生活的資料
10:13
It's actual useful. It's got value.
209
613330
2000
它的確很有用,很有價值
10:15
I can use it in my company.
210
615330
2000
我可以把它用在我的公司
10:17
I could use it as a kid to do my homework.
211
617330
2000
我可以像個小孩子般把它用在我的家庭作業中
10:19
So we're talking about making the place, making the world run better
212
619330
3000
所以,我們談論的是讓世界變得更好
10:22
by making this data available.
213
622330
2000
通過將這些資料變得更有用
10:24
In fact if you're responsible -- if you know about some data
214
624330
4000
事實上,如果你們在負責 - 如果你知道一些資料
10:28
in a government department, often you find that
215
628330
2000
關於政府的, 你經常會發現
10:30
these people, they're very tempted to keep it --
216
630330
3000
有些人,他們會被這些資料所吸引
10:33
Hans calls it database hugging.
217
633330
3000
漢斯稱之為資料庫擁抱
10:36
You hug your database, you don't want to let it go
218
636330
2000
你擁抱你的資料庫,你不會放它走
10:38
until you've made a beautiful website for it.
219
638330
2000
直到你為它建立了一個漂亮的網站
10:40
Well, I'd like to suggest that rather --
220
640330
2000
嗯,我想建議的是,除了建一個漂亮的網站
10:42
yes, make a beautiful website,
221
642330
2000
是的,建一個漂亮的網站
10:44
who am I to say don't make a beautiful website?
222
644330
2000
我沒說不要建一個漂亮的網站
10:46
Make a beautiful website, but first
223
646330
3000
建一個漂亮的網站,但是首先
10:49
give us the unadulterated data,
224
649330
3000
要給我們純粹的數據
10:52
we want the data.
225
652330
2000
我們要的是數據
10:54
We want unadulterated data.
226
654330
2000
我們要純粹的數據
10:56
OK, we have to ask for raw data now.
227
656330
3000
好,現在我們不得不要求原始數據了
10:59
And I'm going to ask you to practice that, OK?
228
659330
2000
我要請你們練習一下,好嗎?
11:01
Can you say "raw"?
229
661330
1000
請說“原始”
11:02
Audience: Raw.
230
662330
1000
原始
11:03
Tim Berners-Lee: Can you say "data"?
231
663330
1000
請說“數據”
11:04
Audience: Data.
232
664330
1000
數據
11:05
TBL: Can you say "now"?
233
665330
1000
請說‘現在“
11:06
Audience: Now!
234
666330
1000
現在
11:07
TBL: Alright, "raw data now"!
235
667330
2000
好,原始數據現在!
11:09
Audience: Raw data now!
236
669330
2000
原始數據現在!
11:11
Practice that. It's important because you have no idea the number of excuses
237
671330
4000
這樣練習是非常重要的
11:15
people come up with to hang onto their data
238
675330
2000
因為你不知道那些擁有數據的人
11:17
and not give it to you, even though you've paid for it as a taxpayer.
239
677330
4000
有多少理由拒絕將數據給你,甚至你作為一個納稅人是為此付了錢的
11:21
And it's not just America. It's all over the world.
240
681330
2000
這不僅僅存在於美國,全世界都一樣
11:23
And it's not just governments, of course -- it's enterprises as well.
241
683330
3000
也不僅僅在政府,當然也存在於企業。
11:26
So I'm just going to mention a few other thoughts on data.
242
686330
3000
我還想再談談關於數據的其他想法
11:29
Here we are at TED, and all the time we are very conscious
243
689330
5000
在TED,我們一直關注於
11:34
of the huge challenges that human society has right now --
244
694330
5000
人類社會目前所面臨的巨大問題
11:39
curing cancer, understanding the brain for Alzheimer's,
245
699330
3000
癌症治療,瞭解阿爾茨海默病
11:42
understanding the economy to make it a little bit more stable,
246
702330
3000
瞭解經濟好讓它穩定點
11:45
understanding how the world works.
247
705330
2000
瞭解世界是如何運轉的
11:47
The people who are going to solve those -- the scientists --
248
707330
2000
那些致力於解決這些問題的科學家
11:49
they have half-formed ideas in their head,
249
709330
2000
他們腦海中有些還不成熟的想法
11:51
they try to communicate those over the web.
250
711330
3000
他們試圖在網路上與他人交流
11:54
But a lot of the state of knowledge of the human race at the moment
251
714330
3000
但是現狀是很多人類的知識
11:57
is on databases, often sitting in their computers,
252
717330
3000
現在都在資料庫中,放在他們的電腦裡
12:00
and actually, currently not shared.
253
720330
3000
現在實際上也沒被共用
12:03
In fact, I'll just go into one area --
254
723330
3000
事實上,我就從一個方面來說明 -
12:06
if you're looking at Alzheimer's, for example,
255
726330
2000
如果你在研究阿爾茨海默病,以此為例,
12:08
drug discovery -- there is a whole lot of linked data which is just coming out
256
728330
3000
以藥物發現為例 -- 這個領域具有相當多的剛剛出現的關聯資料
12:11
because scientists in that field realize
257
731330
2000
因為這個領域的科學家們意識到
12:13
this is a great way of getting out of those silos,
258
733330
3000
關聯資料是一種很好的方法,可以説明他們擺脫資料孤島
12:16
because they had their genomics data in one database
259
736330
4000
因為他們在一個資料庫中建立了基因圖組
12:20
in one building, and they had their protein data in another.
260
740330
3000
他們在另一個資料庫中建立蛋白質數據
12:23
Now, they are sticking it onto -- linked data --
261
743330
3000
現在,他們將基因圖組和蛋白質數據形成了關聯資料
12:26
and now they can ask the sort of question, that you probably wouldn't ask,
262
746330
3000
然後他們現在可以問一些特定的問題,也許你不會問
12:29
I wouldn't ask -- they would.
263
749330
2000
我也不會問,但是他們會
12:31
What proteins are involved in signal transduction
264
751330
2000
哪些蛋白質參與信號轉導
12:33
and also related to pyramidal neurons?
265
753330
2000
並且也和錐體神經元相關?
12:35
Well, you take that mouthful and you put it into Google.
266
755330
3000
當你將這個問題放到Google上搜索
12:38
Of course, there's no page on the web which has answered that question
267
758330
3000
自然沒有回答結果的頁面
12:41
because nobody has asked that question before.
268
761330
2000
因為之前沒有人問過這樣的問題
12:43
You get 223,000 hits --
269
763330
2000
雖然你得到了223,000個結果
12:45
no results you can use.
270
765330
2000
但是沒有一個你用得上
12:47
You ask the linked data -- which they've now put together --
271
767330
3000
當你查詢關聯資料 -- 現在他們已經被放到了一起
12:50
32 hits, each of which is a protein which has those properties
272
770330
4000
命中32個結果,每一個結果都是與特性相關的蛋白質
12:54
and you can look at.
273
774330
2000
並且你可以查看
12:56
The power of being able to ask those questions, as a scientist --
274
776330
3000
做為一個科學家, 詢問那些問題的能力
12:59
questions which actually bridge across different disciplines --
275
779330
2000
那些問題基本上都是跨學科的問題
13:01
is really a complete sea change.
276
781330
3000
是非常徹底的重大改變
13:04
It's very very important.
277
784330
2000
這是非常非常重要的
13:06
Scientists are totally stymied at the moment --
278
786330
2000
科學家們那時完全陷入了困境
13:08
the power of the data that other scientists have collected is locked up
279
788330
5000
因為其他科學家搜集的資料,其價值被鎖起來了
13:13
and we need to get it unlocked so we can tackle those huge problems.
280
793330
3000
我們需要將之解鎖,以便處理那些重大問題
13:16
Now if I go on like this, you'll think that all the data comes from huge institutions
281
796330
4000
現在,如果我繼續像這樣講,你們會覺得這些數據都是從大機構得來的
13:20
and has nothing to do with you.
282
800330
3000
和你沒有一點關係
13:23
But, that's not true.
283
803330
2000
但是,這種想法並不對
13:25
In fact, data is about our lives.
284
805330
2000
事實上,數據關乎我們的生活
13:27
You just -- you log on to your social networking site,
285
807330
3000
你剛剛登陸了你的社交網站
13:30
your favorite one, you say, "This is my friend."
286
810330
2000
你最喜歡的一個,你說“這是我朋友”
13:32
Bing! Relationship. Data.
287
812330
3000
叮!關聯,資料
13:35
You say, "This photograph, it's about -- it depicts this person. "
288
815330
3000
你說“這副照片,是這個人的”
13:38
Bing! That's data. Data, data, data.
289
818330
3000
叮!那是數據。數據,數據,數據
13:41
Every time you do things on the social networking site,
290
821330
2000
每次你在社交網站上做的事
13:43
the social networking site is taking data and using it -- re-purposing it --
291
823330
4000
社交網站就獲取資料並利用它
13:47
and using it to make other people's lives more interesting on the site.
292
827330
4000
重新設計資料的目的是為了讓這個網站的其他人過得更有趣
13:51
But, when you go to another linked data site --
293
831330
2000
但是,當你上另一個關聯資料網站
13:53
and let's say this is one about travel,
294
833330
3000
假設是一個旅遊網站
13:56
and you say, "I want to send this photo to all the people in that group,"
295
836330
3000
你說“我想把這張照片發給那個組裡的所有人”
13:59
you can't get over the walls.
296
839330
2000
但你卻無法翻過這些牆
14:01
The Economist wrote an article about it, and lots of people have blogged about it --
297
841330
2000
經濟學家曾經寫了一篇關於這個問題的文章,並且許多人也發了相關部落格表示出
14:03
tremendous frustration.
298
843330
1000
巨大的挫敗感
14:04
The way to break down the silos is to get inter-operability
299
844330
2000
打破孤島的方式是實現交互操作
14:06
between social networking sites.
300
846330
2000
在這些社交網站之間
14:08
We need to do that with linked data.
301
848330
2000
我們需要通過關聯資料做這件事
14:10
One last type of data I'll talk about, maybe it's the most exciting.
302
850330
3000
最後一種我將要談到的資料,也許是最令人激動的
14:13
Before I came down here, I looked it up on OpenStreetMap
303
853330
3000
在我來這之前,我通過OpenStreetMap查找了一下
14:16
The OpenStreetMap's a map, but it's also a Wiki.
304
856330
2000
OpenStreetMap是一個地圖,但同樣也是一個維琪
14:18
Zoom in and that square thing is a theater -- which we're in right now --
305
858330
3000
放大這個方塊,這是一個劇場 -- 就是我們現在所處的地方 --
14:21
The Terrace Theater. It didn't have a name on it.
306
861330
2000
特羅斯劇場(位於加州長灘市)。它現在還沒有被標上名字
14:23
So I could go into edit mode, I could select the theater,
307
863330
2000
所以我可以到編輯模式,選擇劇場
14:25
I could add down at the bottom the name, and I could save it back.
308
865330
5000
然後在底下填上名字,然後保存它
14:30
And now if you go back to the OpenStreetMap. org,
309
870330
3000
現在你再去訪問OpenStreetMap.org
14:33
and you find this place, you will find that The Terrace Theater has got a name.
310
873330
3000
你找到這個地方,你會發現它現在有名字了
14:36
I did that. Me!
311
876330
2000
是我做的,是我!
14:38
I did that to the map. I just did that!
312
878330
2000
我在地圖上標的,剛剛做的
14:40
I put that up on there. Hey, you know what?
313
880330
2000
我把它標注在那裡。嗨,你知道嗎
14:42
If I -- that street map is all about everybody doing their bit
314
882330
3000
如果除了我,每個人都在這個地圖上標注一點
14:45
and it creates an incredible resource
315
885330
3000
將會產生難以置信的資源
14:48
because everybody else does theirs.
316
888330
3000
因為其他每個人都做了
14:51
And that is what linked data is all about.
317
891330
3000
這就是關聯資料
14:54
It's about people doing their bit
318
894330
3000
每個人都做一點
14:57
to produce a little bit, and it all connecting.
319
897330
3000
生成一點內容,然後把它們連接起來
15:00
That's how linked data works.
320
900330
3000
關聯資料就是這樣工作的
15:03
You do your bit. Everybody else does theirs.
321
903330
4000
你做一些,每個人都做一些
15:07
You may not have lots of data which you have yourself to put on there
322
907330
4000
也許你的資料在關聯資料中只是很小一部分
15:11
but you know to demand it.
323
911330
3000
但你知道你需要它
15:14
And we've practiced that.
324
914330
2000
我們已經在實踐了
15:16
So, linked data -- it's huge.
325
916330
4000
關聯資料 -- 是非常巨大的
15:20
I've only told you a very small number of things
326
920330
3000
我只能告訴你很小一部分
15:23
There are data in every aspect of our lives,
327
923330
2000
我們生活的每個方面
15:25
every aspect of work and pleasure,
328
925330
3000
工作和快樂的每個方面
15:28
and it's not just about the number of places where data comes,
329
928330
3000
不管是資料出處的有多少
15:31
it's about connecting it together.
330
931330
3000
關鍵是把它聯繫起來
15:34
And when you connect data together, you get power
331
934330
3000
當你把數據聯繫起來
15:37
in a way that doesn't happen just with the web, with documents.
332
937330
3000
你能從這樣的方式中獲取在網路或文檔中無法獲取的力量
15:40
You get this really huge power out of it.
333
940330
4000
你能從中得到巨大的力量
15:44
So, we're at the stage now
334
944330
3000
現在我們處在一個階段
15:47
where we have to do this -- the people who think it's a great idea.
335
947330
4000
我們必須要做的階段 -- 那些認為這是個偉大想法的人們
15:51
And all the people -- and I think there's a lot of people at TED who do things because --
336
951330
3000
而且所有人 -- 我想在 TED 的大部分人
15:54
even though there's not an immediate return on the investment
337
954330
2000
他們做事情並不是為了要使投資得到立即的回報
15:56
because it will only really pay off when everybody else has done it --
338
956330
3000
因為只有當每個人都這麼做了才會有所回報
15:59
they'll do it because they're the sort of person who just does things
339
959330
4000
他們將會這麼做,因為他們是那類人
16:03
which would be good if everybody else did them.
340
963330
3000
那類希望每個人都參與進來而讓事情變好的人
16:06
OK, so it's called linked data.
341
966330
2000
OK,這就是關聯資料
16:08
I want you to make it.
342
968330
2000
我希望你參與
16:10
I want you to demand it.
343
970330
2000
我希望你需要它
16:12
And I think it's an idea worth spreading.
344
972330
2000
我也認為這個想法值得宣揚
16:14
Thanks.
345
974330
1000
謝謝
16:15
(Applause)
346
975330
3000
(掌聲)
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。