Gary Flake: is Pivot a turning point for web exploration?

60,384 views ใƒป 2010-03-03

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Shaike Katz
00:16
If I can leave you with one big idea today,
0
16260
2000
ืื ืื•ื›ืœ ืœื”ืฉืื™ืจ ืืชื›ื ืขื ืจืขื™ื•ืŸ ื’ื“ื•ืœ ืื—ื“ ื”ื™ื•ื,
00:18
it's that the whole of the data
1
18260
2000
ื–ื” ืฉื”ืžื™ื“ืข ื‘ื›ืœืœื•ืชื•
00:20
in which we consume
2
20260
2000
ืฉืื ื• ืฆื•ืจื›ื™ื
00:22
is greater that the sum of the parts,
3
22260
2000
ื’ื“ื•ืœ ืžืกื›ื•ื ื—ืœืงื™ื•,
00:24
and instead of thinking about information overload,
4
24260
3000
ื•ื‘ืžืงื•ื ืœื—ืฉื•ื‘ ืขืœ ืขื•ืžืก ื™ืชืจ ืฉืœ ืžื™ื“ืข
00:27
what I'd like you to think about is how
5
27260
2000
ื”ื™ื™ืชื™ ืจื•ืฆื” ืฉืชื—ืฉื‘ื• ืื™ืš
00:29
we can use information so that patterns pop
6
29260
3000
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ืžื™ื“ืข ื›ืš ืฉืชื‘ื ื™ื•ืช ื™ืงืคืฆื•
00:32
and we can see trends that would otherwise be invisible.
7
32260
3000
ื•ื ื•ื›ืœ ืœืจืื•ืช ื˜ืจื ื“ื™ื ืฉืื—ืจืช ื”ื™ื• ื‘ืœืชื™ ื ืจืื™ื.
00:35
So what we're looking at right here is a typical mortality chart
8
35260
3000
ืื– ืžื” ืฉืื ื—ื ื• ืจื•ืื™ื ืคื” ื–ื• ื˜ื‘ืœืช ืชืžื•ืชื” ื˜ื™ืคื•ืกื™ืช
00:38
organized by age.
9
38260
2000
ืžืกื•ื“ืจืช ืœืคื™ ื’ื™ืœ.
00:40
This tool that I'm using here is a little experiment.
10
40260
2000
ื”ื›ืœื™ ืฉืื ื™ ืžืฉืชืžืฉ ื‘ื• ื›ืืŸ ื”ื•ื ื ื™ืกื•ื™ ืงื˜ืŸ.
00:42
It's called Pivot, and with Pivot what I can do
11
42260
3000
ื”ื•ื ื ื™ืงืจื Pivot, ื•ืขื Pivot ืžื” ืฉืื ื™ ื™ื›ื•ืœ ืœืขืฉื•ืช
00:45
is I can choose to filter in one particular cause of deaths -- say, accidents.
12
45260
4000
ื–ื” ืœื‘ื—ื•ืจ ืœืกื ืŸ ืœืคื™ ื’ื•ืจื ืžื•ื•ืช ืื—ื“, ืœื“ื•ื’ืžื” ืชืื•ื ื•ืช.
00:49
And, right away, I see there's a different pattern that emerges.
13
49260
3000
ื•ืžื™ื™ื“, ืื ื™ ืจื•ืื” ืชื‘ื ื™ืช ืฉื•ื ื” ืฆืฆื”.
00:52
This is because, in the mid-area here,
14
52260
2000
ื–ื” ืžืคื ื™, ืฉื‘ืื–ื•ืจ ื”ืืžืฆืขื™ ื›ืืŸ,
00:54
people are at their most active,
15
54260
2000
ืื ืฉื™ื ื‘ืฉืœื‘ ื”ื›ื™ ืืงื˜ื™ื‘ื™ ืฉืœื”ื,
00:56
and over here they're at their most frail.
16
56260
2000
ื•ื›ืืŸ ื”ื ื‘ืฉืœื‘ ื”ื›ื™ ืฉื‘ืจื™ืจื™.
00:58
We can step back out again
17
58260
2000
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืœื›ืช ืฆืขื“ ืื—ื•ืจื” ืฉื•ื‘
01:00
and then reorganize the data by cause of death,
18
60260
2000
ื•ืื– ืœืืจื’ืŸ ืืช ื”ืžื™ื“ืข ืœืคื™ ืกื™ื‘ืช ื”ืžื•ื•ืช,
01:02
seeing that circulatory diseases and cancer
19
62260
3000
ื•ืœืจืื•ืช ืฉืžื—ืœื•ืช ืœื‘ ื•ืกืจื˜ืŸ
01:05
are the usual suspects, but not for everyone.
20
65260
3000
ื”ื ื”ื—ืฉื•ื“ื™ื ื”ืขื™ืงืจื™ื™ื, ืื‘ืœ ืœื ืœื›ื•ืœื.
01:08
If we go ahead and we filter by age --
21
68260
3000
ืื ื ืกื ืŸ ืœืคื™ ื’ื™ืœ,
01:11
say 40 years or less --
22
71260
2000
ื ื’ื™ื“ 40 ื•ืคื—ื•ืช,
01:13
we see that accidents are actually
23
73260
2000
ื ืจืื” ืฉื‘ืขืฆื ืชืื•ื ื•ืช
01:15
the greatest cause that people have to be worried about.
24
75260
3000
ื”ืŸ ื”ื“ื‘ืจ ืฉืื ืฉื™ื ืฆืจื™ื›ื™ื ืœื—ืฉื•ืฉ ืžืžื ื• ื‘ื™ื•ืชืจ.
01:18
And if you drill into that, it's especially the case for men.
25
78260
3000
ื•ืื ื ืชืžืงื“ ื‘ื–ื”, ื ืจืื” ืฉื–ื” ื‘ืขื™ืงืจ ืืฆืœ ื’ื‘ืจื™ื.
01:21
So you get the idea
26
81260
2000
ืื– ืืชื ืžื‘ื™ื ื™ื ืืช ื”ืจืขื™ื•ืŸ
01:23
that viewing information, viewing data in this way,
27
83260
3000
ืฉืœืจืื•ืช ืืช ื”ืžื™ื“ืข, ื‘ืฆื•ืจื” ื”ื–ื•,
01:26
is a lot like swimming
28
86260
2000
ื“ื•ืžื” ืžืื•ื“ ืœืฉื—ื™ื”
01:28
in a living information info-graphic.
29
88260
3000
ื‘ืื•ืงื™ื™ื ื•ืก-ืžื™ื“ืข ื—ื™.
01:31
And if we can do this for raw data,
30
91260
2000
ื•ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืืช ื–ื” ืขื ืžื™ื“ืข ื’ื•ืœืžื™,
01:33
why not do it for content as well?
31
93260
3000
ืœืžื” ืœื ืœืขืฉื•ืช ืืช ื–ื” ื’ื ืขื ืชื•ื›ืŸ?
01:36
So what we have right here
32
96260
2000
ืื– ืžื” ืฉื™ืฉ ืœื ื• ืคื”,
01:38
is the cover of every single Sports Illustrated
33
98260
3000
ื–ื” ื”ืฉืขืจื™ื ืฉืœ ื›ืœ ื’ืœื™ื•ื ื•ืช ืกืคื•ืจื˜ืก ืื™ืœื•ืกื˜ืจื™ื™ื˜ื“
01:41
ever produced.
34
101260
2000
ืฉืคื•ืจืกืžื• ืื™ ืคืขื.
01:43
It's all here; it's all on the web.
35
103260
2000
ื”ื›ืœ ืคื”. ื”ื›ืœ ื‘ืจืฉืช.
01:45
You can go back to your rooms and try this after my talk.
36
105260
3000
ืืชื ื™ื›ื•ืœื™ื ืœื—ื–ื•ืจ ืœื—ื“ืจื™ื ืฉืœื›ื ื•ืœื ืกื•ืช ืื—ืจื™ ื”ื”ืจืฆืื” ืฉืœื™.
01:48
With Pivot, you can drill into a decade.
37
108260
3000
ืขื Pivot, ืืคืฉืจ ืœื”ืชืžืงื“ ื‘ืขืฉื•ืจ ืžืกื•ื™ื™ื.
01:51
You can drill into a particular year.
38
111260
2000
ืืคืฉืจ ืœื”ืชืžืงื“ ื‘ืฉื ื” ืžืกื•ื™ื™ืžืช.
01:53
You can jump right into a specific issue.
39
113260
3000
ืืคืฉืจ ืœืงืคื•ืฅ ื™ืฉืจ ืœื’ื™ืœื™ื•ืŸ ืžืกื•ื™ื™ื.
01:56
So I'm looking at this; I see the athletes
40
116260
2000
ืื– ืื ื™ ืžืกืชื›ืœ ืขืœ ื–ื”; ืื ื™ ืจื•ืื” ืืช ื”ืืชืœื˜ื™ื
01:58
that have appeared in this issue, the sports.
41
118260
2000
ืฉื”ื•ืคื™ืขื• ื‘ื’ื™ืœื™ื•ืŸ ื”ื–ื”, ืืช ื”ืขื ืคื™ื.
02:00
I'm a Lance Armstrong fan, so I'll go ahead and I'll click on that,
42
120260
3000
ืื ื™ ืื•ื”ื“ ืฉืœ ืœืื ืก ืืจืžืกื˜ืจื•ื ื’, ืื– ืื ื™ ืื‘ื—ืจ ื‘ื•,
02:03
which reveals, for me, all the issues
43
123260
2000
ืžื” ืฉืžืจืื” ื‘ืฉื‘ื™ืœื™, ืืช ื›ืœ ื”ื’ื™ืœื™ื•ื ื•ืช
02:05
in which Lance Armstrong's been a part of.
44
125260
2000
ืฉื‘ื”ื ืœืื ืก ืืจืžืกื˜ืจื•ื ื’ ื”ื•ืคื™ืข.
02:07
(Applause)
45
127260
3000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
02:10
Now, if I want to just kind of take a peek at these,
46
130260
3000
ืขื›ืฉื™ื•, ืื ืื ื™ ืจื•ืฆื” ืจืง ืœื”ื‘ื™ื˜ ื‘ืืœื”,
02:13
I might think,
47
133260
2000
ืื•ืœื™ ืื ื™ ืื—ืฉื•ื‘,
02:15
"Well, what about taking a look at all of cycling?"
48
135260
2000
"ืžื” ืื ืื ื™ ืจื•ืฆื” ืœื”ื‘ื™ื˜ ืขืœ ื›ืœ ื”ืžืืžืจื™ื ืขืœ ืื•ืคื ื™ื™ื?"
02:17
So I can step back, and expand on that.
49
137260
2000
ืื– ืื ื™ ื™ื›ื•ืœ ืœืœื›ืช ืื—ื•ืจื”, ื•ืœื”ืจื—ื™ื‘ ืขืœ ื”ื ื•ืฉื.
02:19
And I see Greg LeMond now.
50
139260
2000
ื•ืื ื™ ืจื•ืื” ืืช ื’ืจื’ ืœืžื•ื ื“ ืขื›ืฉื™ื•.
02:21
And so you get the idea that when you
51
141260
2000
ืื– ืืชื ืจื•ืื™ื ืืช ื”ืจืขื™ื•ืŸ ืฉื›ืฉืืชื
02:23
navigate over information this way --
52
143260
2000
ืžื ื•ื•ื˜ื™ื ื‘ืžื™ื“ืข ื›ื›ื”,
02:25
going narrower, broader,
53
145260
2000
ื ื›ื ืกื™ื ืคื ื™ืžื”, ื™ื•ืฆืื™ื ื”ื—ื•ืฆื”,
02:27
backing in, backing out --
54
147260
2000
ื‘ื—ื–ืจื” ืคื ื™ืžื”, ื•ืฉื•ื‘ ื”ื—ื•ืฆื”,
02:29
you're not searching, you're not browsing.
55
149260
2000
ืืชื ืœื ืžื—ืคืฉื™ื, ืืชื ืœื ื’ื•ืœืฉื™ื.
02:31
You're doing something that's actually a little bit different.
56
151260
2000
ืืชื ื‘ืขืฆื ืขื•ืฉื™ื ืžืฉื”ื• ืงืฆืช ืฉื•ื ื”.
02:33
It's in between, and we think it changes
57
153260
3000
ื–ื” ืžืฉื”ื• ื‘ืืžืฆืข, ื•ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื–ื” ืžืฉื ื”
02:36
the way information can be used.
58
156260
2000
ืืช ื”ื“ืจืš ืฉื‘ื” ืืคืฉืจ ืœื”ืฉืชืžืฉ ื‘ืžื™ื“ืข.
02:38
So I want to extrapolate on this idea a bit
59
158260
2000
ืื– ืื ื™ ืจื•ืฆื” ืœื”ืจื—ื™ื‘ ืขืœ ื”ื ื•ืฉื ืงืฆืช
02:40
with something that's a little bit crazy.
60
160260
2000
ืžืฉื”ื• ืฉื”ื•ื ืงืฆืช ืžืฉื•ื’ืข.
02:42
What we're done here is we've taken every single Wikipedia page
61
162260
3000
ืžื” ืฉืขืฉื™ื ื• ืคื” ื–ื” ืœืงื—ืช ืืช ื›ืœ ื”ืขืžื•ื“ื™ื ืฉืœ ื•ื™ืงื™ืคื“ื™ื”
02:45
and we reduced it down to a little summary.
62
165260
3000
ื•ืงื™ืฆืจื ื• ืื•ืชื ืœืกื™ื›ื•ื ืงื˜ืŸ.
02:48
So the summary consists of just a little synopsis
63
168260
3000
ืื– ื”ืกื™ื›ื•ื ื”ื›ื™ืœ ืจืง ืชืงืฆื™ืจ ืงื˜ืŸ
02:51
and an icon to indicate the topical area that it comes from.
64
171260
3000
ื•ืกืžืœื™ืœ ืฉื™ืจืื” ืžืื™ื–ื” ื ื•ืฉื ื”ืžืืžืจ ื”ื’ื™ืข.
02:54
I'm only showing the top 500
65
174260
3000
ืื ื™ ืžืจืื” ื›ืืŸ ืจืง ืืช 500
02:57
most popular Wikipedia pages right here.
66
177260
2000
ื”ืขืžื•ื“ื™ื ื”ืคื•ืคื•ืœืจื™ื™ื ื‘ื™ื•ืชืจ ื‘ื•ื•ื™ืงื™ืคื“ื™ื” ื›ืืŸ.
02:59
But even in this limited view,
67
179260
2000
ืื‘ืœ ืืคื™ืœื• ื‘ืชืฆื•ื’ื” ื”ืฆืจื” ื”ื–ื•,
03:01
we can do a lot of things.
68
181260
2000
ืืคืฉืจ ืœืขืฉื•ืช ื”ืจื‘ื” ื“ื‘ืจื™ื.
03:03
Right away, we get a sense of what are the topical domains
69
183260
2000
ืžื™ื™ื“ ืžื‘ื™ื ื™ื ืžื”ื ื”ื ื•ืฉืื™ื ื”ืขื™ืงืจื™ื™ื
03:05
that are most popular on Wikipedia.
70
185260
2000
ืฉื”ื›ื™ ืคื•ืคื•ืœืจื™ื™ื ื‘ื•ื•ื™ืงื™ืคื“ื™ื”.
03:07
I'm going to go ahead and select government.
71
187260
2000
ืื ื™ ืื‘ื—ืจ ื‘ืžืžืฉืœ.
03:09
Now, having selected government,
72
189260
3000
ืขื›ืฉื™ื• ืฉื‘ื—ืจืชื™ ื‘ืžืžืฉืœ,
03:12
I can now see that the Wikipedia categories
73
192260
2000
ืื ื™ ื™ื›ื•ืœ ืœืจืื•ืช ืฉื”ืงื˜ื’ื•ืจื™ื•ืช ืฉืœ ื•ื•ื™ืงื™ืคื“ื™ื”
03:14
that most frequently correspond to that
74
194260
2000
ืฉื”ื›ื™ ืžืชื™ื™ื—ืกื•ืช ืœื ื•ืฉื
03:16
are Time magazine People of the Year.
75
196260
3000
ื”ืŸ ืื™ืฉ ื”ืฉื ื” ืฉืœ ืžื’ื–ื™ืŸ ื˜ื™ื™ื.
03:19
So this is really important because this is an insight
76
199260
3000
ืื– ื–ื” ืžืžืฉ ื—ืฉื•ื‘ ืžืคื ื™ ืฉื–ื• ืชื•ื‘ื ื”
03:22
that was not contained within any one Wikipedia page.
77
202260
3000
ืฉืœื ื ืžืฆืืช ื‘ืืฃ ื“ืฃ ืฉืœ ื•ื•ื™ืงื™ืคื“ื™ื”.
03:25
It's only possible to see that insight
78
205260
2000
ืืคืฉืจ ืœืจืื•ืช ืืช ื”ืชื•ื‘ื ื” ื”ื–ื• ืจืง
03:27
when you step back and look at all of them.
79
207260
3000
ื›ืฉื™ื•ืฆืื™ื ื”ื—ื•ืฆื” ื•ืจื•ืื™ื ืืช ื›ื•ืœื.
03:30
Looking at one of these particular summaries,
80
210260
2000
ื›ืฉืžืชืžืงื“ื™ื ื‘ืžืืžืจ ืกืคืฆื™ืคื™,
03:32
I can then drill into the concept of
81
212260
3000
ืื ื™ ื™ื›ื•ืœ ืœื”ืชืžืงื“ ื‘ืจืขื™ื•ืŸ ืฉืœ
03:35
Time magazine Person of the Year,
82
215260
2000
ืื™ืฉ ื”ืฉื ื” ืฉืœ ืžื’ื–ื™ืŸ ื˜ื™ื™ื,
03:37
bringing up all of them.
83
217260
2000
ื•ืœื”ืขืœื•ืช ืืช ื›ื•ืœื.
03:39
So looking at these people,
84
219260
2000
ื•ื›ืฉืžื‘ื™ื˜ื™ื ื‘ื›ื•ืœื,
03:41
I can see that the majority come from government;
85
221260
3000
ืื ื™ ื™ื›ื•ืœ ืœืจืื•ืช ืฉืจื•ื‘ื ืžื’ื™ืขื™ื ืžื”ืžืžืฉืœ.
03:45
some have come from natural sciences;
86
225260
3000
ื—ืœืง ื”ื’ื™ืขื• ืžืžื“ืขื™ื.
03:49
some, fewer still, have come from business --
87
229260
3000
ื—ืœืง, ืื‘ืœ ืคื—ื•ืช, ืžืขืกืงื™ื.
03:53
there's my boss --
88
233260
2000
ื”ื ื” ื”ื‘ื•ืก ืฉืœื™.
03:55
and one has come from music.
89
235260
5000
ื•ืื—ื“ ื”ื’ื™ืข ืžืžื•ื–ื™ืงื”.
04:00
And interestingly enough,
90
240260
2000
ื•ืžื” ืฉืžืขื ื™ื™ืŸ,
04:02
Bono is also a TED Prize winner.
91
242260
3000
ืฉื‘ื•ื ื• ื”ื•ื ื’ื ื–ื•ื›ื” ืคืจืก TED.
04:05
So we can go, jump, and take a look at all the TED Prize winners.
92
245260
3000
ืื– ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขื‘ื•ืจ, ืœืงืคื•ืฅ, ื•ืœื‘ื—ื•ืŸ ืืช ื›ืœ ื–ื•ื›ื™ ืคืจืก TED.
04:08
So you see, we're navigating the web for the first time
93
248260
3000
ืื– ืืชื ืจื•ืื™ื, ืื ื—ื ื• ืžื ื•ื•ื˜ื™ื ื‘ืจืฉืช ื‘ืคืขื ื”ืจืืฉื•ื ื”
04:11
as if it's actually a web, not from page-to-page,
94
251260
3000
ื›ืื™ืœื• ื–ื• ื‘ืืžืช ืจืฉืช, ื•ืœื ืžื“ืฃ ืœื“ืฃ.
04:14
but at a higher level of abstraction.
95
254260
2000
ืื‘ืœ ื‘ื”ืคืฉื˜ื” ื’ื“ื•ืœื” ื™ื•ืชืจ.
04:16
And so I want to show you one other thing
96
256260
2000
ืื– ืื ื™ ืจื•ืฆื” ืœื”ืจืื•ืช ืœื›ื ืžืฉื”ื• ื ื•ืกืฃ.
04:18
that may catch you a little bit by surprise.
97
258260
3000
ืฉืื•ืœื™ ื™ืคืชื™ืข ืืชื›ื.
04:21
I'm just showing the New York Times website here.
98
261260
3000
ืื ื™ ืจืง ืžืจืื” ื›ืืŸ ืืช ืืชืจ ื”ื ื™ื• ื™ื•ืจืง ื˜ื™ื™ืžืก.
04:24
So Pivot, this application --
99
264260
2000
ืื– Pivot, ื”ืืคืœื™ืงืฆื™ื” ื”ื–ื• -
04:26
I don't want to call it a browser; it's really not a browser,
100
266260
2000
ืื ื™ ืœื ืจื•ืฆื” ืœืงืจื•ื ืœื” ื“ืคื“ืคืŸ, ื–ื” ื‘ืืžืช ืœื ื“ืคื“ืคืŸ,
04:28
but you can view web pages with it --
101
268260
3000
ืื‘ืœ ืืคืฉืจ ืœืจืื•ืช ืื™ืชื” ื“ืคื™ ืจืฉืช -
04:31
and we bring that zoomable technology
102
271260
2000
ื•ืื ื—ื ื• ืžื‘ื™ืื™ื ืืช ื˜ื›ื ื•ืœื•ื’ื™ืช ื”ื–ื•ื ื”ื–ื•
04:33
to every single web page like this.
103
273260
3000
ืœื›ืœ ื“ืฃ ืื™ื ื˜ืจื ื˜ ื›ื›ื”.
04:36
So I can step back,
104
276260
3000
ืื– ืื ื™ ื™ื›ื•ืœ ืœืœื›ืช ืื—ื•ืจื”,
04:39
pop right back into a specific section.
105
279260
2000
ื•ืœืงืคื•ืฅ ื‘ื—ื–ืจื” ืœื—ืœืง ืžืกื•ื™ื™ื.
04:41
Now the reason why this is important is because,
106
281260
2000
ื•ื”ืกื™ื‘ื” ืฉื–ื” ื—ืฉื•ื‘ ื”ื™ื,
04:43
by virtue of just viewing web pages in this way,
107
283260
3000
ืฉืจืง ืขืœ ื™ื“ื™ ืฆืคื™ื™ื” ื‘ื“ืคื™ ืื™ื ื˜ืจื ื˜ ื‘ืฉื™ื˜ื” ื”ื–ื•,
04:46
I can look at my entire browsing history
108
286260
2000
ืื ื™ ื™ื›ื•ืœ ืœื”ื‘ื™ื˜ ื‘ื›ืœ ื”ืกื˜ื•ืจื™ื™ืช ื”ื’ืœื™ืฉื”
04:48
in the exact same way.
109
288260
2000
ื‘ืื•ืชื” ื“ืจืš.
04:50
So I can drill into what I've done
110
290260
2000
ืื– ืื ื™ ื™ื›ื•ืœ ืœื”ื”ืชืžืงื“ ื‘ืžื” ืฉืขืฉื™ืชื™
04:52
over specific time frames.
111
292260
2000
ื‘ื–ืžืŸ ืžืกื•ื™ื™ื.
04:54
Here, in fact, is the state
112
294260
2000
ื”ื ื”, ืœื“ื•ื’ืžื”, ื›ืœ ื”ืžืฆื‘
04:56
of all the demo that I just gave.
113
296260
2000
ืฉืœ ื”ื”ื“ื’ืžื” ืฉื›ืจื’ืข ื”ืฆื’ืชื™.
04:58
And I can sort of replay some stuff that I was looking at earlier today.
114
298260
3000
ื•ืื ื™ ื‘ืขืจืš ื™ื›ื•ืœ ืœื”ืจื™ืฅ ืฉื•ื‘ ื“ื‘ืจื™ื ืฉืขืฉื™ืชื™ ืžื•ืงื“ื ื™ื•ืชืจ ื”ื™ื•ื.
05:01
And, if I want to step back and look at everything,
115
301260
3000
ื•ืื ืื ื™ ืจื•ืฆื” ืœืงื—ืช ืฆืขื“ ืื—ื•ืจื” ืื ื™ ื™ื›ื•ืœ ืœื”ื‘ื™ื˜ ื‘ื”ื›ืœ,
05:04
I can slice and dice my history,
116
304260
2000
ืื ื™ ื™ื›ื•ืœ ืœื‘ื—ื•ืŸ ืืช ื›ืœ ื”ื”ืกื˜ื•ืจื™ื”
05:06
perhaps by my search history --
117
306260
2000
ืื•ืœื™ ืœืคื™ ื”ืกื˜ื•ืจื™ื™ืช ื”ื—ื™ืคื•ืฉ ืฉืœื™.
05:08
here, I was doing some nepotistic searching,
118
308260
2000
ื›ืืŸ ืขืฉื™ืชื™ ื—ื™ืคื•ืฉ ืงืฆืช ืžืฉื•ื—ื“,
05:10
looking for Bing, over here for Live Labs Pivot.
119
310260
3000
ื—ื™ืคืฉืชื™ ืืช Bing, ื•ื›ืืŸ ืืช ืžืขื‘ื“ืช Pivot.
05:13
And from these, I can drill into the web page
120
313260
2000
ื•ืžื›ืืŸ, ืื ื™ ื™ื›ื•ืœ ืœื”ืชืžืงื“ ื‘ื“ืคื™ ื”ืื™ื ื˜ืจื ื˜
05:15
and just launch them again.
121
315260
2000
ื•ืคืฉื•ื˜ ืœืคืชื•ื— ืื•ืชื ืฉื•ื‘.
05:17
It's one metaphor repurposed multiple times,
122
317260
3000
ื–ื• ืžื˜ืืคื•ืจื” ืื—ืช ืฉื”ืฉืชืžืฉื ื• ื‘ื” ืคืขืžื™ื ืจื‘ื•ืช.
05:20
and in each case it makes the whole greater
123
320260
2000
ื•ื‘ื›ืœ ืžืงืจื” ื”ื™ื ื”ืคื›ื” ืืช ื”ืฉืœื ืœื’ื“ื•ืœ
05:22
than the sum of the parts with the data.
124
322260
2000
ืžื—ืœืงื™ ื”ืžื™ื“ืข ืฉืžืžื ื• ื”ื•ืจื›ื‘.
05:24
So right now, in this world,
125
324260
3000
ืื– ืขื›ืฉื™ื•, ื‘ืขื•ืœื,
05:27
we think about data as being this curse.
126
327260
3000
ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืขืœ ืžื™ื“ืข ื›ืขืœ ืžื™ืŸ ืงืœืœื”.
05:30
We talk about the curse of information overload.
127
330260
3000
ืื ื—ื ื• ืžื“ื‘ืจื™ื ืขืœ ื”ืงืœืœื” ืฉืœ ืขื•ืžืก ื™ืชืจ ืฉืœ ืžื™ื“ืข.
05:33
We talk about drowning in data.
128
333260
3000
ืื ื—ื ื• ืžื“ื‘ืจื™ื ืขืœ ื˜ื‘ื™ืขื” ื‘ืžื™ื“ืข.
05:36
What if we can actually turn that upside down
129
336260
2000
ืžื” ืื ื ื•ื›ืœ ื‘ืขืฆื ืœื”ืคื•ืš ืืช ื–ื”
05:38
and turn the web upside down,
130
338260
2000
ื•ืœื”ืคื•ืš ืืช ื”ืจืฉืช,
05:40
so that instead of navigating from one thing to the next,
131
340260
3000
ื›ืš ืฉื‘ืžืงื•ื ืžื“ื‘ืจ ืื—ื“ ืœื‘ื ืื—ืจื™ื•,
05:43
we get used to the habit of being able to go from many things to many things,
132
343260
3000
ื ืชืจื’ืœ ืœืจืขื™ื•ืŸ ืฉืœ ืœืœื›ืช ืžื”ืจื‘ื” ื“ื‘ืจื™ื ืœื”ืจื‘ื” ื“ื‘ืจื™ื,
05:46
and then being able to see the patterns
133
346260
2000
ื•ืœื™ื›ื•ืœืช ืœืจืื•ืช ืชื‘ื ื™ื•ืช
05:48
that were otherwise hidden?
134
348260
2000
ืฉืื—ืจืช ื”ื™ื• ื ืกืชืจื•ืช ?
05:50
If we can do that, then instead of being trapped in data,
135
350260
5000
ืื ื ืขืฉื” ืืช ื–ื”, ืื– ื‘ืžืงื•ื ืœื”ื™ื•ืช ืœื›ื•ื“ื™ื ื‘ืžื™ื“ืข,
05:55
we might actually extract information.
136
355260
3000
ื ื•ื›ืœ ื‘ืืžืช ืœื”ืคื™ืง ืžื™ื“ืข.
05:58
And, instead of dealing just with information,
137
358260
2000
ื•ื‘ืžืงื•ื ืœื”ืชืขืกืง ืจืง ื‘ืžื™ื“ืข,
06:00
we can tease out knowledge.
138
360260
2000
ื ื•ื›ืœ ืœืฉืื•ื‘ ื™ื“ืข.
06:02
And if we get the knowledge, then maybe even there's wisdom to be found.
139
362260
3000
ื•ืื ื ืงื‘ืœ ืืช ื”ื™ื“ืข, ืื– ืื•ืœื™ ื ื•ื›ืœ ืืคื™ืœื• ืœืžืฆื•ื ื—ื•ื›ืžื”.
06:05
So with that, I thank you.
140
365260
2000
ืื– ืขื ื–ืืช, ืื ื™ ืžื•ื“ื” ืœื›ื
06:07
(Applause)
141
367260
8000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7