请双击下面的英文字幕来播放视频。
翻译人员: 周 宇轩
校对人员: dahong zhang
00:16
If I can leave you with one big idea today,
0
16260
2000
如果今天我可以留给你们一个理念
00:18
it's that the whole of the data
1
18260
2000
那就是我们消费的所有的数据所富含的信息大于各部分相加的总和,
00:20
in which we consume
2
20260
2000
那就是我们消费的所有的数据所富含的信息大于各部分相加的总和,
00:22
is greater that the sum of the parts,
3
22260
2000
那就是我们消费的所有的数据所富含的信息大于各部分相加的总和,
00:24
and instead of thinking about information overload,
4
24260
3000
并且,与其思考信息爆炸
00:27
what I'd like you to think about is how
5
27260
2000
我希望你想一想怎样使用
00:29
we can use information so that patterns pop
6
29260
3000
这些信息,显示其中的规律
00:32
and we can see trends that would otherwise be invisible.
7
32260
3000
使得我们能看见本来不可见的趋势,
00:35
So what we're looking at right here is a typical mortality chart
8
35260
3000
那么我们在这里看到的是一个典型的死亡率图表
00:38
organized by age.
9
38260
2000
按照年龄分组
00:40
This tool that I'm using here is a little experiment.
10
40260
2000
我在这里使用的工具是一个小实验
00:42
It's called Pivot, and with Pivot what I can do
11
42260
3000
它称为Pivot,我能用Pivot
00:45
is I can choose to filter in one particular cause of deaths -- say, accidents.
12
45260
4000
选择过滤特殊死亡原因,譬如事故
00:49
And, right away, I see there's a different pattern that emerges.
13
49260
3000
立刻,我看到一个不同的模式展现出来
00:52
This is because, in the mid-area here,
14
52260
2000
这是因为,在中间这里
00:54
people are at their most active,
15
54260
2000
人们在他们最活跃的年龄
00:56
and over here they're at their most frail.
16
56260
2000
而在这里他们也是最体弱多病的时候
00:58
We can step back out again
17
58260
2000
我们可以退回来
01:00
and then reorganize the data by cause of death,
18
60260
2000
根据死亡原因重组数据
01:02
seeing that circulatory diseases and cancer
19
62260
3000
我们看到循环系统疾病和癌症
01:05
are the usual suspects, but not for everyone.
20
65260
3000
是致死的主要病症,但这个规律并非适用于每个人
01:08
If we go ahead and we filter by age --
21
68260
3000
如果我们按照年龄过滤,
01:11
say 40 years or less --
22
71260
2000
譬如40岁以下
01:13
we see that accidents are actually
23
73260
2000
我们可以看到
01:15
the greatest cause that people have to be worried about.
24
75260
3000
意外事故变成了人们需要格外小心的杀手
01:18
And if you drill into that, it's especially the case for men.
25
78260
3000
如果你进一步挖掘,会发现这一条尤其针对男性适用
01:21
So you get the idea
26
81260
2000
好了,你大概明白这个工具的作用了
01:23
that viewing information, viewing data in this way,
27
83260
3000
通过这种方式查看信息,数据
01:26
is a lot like swimming
28
86260
2000
很像在
01:28
in a living information info-graphic.
29
88260
3000
鲜活的信息资料图片中遨游。
01:31
And if we can do this for raw data,
30
91260
2000
如果我们能够对原始数据这样做
01:33
why not do it for content as well?
31
93260
3000
为什么不也在内容上做呢?
01:36
So what we have right here
32
96260
2000
因此我们在这里展示
01:38
is the cover of every single Sports Illustrated
33
98260
3000
有史以来的
01:41
ever produced.
34
101260
2000
每一期体育画报的封面
01:43
It's all here; it's all on the web.
35
103260
2000
全部在这里,全部在网络上。
01:45
You can go back to your rooms and try this after my talk.
36
105260
3000
你可以在我演讲结束后回到你的房间试试看。
01:48
With Pivot, you can drill into a decade.
37
108260
3000
使用Pivot,你能够以十年为单位查看。
01:51
You can drill into a particular year.
38
111260
2000
你能够深入指定的某一年。
01:53
You can jump right into a specific issue.
39
113260
3000
你能直接进入一个某一期
01:56
So I'm looking at this; I see the athletes
40
116260
2000
比如我看到这个;我看见曾经出现在这期中的
01:58
that have appeared in this issue, the sports.
41
118260
2000
运动员,体育。
02:00
I'm a Lance Armstrong fan, so I'll go ahead and I'll click on that,
42
120260
3000
我是兰斯·阿姆斯特朗的粉丝,所以我继续点击
02:03
which reveals, for me, all the issues
43
123260
2000
它就给我展示了所有
02:05
in which Lance Armstrong's been a part of.
44
125260
2000
这只是兰斯·阿姆斯特朗所有问题中的一部分
02:07
(Applause)
45
127260
3000
(掌声欢呼)
02:10
Now, if I want to just kind of take a peek at these,
46
130260
3000
现在,如果我仅仅是想取样这些数据的高峰
02:13
I might think,
47
133260
2000
我会想,
02:15
"Well, what about taking a look at all of cycling?"
48
135260
2000
好吧,看看所有自行车运动员如何?
02:17
So I can step back, and expand on that.
49
137260
2000
因此,我可以退一步,并扩大这一点
02:19
And I see Greg LeMond now.
50
139260
2000
我现在看见了格雷格·莱蒙德
02:21
And so you get the idea that when you
51
141260
2000
因此你要明白
02:23
navigate over information this way --
52
143260
2000
当你用这种方式浏览信息时
02:25
going narrower, broader,
53
145260
2000
狭窄的,宽阔的,
02:27
backing in, backing out --
54
147260
2000
后退,反向,
02:29
you're not searching, you're not browsing.
55
149260
2000
你不是在搜寻,不是在浏览。
02:31
You're doing something that's actually a little bit different.
56
151260
2000
你做的事实际上有点不同。
02:33
It's in between, and we think it changes
57
153260
3000
介于两者之间,并且我们认为
02:36
the way information can be used.
58
156260
2000
这改变了信息的使用方式
02:38
So I want to extrapolate on this idea a bit
59
158260
2000
因此,我推断在这个想法上
02:40
with something that's a little bit crazy.
60
160260
2000
有些东西是有点疯狂。
02:42
What we're done here is we've taken every single Wikipedia page
61
162260
3000
我们在这儿做的是摘取每个维基百科的页面
02:45
and we reduced it down to a little summary.
62
165260
3000
然后压缩为一个小小的摘要
02:48
So the summary consists of just a little synopsis
63
168260
3000
摘要包含了简介
02:51
and an icon to indicate the topical area that it comes from.
64
171260
3000
一个图标显示它来自专业领域。
02:54
I'm only showing the top 500
65
174260
3000
我仅仅在这里展示前500个
02:57
most popular Wikipedia pages right here.
66
177260
2000
最受欢迎的维基百科页面
02:59
But even in this limited view,
67
179260
2000
但即使在这些有限的浏览中,
03:01
we can do a lot of things.
68
181260
2000
我们依然可以做很多事情。
03:03
Right away, we get a sense of what are the topical domains
69
183260
2000
立刻,我们得知
03:05
that are most popular on Wikipedia.
70
185260
2000
维基百科上最流行的是什么。
03:07
I'm going to go ahead and select government.
71
187260
2000
我继续前进并选择政府。
03:09
Now, having selected government,
72
189260
3000
现在,通过选定后的政府,
03:12
I can now see that the Wikipedia categories
73
192260
2000
我可以看到在维基百科类别中
03:14
that most frequently correspond to that
74
194260
2000
最常对应的
03:16
are Time magazine People of the Year.
75
196260
3000
是时代周刊年度风云人物
03:19
So this is really important because this is an insight
76
199260
3000
这是很重要的 因为这是一项
03:22
that was not contained within any one Wikipedia page.
77
202260
3000
不属于任何一个维基网页所载述的内容。
03:25
It's only possible to see that insight
78
205260
2000
只有你退后几步俯瞰全局
03:27
when you step back and look at all of them.
79
207260
3000
才有可能看的透彻
03:30
Looking at one of these particular summaries,
80
210260
2000
看看这些特殊摘要中的一种,
03:32
I can then drill into the concept of
81
212260
3000
随后我能深入
03:35
Time magazine Person of the Year,
82
215260
2000
时代杂志年度风云人物
03:37
bringing up all of them.
83
217260
2000
深入他们。
03:39
So looking at these people,
84
219260
2000
所以,看看这些人
03:41
I can see that the majority come from government;
85
221260
3000
我可以看到大多数来自政府。
03:45
some have come from natural sciences;
86
225260
3000
有一部分来自自然科学界。
03:49
some, fewer still, have come from business --
87
229260
3000
更少的部分来自商界。
03:53
there's my boss --
88
233260
2000
其中有我的老板。
03:55
and one has come from music.
89
235260
5000
一个来自音乐界。
04:00
And interestingly enough,
90
240260
2000
而有趣的是,
04:02
Bono is also a TED Prize winner.
91
242260
3000
波诺也是TED大奖得主。
04:05
So we can go, jump, and take a look at all the TED Prize winners.
92
245260
3000
因此我们能够继续,跳转,看看所有的TED大奖得主。
04:08
So you see, we're navigating the web for the first time
93
248260
3000
所以你看,这是我们第一次在网络上遨游
04:11
as if it's actually a web, not from page-to-page,
94
251260
3000
仿佛的确是一张网,不仅一页一页的。
04:14
but at a higher level of abstraction.
95
254260
2000
而且是在更高的抽象层次上的网。
04:16
And so I want to show you one other thing
96
256260
2000
所以我想告诉你另一件事
04:18
that may catch you a little bit by surprise.
97
258260
3000
可能会让你吃惊。
04:21
I'm just showing the New York Times website here.
98
261260
3000
我只是在这展示纽约时报网站。
04:24
So Pivot, this application --
99
264260
2000
Pivot,这个应用程序——
04:26
I don't want to call it a browser; it's really not a browser,
100
266260
2000
我不想称之为浏览器,它确实不仅是一个浏览器,
04:28
but you can view web pages with it --
101
268260
3000
你能用它浏览网页——
04:31
and we bring that zoomable technology
102
271260
2000
并且我们给每个像这样的网页引入了可缩放技术。
04:33
to every single web page like this.
103
273260
3000
并且我们给每个像这样的网页引入了可缩放技术。
04:36
So I can step back,
104
276260
3000
因此我可以退后,
04:39
pop right back into a specific section.
105
279260
2000
退后到特定的地方
04:41
Now the reason why this is important is because,
106
281260
2000
为什么这个是重要的是因为,
04:43
by virtue of just viewing web pages in this way,
107
283260
3000
由于通过这种方式浏览网页的好处,
04:46
I can look at my entire browsing history
108
286260
2000
我能用完全相同的方式
04:48
in the exact same way.
109
288260
2000
看到我的全部浏览历史。
04:50
So I can drill into what I've done
110
290260
2000
因此我能深入
04:52
over specific time frames.
111
292260
2000
具体时间段的具体事件。
04:54
Here, in fact, is the state
112
294260
2000
这里,事实上,
04:56
of all the demo that I just gave.
113
296260
2000
是我刚才所有演示的情况。
04:58
And I can sort of replay some stuff that I was looking at earlier today.
114
298260
3000
我可以在某种程度上重放我今天早些时候看到的东西。
05:01
And, if I want to step back and look at everything,
115
301260
3000
如果我想退后一步看所一切东西,
05:04
I can slice and dice my history,
116
304260
2000
我可以切割我的历史
05:06
perhaps by my search history --
117
306260
2000
也许是我的搜索历史。
05:08
here, I was doing some nepotistic searching,
118
308260
2000
这里,我做了一些相关搜索,
05:10
looking for Bing, over here for Live Labs Pivot.
119
310260
3000
搜寻Bing,在这里有关微软Live Labs的Pivot。
05:13
And from these, I can drill into the web page
120
313260
2000
从这些,我可以深入网页
05:15
and just launch them again.
121
315260
2000
仅仅重启他们。
05:17
It's one metaphor repurposed multiple times,
122
317260
3000
这是同样的信息,因不同目的被多次组合使用,
05:20
and in each case it makes the whole greater
123
320260
2000
每次重新组合,使得它比组合起来的整体所含信息更多。
05:22
than the sum of the parts with the data.
124
322260
2000
每次重新组合,使得它比组合起来的整体所含信息更多。
05:24
So right now, in this world,
125
324260
3000
现在,在这个世界上,
05:27
we think about data as being this curse.
126
327260
3000
我们谈到数据常常提到这个诅咒。
05:30
We talk about the curse of information overload.
127
330260
3000
我们谈论信息爆炸魔咒。
05:33
We talk about drowning in data.
128
333260
3000
我们谈论淹没在信息海洋中。
05:36
What if we can actually turn that upside down
129
336260
2000
假设我们能把这种观念颠覆
05:38
and turn the web upside down,
130
338260
2000
把网络上下颠覆,
05:40
so that instead of navigating from one thing to the next,
131
340260
3000
相对于单线信息相互链接的情况,
05:43
we get used to the habit of being able to go from many things to many things,
132
343260
3000
让我们开始习惯多样信息链接多样信息,
05:46
and then being able to see the patterns
133
346260
2000
然后看到除此方式外无法看到的,隐藏规律?
05:48
that were otherwise hidden?
134
348260
2000
然后看到除此方式外无法看到的,隐藏规律?
05:50
If we can do that, then instead of being trapped in data,
135
350260
5000
如果我们能做到这一点,而不是被困在数据中,
05:55
we might actually extract information.
136
355260
3000
我们才能真正的获取信息。
05:58
And, instead of dealing just with information,
137
358260
2000
并且,不仅仅是处理信息,
06:00
we can tease out knowledge.
138
360260
2000
我们还可以梳理知识。
06:02
And if we get the knowledge, then maybe even there's wisdom to be found.
139
362260
3000
如果我们获得知识,之后甚至可以发现智慧。
06:05
So with that, I thank you.
140
365260
2000
谢谢。
06:07
(Applause)
141
367260
8000
(掌声欢呼)
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。