請雙擊下方英文字幕播放視頻。
譯者: Jenny Yang
審譯者: Bill Hsiung
00:16
If I can leave you with one big idea today,
0
16260
2000
如果我今天的演講可以留給你們一個新概念,
00:18
it's that the whole of the data
1
18260
2000
那就是我們所消費的
00:20
in which we consume
2
20260
2000
資料整體是
00:22
is greater that the sum of the parts,
3
22260
2000
大於其各個部分相加的總和的。
00:24
and instead of thinking about information overload,
4
24260
3000
然而,與其擔心資訊爆炸,
00:27
what I'd like you to think about is how
5
27260
2000
不如思考一下怎樣使用
00:29
we can use information so that patterns pop
6
29260
3000
這些資訊, 使其中的規律顯現,
00:32
and we can see trends that would otherwise be invisible.
7
32260
3000
幫助我們看見原本不可見的趨勢。
00:35
So what we're looking at right here is a typical mortality chart
8
35260
3000
在這裡,我們看到的是一個典型的死亡率表,
00:38
organized by age.
9
38260
2000
根據年齡排列。
00:40
This tool that I'm using here is a little experiment.
10
40260
2000
我現在用的這個工具是一個小小的實驗,
00:42
It's called Pivot, and with Pivot what I can do
11
42260
3000
這個工具叫「樞紐」 (Pivot), 使用「樞紐」,
00:45
is I can choose to filter in one particular cause of deaths -- say, accidents.
12
45260
4000
我可以選擇過濾出某個特殊的死因, 例如說:事故身亡。
00:49
And, right away, I see there's a different pattern that emerges.
13
49260
3000
然後,馬上我就看見一組不同的模式顯現。
00:52
This is because, in the mid-area here,
14
52260
2000
這是因爲, 中間這裡
00:54
people are at their most active,
15
54260
2000
人們處於他們最活躍的年齡,
00:56
and over here they're at their most frail.
16
56260
2000
而在這裡, 人們是最體弱多病的時候。
00:58
We can step back out again
17
58260
2000
我們可以退回來,
01:00
and then reorganize the data by cause of death,
18
60260
2000
重新根據死因來排列資料,
01:02
seeing that circulatory diseases and cancer
19
62260
3000
我們可以看到循環系統疾病和癌症
01:05
are the usual suspects, but not for everyone.
20
65260
3000
是常見的致死因素,但並不適用於每一個人。
01:08
If we go ahead and we filter by age --
21
68260
3000
如果我們繼續過濾年齡,
01:11
say 40 years or less --
22
71260
2000
比如說 40 歲以下的人群,
01:13
we see that accidents are actually
23
73260
2000
我們會發現意外事故是
01:15
the greatest cause that people have to be worried about.
24
75260
3000
人們最需要小心的殺手
01:18
And if you drill into that, it's especially the case for men.
25
78260
3000
如果你進一步挖掘, 這個準則對男人尤其適用。
01:21
So you get the idea
26
81260
2000
所以,你對這個東西有點概念了,
01:23
that viewing information, viewing data in this way,
27
83260
3000
用這種方法來瀏覽資訊、數據
01:26
is a lot like swimming
28
86260
2000
很像是在一個
01:28
in a living information info-graphic.
29
88260
3000
鮮活的資訊圖片裡游泳。
01:31
And if we can do this for raw data,
30
91260
2000
如果我們可以對原始資料這麼做,
01:33
why not do it for content as well?
31
93260
3000
爲什麼不將內容也比照辦理呢?
01:36
So what we have right here
32
96260
2000
所以,我們在這裡顯示的
01:38
is the cover of every single Sports Illustrated
33
98260
3000
是過去發表過的每一期
01:41
ever produced.
34
101260
2000
運動畫刊的封面。
01:43
It's all here; it's all on the web.
35
103260
2000
都在這裡了, 都在網路上
01:45
You can go back to your rooms and try this after my talk.
36
105260
3000
演講完,你回到飯店房間後,可以試試這個工具。
01:48
With Pivot, you can drill into a decade.
37
108260
3000
用「樞紐」, 你可以深入某一個世代,
01:51
You can drill into a particular year.
38
111260
2000
深入到具體的某一年,
01:53
You can jump right into a specific issue.
39
113260
3000
你也可以直接進入某一期。
01:56
So I'm looking at this; I see the athletes
40
116260
2000
所以當我看著這個的時候,
01:58
that have appeared in this issue, the sports.
41
118260
2000
我看到出現在該期雜誌中的各種運動以及運動員們。
02:00
I'm a Lance Armstrong fan, so I'll go ahead and I'll click on that,
42
120260
3000
我是蘭斯•阿姆斯壯迷, 所以我就點擊選取這一期,
02:03
which reveals, for me, all the issues
43
123260
2000
然後它為我展示了所有刊登過有關蘭斯•阿姆斯壯
02:05
in which Lance Armstrong's been a part of.
44
125260
2000
內容的所有期數。
02:07
(Applause)
45
127260
3000
(掌聲)
02:10
Now, if I want to just kind of take a peek at these,
46
130260
3000
現在, 如果我只是簡單的瀏覽一眼這些內容
02:13
I might think,
47
133260
2000
我可能會想
02:15
"Well, what about taking a look at all of cycling?"
48
135260
2000
「好, 那把所有有關自行車運動的期刊都找出來如何?」
02:17
So I can step back, and expand on that.
49
137260
2000
所以我可以退回去, 然後在著重在那些內容。
02:19
And I see Greg LeMond now.
50
139260
2000
現在我看到 Greg Lemond 了。
02:21
And so you get the idea that when you
51
141260
2000
你現在應該已經知道, 當你
02:23
navigate over information this way --
52
143260
2000
用這種方法在大量資訊中領航,
02:25
going narrower, broader,
53
145260
2000
你可以縮小、擴大、
02:27
backing in, backing out --
54
147260
2000
深入、淺出,
02:29
you're not searching, you're not browsing.
55
149260
2000
你不是在搜索,你也不是在瀏覽
02:31
You're doing something that's actually a little bit different.
56
151260
2000
你所做的事情跟這兩者都有些不同。
02:33
It's in between, and we think it changes
57
153260
3000
界於兩者之間, 我們認爲這改變了
02:36
the way information can be used.
58
156260
2000
資訊可以被使用的方法。
02:38
So I want to extrapolate on this idea a bit
59
158260
2000
所以我想對這個觀點做進一步的闡釋,
02:40
with something that's a little bit crazy.
60
160260
2000
是一些稍微有點瘋狂的想法。
02:42
What we're done here is we've taken every single Wikipedia page
61
162260
3000
我們在這裡所做的是,我們將每一頁維基百科,
02:45
and we reduced it down to a little summary.
62
165260
3000
縮簡成一小段摘要。
02:48
So the summary consists of just a little synopsis
63
168260
3000
這摘要只包括了一些簡介
02:51
and an icon to indicate the topical area that it comes from.
64
171260
3000
和一個顯示標題範圍來源的圖示。
02:54
I'm only showing the top 500
65
174260
3000
我這裡只顯示維基百科中
02:57
most popular Wikipedia pages right here.
66
177260
2000
最熱門的 500 頁。
02:59
But even in this limited view,
67
179260
2000
但即使在這有限的展示中,
03:01
we can do a lot of things.
68
181260
2000
我們也可以做很多事情。
03:03
Right away, we get a sense of what are the topical domains
69
183260
2000
我們馬上可以知道,哪些主題
03:05
that are most popular on Wikipedia.
70
185260
2000
在維基百科中最熱門。
03:07
I'm going to go ahead and select government.
71
187260
2000
我這裡選擇「政府」,
03:09
Now, having selected government,
72
189260
3000
選了「政府」以後,
03:12
I can now see that the Wikipedia categories
73
192260
2000
我可以看到維基百科中
03:14
that most frequently correspond to that
74
194260
2000
與之對應最頻繁的類別是,
03:16
are Time magazine People of the Year.
75
196260
3000
時代雜誌的年度風雲人物。
03:19
So this is really important because this is an insight
76
199260
3000
這真的很重要,因爲這種洞見,
03:22
that was not contained within any one Wikipedia page.
77
202260
3000
並不包含在任何維基百科的網頁中。
03:25
It's only possible to see that insight
78
205260
2000
唯一可以看出這個關係的方法是,
03:27
when you step back and look at all of them.
79
207260
3000
退後一步,縱觀全局。
03:30
Looking at one of these particular summaries,
80
210260
2000
看著這些不同摘要的其中一個,
03:32
I can then drill into the concept of
81
212260
3000
我可以接著深入探索
03:35
Time magazine Person of the Year,
82
215260
2000
時代雜誌年度風雲人物這個概念,
03:37
bringing up all of them.
83
217260
2000
把他們都帶出來。
03:39
So looking at these people,
84
219260
2000
看著這些人,
03:41
I can see that the majority come from government;
85
221260
3000
我發現他們中的多數來自政府,
03:45
some have come from natural sciences;
86
225260
3000
有些來自自然科學,
03:49
some, fewer still, have come from business --
87
229260
3000
有些,很少數,是商業人士。
03:53
there's my boss --
88
233260
2000
這是我老闆。
03:55
and one has come from music.
89
235260
5000
其中一個是音樂界人士,
04:00
And interestingly enough,
90
240260
2000
而有趣的是,
04:02
Bono is also a TED Prize winner.
91
242260
3000
Bono 也是 TED 大獎得主。
04:05
So we can go, jump, and take a look at all the TED Prize winners.
92
245260
3000
所以我們可以直接跳進去,看看所有的 TED 大獎得主。
04:08
So you see, we're navigating the web for the first time
93
248260
3000
所以你看, 我們第一次在網路上航行了,
04:11
as if it's actually a web, not from page-to-page,
94
251260
3000
好像它真的是一大張網,不是一張張的頁面,
04:14
but at a higher level of abstraction.
95
254260
2000
而是一種更高層次抽象的概念。
04:16
And so I want to show you one other thing
96
256260
2000
我還想給你們看另一樣東西,
04:18
that may catch you a little bit by surprise.
97
258260
3000
那可能會讓你覺得有點驚訝。
04:21
I'm just showing the New York Times website here.
98
261260
3000
我現在顯示的是紐約時報的網頁,
04:24
So Pivot, this application --
99
264260
2000
所以「樞紐」,這個應用程式,
04:26
I don't want to call it a browser; it's really not a browser,
100
266260
2000
我不想稱它為瀏覽器,因爲它並不是一個瀏覽器,
04:28
but you can view web pages with it --
101
268260
3000
但是你可以用它來看網頁。
04:31
and we bring that zoomable technology
102
271260
2000
我們引進了可縮放技術,
04:33
to every single web page like this.
103
273260
3000
運用到每一個網頁。
04:36
So I can step back,
104
276260
3000
所以我可以退出,
04:39
pop right back into a specific section.
105
279260
2000
快速回到一個特定的部分。
04:41
Now the reason why this is important is because,
106
281260
2000
為什麼這很重要?因為,
04:43
by virtue of just viewing web pages in this way,
107
283260
3000
這樣看網頁的好處是,
04:46
I can look at my entire browsing history
108
286260
2000
我可以將我的整個瀏覽歷史,
04:48
in the exact same way.
109
288260
2000
完整重現。
04:50
So I can drill into what I've done
110
290260
2000
所以我可以深入探索,
04:52
over specific time frames.
111
292260
2000
在過去某段時間內,我曾經做過的事。
04:54
Here, in fact, is the state
112
294260
2000
這邊所顯示的,事實上, 就在剛剛
04:56
of all the demo that I just gave.
113
296260
2000
我做過的所有的示範。
04:58
And I can sort of replay some stuff that I was looking at earlier today.
114
298260
3000
我可以重播一些今天前些時間我在搜尋的東西。
05:01
And, if I want to step back and look at everything,
115
301260
3000
而如果我想退後一步,縱觀所局,
05:04
I can slice and dice my history,
116
304260
2000
我可以層層切割我的歷史紀錄,
05:06
perhaps by my search history --
117
306260
2000
例如我的搜尋紀錄。
05:08
here, I was doing some nepotistic searching,
118
308260
2000
我在這裡做一些相關的搜尋,
05:10
looking for Bing, over here for Live Labs Pivot.
119
310260
3000
搜尋 Bing,這裡是 Live 實驗室的 Pivot。
05:13
And from these, I can drill into the web page
120
313260
2000
從那裡,我可以進入網頁,
05:15
and just launch them again.
121
315260
2000
只要再打開就可以了。
05:17
It's one metaphor repurposed multiple times,
122
317260
3000
這是同樣的原始資料,因不同目的被多次組合使用,
05:20
and in each case it makes the whole greater
123
320260
2000
而每一次的重新組合使得它
05:22
than the sum of the parts with the data.
124
322260
2000
比各個部分的總和更爲強大。
05:24
So right now, in this world,
125
324260
3000
所以, 現在, 在這個世界上
05:27
we think about data as being this curse.
126
327260
3000
我們說到數據的時候常常提到這個詛咒,
05:30
We talk about the curse of information overload.
127
330260
3000
我們會提到資訊爆炸,
05:33
We talk about drowning in data.
128
333260
3000
我們會提到淹沒在資料中。
05:36
What if we can actually turn that upside down
129
336260
2000
如果我們能夠顛覆這些想法,
05:38
and turn the web upside down,
130
338260
2000
顛覆網路世界,
05:40
so that instead of navigating from one thing to the next,
131
340260
3000
相對於一個東西連接到另一個東西,
05:43
we get used to the habit of being able to go from many things to many things,
132
343260
3000
讓我們開始來習慣從多樣向多樣的轉換,
05:46
and then being able to see the patterns
133
346260
2000
然後能夠看到
05:48
that were otherwise hidden?
134
348260
2000
隱藏其中的規律。
05:50
If we can do that, then instead of being trapped in data,
135
350260
5000
如果我們能做到,那麼,我們將不再被困於大量的資料,
05:55
we might actually extract information.
136
355260
3000
我們或許可以真的從中萃取出有用的資訊。
05:58
And, instead of dealing just with information,
137
358260
2000
而,除了單純地處理資訊,
06:00
we can tease out knowledge.
138
360260
2000
我們可以獲取知識。
06:02
And if we get the knowledge, then maybe even there's wisdom to be found.
139
362260
3000
而如果我們得到了知識, 也許我們就會找到智慧。
06:05
So with that, I thank you.
140
365260
2000
這就是我的總結, 謝謝大家。
06:07
(Applause)
141
367260
8000
(掌聲)
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。