Gary Flake: is Pivot a turning point for web exploration?

60,384 views ・ 2010-03-03

TED


μ•„λž˜ μ˜λ¬Έμžλ§‰μ„ λ”λΈ”ν΄λ¦­ν•˜μ‹œλ©΄ μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€.

λ²ˆμ—­: Soonho Kong κ²€ν† : Bumbae Kim
00:16
If I can leave you with one big idea today,
0
16260
2000
였늘 μ œκ°€ μ—¬λŸ¬λΆ„μ—κ²Œ 였직 ν•œκ°€μ§€ μ•„μ΄λ””μ–΄λ§Œμ„ μ „ν•΄μ•Όν•œλ‹€λ©΄,
00:18
it's that the whole of the data
1
18260
2000
그것은 μš°λ¦¬κ°€ μ†ŒλΉ„ν•˜λŠ”
00:20
in which we consume
2
20260
2000
λͺ¨λ“  데이터 전체가 κ·Έλ“€μ˜ 뢀뢄합보닀
00:22
is greater that the sum of the parts,
3
22260
2000
ν¬λ‹€λŠ” 것을 μ•Œλ¦¬κ³  μ‹ΆμŠ΅λ‹ˆλ‹€.
00:24
and instead of thinking about information overload,
4
24260
3000
그리고, μ •λ³΄μ˜ ν™μˆ˜ μ†μ—μ„œ κ³ λ―Όν•˜κΈ°λ³΄λ‹€λŠ”
00:27
what I'd like you to think about is how
5
27260
2000
μ €λŠ” μ—¬λŸ¬λΆ„μ΄ μ΄λŸ¬ν•œ 정보듀을 μ–΄λ–»κ²Œ μ΄μš©ν•΄,
00:29
we can use information so that patterns pop
6
29260
3000
κ·Έ μ•ˆμ— λ‚˜νƒ€λ‚˜λŠ” νŒ¨ν„΄λ“€μ„ μ°Ύμ•„λ‚΄κ³ 
00:32
and we can see trends that would otherwise be invisible.
7
32260
3000
μˆ¨κ²¨μ ΈμžˆλŠ” 흐름듀을 λ³Ό 수 μžˆμ„μ§€μ— λŒ€ν•΄μ„œ μƒκ°ν•˜κΈ°λ₯Ό λ°”λžλ‹ˆλ‹€.
00:35
So what we're looking at right here is a typical mortality chart
8
35260
3000
μ§€κΈˆ μ—¬κΈ°μ„œ λ³΄λŠ” 것은 μ—°λ ΉλŒ€μ— λŒ€ν•œ
00:38
organized by age.
9
38260
2000
일반적인 μ‚¬λ§μœ¨ν‘œ μž…λ‹ˆλ‹€.
00:40
This tool that I'm using here is a little experiment.
10
40260
2000
μ œκ°€ μ‚¬μš©ν•˜κ³  μžˆλŠ” 이 λ„κ΅¬λŠ” μž‘μ€ μ‹€ν—˜μ˜ ν•˜λ‚˜λ‘œ,
00:42
It's called Pivot, and with Pivot what I can do
11
42260
3000
"피봇(Pivot)"이라 λΆ€λ¦…λ‹ˆλ‹€. μ €λŠ” 이 피봇을 톡해
00:45
is I can choose to filter in one particular cause of deaths -- say, accidents.
12
45260
4000
νŠΉμ • 사망원인에 λŒ€ν•΄ μ‚΄νŽ΄λ³Ό 수 μžˆμŠ΅λ‹ˆλ‹€. μ—¬κΈ°μ„œλŠ” "사고"κ°€ 되겠죠.
00:49
And, right away, I see there's a different pattern that emerges.
13
49260
3000
λ°”λ‘œ, μƒˆλ‘œμš΄ νŒ¨ν„΄μ΄ λ‚˜νƒ€λ‚©λ‹ˆλ‹€.
00:52
This is because, in the mid-area here,
14
52260
2000
이곳 쀑간 ꡬ역은 λŒ€λΆ€λΆ„μ˜ μ‚¬λžŒλ“€μ΄
00:54
people are at their most active,
15
54260
2000
κ°€μž₯ ν™œλ°œνžˆ ν™œλ™ν•˜λŠ” μ—°λ ΉλŒ€μ΄κΈ° λ•Œλ¬Έμ΄κ³ ,
00:56
and over here they're at their most frail.
16
56260
2000
이곳은 λ‹€μˆ˜κ°€ κ°€μž₯ λ…Έμ‡ ν•œ μ—°λ ΉλŒ€μ΄κΈ° λ•Œλ¬Έμž…λ‹ˆλ‹€.
00:58
We can step back out again
17
58260
2000
μš°λ¦¬λŠ” μ—¬κΈ°μ„œ ν•œλ°œ 더 λ’€λ‘œ λ¬ΌλŸ¬μ„œ
01:00
and then reorganize the data by cause of death,
18
60260
2000
사망 원인에 따라 μžλ£Œλ“€μ„ μž¬μ •λ¦¬ν•  μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.
01:02
seeing that circulatory diseases and cancer
19
62260
3000
μˆœν™˜κ³„ μ§ˆλ³‘λ“€κ³Ό 암이 κ°€μž₯ 일반적인 사망 μ›μΈμœΌλ‘œ
01:05
are the usual suspects, but not for everyone.
20
65260
3000
λ‚˜νƒ€λ‚˜λŠ”κ΅°μš”. ν•˜μ§€λ§Œ λͺ¨λ‘μ—κ²Œ 그런 것은 μ•„λ‹™λ‹ˆλ‹€.
01:08
If we go ahead and we filter by age --
21
68260
3000
μš°λ¦¬κ°€ μ—°λ ΉλŒ€λ‘œ 자료λ₯Ό μ •λ ¬ν•˜κ³ ,
01:11
say 40 years or less --
22
71260
2000
40λŒ€ μ΄ν•˜μ— λŒ€ν•΄ μ‚΄νŽ΄λ³΄λ©΄,
01:13
we see that accidents are actually
23
73260
2000
μš°λ¦¬λŠ” '사고'κ°€ μ‚¬λžŒλ“€μ΄ κ°€μž₯ μ‘°μ‹¬ν•΄μ•Όν•˜λŠ”
01:15
the greatest cause that people have to be worried about.
24
75260
3000
사망 μ›μΈμž„μ„ μ•Œμˆ˜ μžˆμŠ΅λ‹ˆλ‹€.
01:18
And if you drill into that, it's especially the case for men.
25
78260
3000
그리고 쑰금 더 μžμ„Ένžˆ μ‚΄νŽ΄λ³΄λ©΄ νŠΉνžˆλ‚˜ λ‚¨μ„±μ—κ²Œ 해당됨을 μ•Œ 수 있죠.
01:21
So you get the idea
26
81260
2000
κ²°κ΅­ μ—¬λŸ¬λΆ„λ“€μ€,
01:23
that viewing information, viewing data in this way,
27
83260
3000
정보λ₯Ό λ³΄κ±°λ‚˜ 이런 λ°©λ²•μœΌλ‘œ μžλ£Œλ“€μ„ 볾으둜써,
01:26
is a lot like swimming
28
86260
2000
마치 μ‚΄μ•„μžˆλŠ” 정보듀 즉, μΈν¬κ·Έλž˜ν”½ μ•ˆμ—μ„œ
01:28
in a living information info-graphic.
29
88260
3000
μœ μ˜ν•˜λ“― 유기적 아이디어λ₯Ό 얻을 수 μžˆμŠ΅λ‹ˆλ‹€.
01:31
And if we can do this for raw data,
30
91260
2000
그럼 μš°λ¦¬κ°€ 미가곡 데이터에 λŒ€ν•΄ μ΄λ ‡κ²Œ ν•  수 μžˆλ‹€λ©΄,
01:33
why not do it for content as well?
31
93260
3000
κ°€κ³΅λœ 자료, "컨텐츠"에 λŒ€ν•΄μ„œλ„ λͺ»ν•  μ΄μœ κ°€ μ—†κ² μ£ ?
01:36
So what we have right here
32
96260
2000
κ·Έλž˜μ„œ μš°λ¦¬κ°€ μ§€κΈˆ μ—¬κΈ°μ„œ λ³΄μ—¬λ“œλ¦΄ 것은
01:38
is the cover of every single Sports Illustrated
33
98260
3000
μ§€κΈˆκΉŒμ§€ μΆœνŒλ˜μ—ˆλ˜ 슀포츠 μΌλŸ¬μŠ€νŠΈλ ˆμ΄ν‹°λ“œ μž‘μ§€μ˜
01:41
ever produced.
34
101260
2000
λͺ¨λ“  μ²«νŽ˜μ΄μ§€μž…λ‹ˆλ‹€.
01:43
It's all here; it's all on the web.
35
103260
2000
λͺ¨λ‘ μ—¬κΈ°μžˆμŠ΅λ‹ˆλ‹€. λͺ¨λ‘ 웹상에 μ‘΄μž¬ν•˜λŠ” 것듀이죠.
01:45
You can go back to your rooms and try this after my talk.
36
105260
3000
제 이야기가 λλ‚œ 후에, μ—¬λŸ¬λΆ„μ˜ λ°©μ—μ„œλ„ λͺ¨λ‘ ν•΄ 보싀 수 μžˆμŠ΅λ‹ˆλ‹€.
01:48
With Pivot, you can drill into a decade.
37
108260
3000
피봇을 μ΄μš©ν•΄ 10λ…„ λ™μ•ˆμ˜ μ²«νŽ˜μ΄μ§€λ“€μ΄λ‚˜
01:51
You can drill into a particular year.
38
111260
2000
νŠΉμ • μ—°λ„μ˜ μ²«νŽ˜μ΄μ§€λ“€μ— λŒ€ν•΄μ„œ μžμ„Ένžˆ μ‚΄νŽ΄λ³Ό 수 μžˆμŠ΅λ‹ˆλ‹€.
01:53
You can jump right into a specific issue.
39
113260
3000
νŠΉμ • ν˜Έμ— λŒ€ν•΄μ„œ λ°”λ‘œ μ‚΄νŽ΄λ³Ό μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.
01:56
So I'm looking at this; I see the athletes
40
116260
2000
자, 그럼 μ €λŠ” 이것을 μ‚΄νŽ΄λ³΄κΈ°λ‘œ ν•˜μ£ .
01:58
that have appeared in this issue, the sports.
41
118260
2000
이번 ν˜Έμ— λ‚˜μ˜¨ μš΄λ™ μ„ μˆ˜λ“€μ— λŒ€ν•΄ μ‚΄νŽ΄λ³΄κ² μŠ΅λ‹ˆλ‹€.
02:00
I'm a Lance Armstrong fan, so I'll go ahead and I'll click on that,
42
120260
3000
μ €λŠ” 랜슀 μ•”μŠ€νŠΈλ‘±μ˜ νŒ¬μž…λ‹ˆλ‹€. κ·ΈλŸ¬λ‹ˆ 이것을 ν΄λ¦­ν•΄λ³΄κ² μŠ΅λ‹ˆλ‹€.
02:03
which reveals, for me, all the issues
43
123260
2000
랜슀 μ•”μŠ€νŠΈλ‘±μ˜ 사진이 μ‹€λ Έλ˜
02:05
in which Lance Armstrong's been a part of.
44
125260
2000
λͺ¨λ“  ν˜Έλ“€μ΄ 화면에 λ‚˜νƒ€λ‚©λ‹ˆλ‹€.
02:07
(Applause)
45
127260
3000
(λ°•μˆ˜)
02:10
Now, if I want to just kind of take a peek at these,
46
130260
3000
자, μ œκ°€ μ΄μ€‘μ—μ„œ μœ λ… λˆˆμ— λ„λŠ” 것,
02:13
I might think,
47
133260
2000
μ•„λ§ˆλ„ μ΄λ ‡κ²Œ,
02:15
"Well, what about taking a look at all of cycling?"
48
135260
2000
"λͺ¨λ“  싸이클링에 λŒ€ν•΄ μ‚΄νŽ΄λ³΄λ©΄ μ–΄λ–¨κΉŒ?"라 μƒκ°ν•œλ‹€λ©΄,
02:17
So I can step back, and expand on that.
49
137260
2000
μ €λŠ” ν•œλ°œ λ¬ΌλŸ¬λ‚˜μ„œ, 그것을 펼쳐볼 수 μžˆμŠ΅λ‹ˆλ‹€
02:19
And I see Greg LeMond now.
50
139260
2000
이제 그래그 레λͺ¬μ„ λ³Ό 수 μžˆκ΅°μš”.
02:21
And so you get the idea that when you
51
141260
2000
자 이제 이것이 μ–΄λ–€ 것인지 μ•Œ 수 μžˆκ² μ§€μš”.
02:23
navigate over information this way --
52
143260
2000
이런 λ°©μ‹μœΌλ‘œ 정보듀 속을 ν•­ν•΄ν•΄λ‚˜κ°ˆ λ•Œ,
02:25
going narrower, broader,
53
145260
2000
깊이 λ“€μ–΄κ°€κΈ°λ„ν•˜κ³ , λ„“κ²Œ 보기도 ν•˜κ³ ,
02:27
backing in, backing out --
54
147260
2000
λ“€μ–΄κ°”λ‹€κ°€, λ‚˜μ™”λ‹€κ°€ ν•˜κΈ°λ„ ν•˜λ©΄μ„œ
02:29
you're not searching, you're not browsing.
55
149260
2000
λ‹¨μˆœνžˆ 검색을 ν•˜κ±°λ‚˜, μ›Ή λΈŒλΌμš°μ§•μ„ ν•˜λŠ” 것이 μ•„λ‹Œ
02:31
You're doing something that's actually a little bit different.
56
151260
2000
μ‹€μ œλ‘œλŠ” κΈ°μ‘΄κ³Ό μ•½κ°„ λ‹€λ₯Έ 무언가λ₯Ό ν•˜κ²Œλ©λ‹ˆλ‹€.
02:33
It's in between, and we think it changes
57
153260
3000
μ΄λŠ” 검색과 μ›ΉλΈŒλΌμš°μ§•μ˜ 쀑간쯀이며, μš°λ¦¬λŠ”
02:36
the way information can be used.
58
156260
2000
이것이 정보가 μ‚¬μš©λ˜λŠ” 방식을 λ°”κΏ€ 것이라 μƒκ°ν•©λ‹ˆλ‹€.
02:38
So I want to extrapolate on this idea a bit
59
158260
2000
μ €λŠ” 이 아이디어λ₯Ό 쑰금 더 νŠΉμ΄ν•œ 무언가에
02:40
with something that's a little bit crazy.
60
160260
2000
λŒ€ν•΄μ„œ μ μš©μ‹œμΌœλ³΄κ³ μž ν•©λ‹ˆλ‹€.
02:42
What we're done here is we've taken every single Wikipedia page
61
162260
3000
μš°λ¦¬λŠ” λͺ¨λ“  μœ„ν‚€ν”Όλ””μ•„ νŽ˜μ΄μ§€λ₯Ό 가지고 μ™€μ„œ
02:45
and we reduced it down to a little summary.
62
165260
3000
그것듀을 μž‘μ€ μš”μ•½ νŽ˜μ΄μ§€λ“€λ‘œ μ€„μ—¬λ‘μ—ˆμŠ΅λ‹ˆλ‹€.
02:48
So the summary consists of just a little synopsis
63
168260
3000
λ”°λΌμ„œ μš”μ•½ νŽ˜μ΄μ§€λ“€μ€ 짧은 μ€„κ±°λ¦¬λ‘œ κ΅¬μ„±λ˜μ–΄ 있고
02:51
and an icon to indicate the topical area that it comes from.
64
171260
3000
μ•„μ΄μ½˜λ“€μ€ κ·Έ νŽ˜μ΄μ§€κ°€ μ‹€λ €μžˆλŠ” μ˜μ—­μ„ λ‚˜νƒ€λ‚΄κ³  μžˆμŠ΅λ‹ˆλ‹€.
02:54
I'm only showing the top 500
65
174260
3000
μ €λŠ” μ΅œμƒμœ„ 500개의
02:57
most popular Wikipedia pages right here.
66
177260
2000
κ°€μž₯ 유λͺ…ν•œ μœ„ν‚€ν”Όλ””μ•„ νŽ˜μ΄μ§€λ“€μ„ μ§€κΈˆ λ³΄μ—¬λ“œλ¦¬κ³  μžˆμŠ΅λ‹ˆλ‹€.
02:59
But even in this limited view,
67
179260
2000
μ΄λŸ¬ν•œ μ œν•œμ μΈ κ²ƒλ“€μœΌλ‘œλ„
03:01
we can do a lot of things.
68
181260
2000
μš°λ¦¬λŠ” λ§Žμ€ 것듀을 ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
03:03
Right away, we get a sense of what are the topical domains
69
183260
2000
μ§€κΈˆ λ‹Ήμž₯, μš°λ¦¬λŠ” μœ„ν‚€ν”Όλ””μ•„μ—μ„œ
03:05
that are most popular on Wikipedia.
70
185260
2000
κ°€μž₯ 유λͺ…ν•œ μ„ΈλΆ€ ν•­λͺ©λ“€μ΄ μ–΄λ–€ 것듀인지λ₯Ό μ•Œ 수 있죠.
03:07
I'm going to go ahead and select government.
71
187260
2000
κ³„μ†ν•΄μ„œ 이제 μ •λΆ€λ₯Ό μ„ νƒν•΄λ³΄κ² μŠ΅λ‹ˆλ‹€.
03:09
Now, having selected government,
72
189260
3000
자, 이제 μ •λΆ€λ₯Ό μ„ νƒν–ˆκ³ ,
03:12
I can now see that the Wikipedia categories
73
192260
2000
정뢀와 κ°€μž₯ λΉˆλ²ˆν•˜κ²Œ κ΄€λ ¨λ˜λŠ”
03:14
that most frequently correspond to that
74
194260
2000
μœ„ν‚€ν”Όλ””μ•„μ˜ μΉ΄ν…Œκ³ λ¦¬κ°€
03:16
are Time magazine People of the Year.
75
196260
3000
νƒ€μž„μ§€μ˜ "μ˜¬ν•΄μ˜ μ‚¬λžŒλ“€"μž„μ„ μ•Œ 수 μžˆμŠ΅λ‹ˆλ‹€.
03:19
So this is really important because this is an insight
76
199260
3000
μ΄λŸ¬ν•œ 톡찰은 μœ„ν‚€ν”Όλ””μ•„μ•ˆμ˜ μ–΄λ–€ νŽ˜μ΄μ§€μ—λ„
03:22
that was not contained within any one Wikipedia page.
77
202260
3000
속해 μžˆμ§€ μ•Šμ€ 것이기 λ•Œλ¬Έμ— ꡉμž₯히 μ€‘μš”ν•©λ‹ˆλ‹€.
03:25
It's only possible to see that insight
78
205260
2000
ν•œκ±ΈμŒ λ’€λ‘œ λ¬ΌλŸ¬μ„œμ„œ 전체λ₯Ό λ³Ό 수 μžˆμ„ λ•Œμ—λ§Œ
03:27
when you step back and look at all of them.
79
207260
3000
μ΄λŸ¬ν•œ 톡찰λ ₯을 κ°€μ§ˆ 수 μžˆμŠ΅λ‹ˆλ‹€.
03:30
Looking at one of these particular summaries,
80
210260
2000
이런 νŠΉλ³„ν•œ μš”μ•½λ“€ μ€‘μ˜ ν•˜λ‚˜λ₯Ό μ‚΄νŽ΄λ³΄λ©΄μ„œ,
03:32
I can then drill into the concept of
81
212260
3000
μ €λŠ” νƒ€μž„μ§€μ˜ "μ˜¬ν•΄μ˜ μ‚¬λžŒλ“€"에 λŒ€ν•΄μ„œ
03:35
Time magazine Person of the Year,
82
215260
2000
보닀 μžμ„Ένžˆ μ•Œμ•„ λ³Ό 수 있고,
03:37
bringing up all of them.
83
217260
2000
그것듀 λͺ¨λ‘λ₯Ό 뢈러올 수 μžˆμŠ΅λ‹ˆλ‹€.
03:39
So looking at these people,
84
219260
2000
이 μ‚¬λžŒλ“€μ„ μ‚΄νŽ΄λ³΄λ©΄,
03:41
I can see that the majority come from government;
85
221260
3000
μ €λŠ” λŒ€λΆ€λΆ„μ˜ μ‚¬λžŒλ“€μ΄ "μ •λΆ€"와 κ΄€λ ¨λœ κ²ƒμž„μ„ μ•Œ 수 μžˆμŠ΅λ‹ˆλ‹€.
03:45
some have come from natural sciences;
86
225260
3000
λͺ‡λͺ‡μ€ μžμ—°κ³Όν•™κ³Ό 관련이 μžˆλ„€μš”.
03:49
some, fewer still, have come from business --
87
229260
3000
λͺ‡λͺ‡μ€, μž‘μ€ μˆ«μžμ§€λ§Œ, 경영과 관련이 μžˆμŠ΅λ‹ˆλ‹€.
03:53
there's my boss --
88
233260
2000
μ—¬κΈ° 제 상사가 μžˆκ΅°μš”.
03:55
and one has come from music.
89
235260
5000
그리고 λͺ‡λͺ‡μ€ μŒμ•…κ³Ό 관련이 μžˆμŠ΅λ‹ˆλ‹€.
04:00
And interestingly enough,
90
240260
2000
그리고 μΆ©λΆ„νžˆ ν₯λ―Έλ‘­κ²Œλ„,
04:02
Bono is also a TED Prize winner.
91
242260
3000
λ³΄λ…ΈλŠ” λ˜ν•œ TED Prizeλ₯Ό 받은 μ‚¬λžŒ μž…λ‹ˆλ‹€.
04:05
So we can go, jump, and take a look at all the TED Prize winners.
92
245260
3000
κ·Έλž˜μ„œ μš°λ¦¬λŠ” TED Prize λ₯Ό 받은 μ‚¬λžŒλ“€μ„ λͺ¨λ‘ μ‚΄νŽ΄λ³Ό 수 μžˆμŠ΅λ‹ˆλ‹€.
04:08
So you see, we're navigating the web for the first time
93
248260
3000
μ—¬λŸ¬λΆ„μ΄ λ³΄μ‹œλŠ” κ²ƒμ²˜λŸΌ, μš°λ¦¬λŠ” 웹을 νŽ˜μ΄μ§€μ—μ„œ νŽ˜μ΄μ§€λ₯Ό μ΄λ™ν•˜λŠ” 것이 μ•„λ‹Œ,
04:11
as if it's actually a web, not from page-to-page,
94
251260
3000
졜초둜 마치 웹이 거미쀄(web)인 것과 같이
04:14
but at a higher level of abstraction.
95
254260
2000
보닀 μƒμœ„μ˜ κ°œλ…μ—μ„œ νƒμƒ‰ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
04:16
And so I want to show you one other thing
96
256260
2000
μ €λŠ” 이제 μ—¬λŸ¬λΆ„μ΄ 쑰금 λ†€λΌμ‹€λ§Œν•œ
04:18
that may catch you a little bit by surprise.
97
258260
3000
λ‹€λ₯Έ 것듀을 λ³΄μ—¬λ“œλ¦¬κ³ μž ν•©λ‹ˆλ‹€.
04:21
I'm just showing the New York Times website here.
98
261260
3000
μ €λŠ” μ§€κΈˆ λ‰΄μš• νƒ€μž„μ§€μ˜ μ›Ήμ‚¬μ΄νŠΈλ₯Ό 보고 μžˆμŠ΅λ‹ˆλ‹€.
04:24
So Pivot, this application --
99
264260
2000
이제 이 μ‘μš©ν”„λ‘œκ·Έλž¨, 즉 피봇을 μ΄μš©ν•˜λ©΄ -
04:26
I don't want to call it a browser; it's really not a browser,
100
266260
2000
μ €λŠ” 이것을 브라우져라고 λΆ€λ₯΄κ³  싢지 μ•ŠμŠ΅λ‹ˆλ‹€; 사싀 이것은 λΈŒλΌμš°μ Έκ°€ μ•„λ‹™λ‹ˆλ‹€.
04:28
but you can view web pages with it --
101
268260
3000
ν•˜μ§€λ§Œ μ—¬λŸ¬λΆ„μ€ 이것을 μ΄μš©ν•΄μ„œ μ›Ή νŽ˜μ΄μ§€λ“€μ„ λ³Ό 수 있고
04:31
and we bring that zoomable technology
102
271260
2000
μš°λ¦¬λŠ” ν™•λŒ€/μΆ•μ†Œ κΈ°μˆ μ„
04:33
to every single web page like this.
103
273260
3000
이와 같은 각각의 μ›ΉνŽ˜μ΄μ§€μ— μ μš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
04:36
So I can step back,
104
276260
3000
ν•œ 걸음 λ’€λ‘œ λ¬ΌλŸ¬λ‚¬λ‹€κ°€
04:39
pop right back into a specific section.
105
279260
2000
λ‹€μ‹œ νŠΉμ • μœ„μΉ˜λ‘œ λŒμ•„κ°ˆ 수 μžˆμŠ΅λ‹ˆλ‹€.
04:41
Now the reason why this is important is because,
106
281260
2000
이것이 μ€‘μš”ν•œ μ΄μœ λŠ”
04:43
by virtue of just viewing web pages in this way,
107
283260
3000
μ›ΉνŽ˜μ΄μ§€λ“€μ„ μ΄λ ‡κ²Œ 볾으둜써
04:46
I can look at my entire browsing history
108
286260
2000
λ‚˜μ˜ μ›ΉλΈŒλΌμš°μ§• νžˆμŠ€ν† λ¦¬λ“€ μ—­μ‹œ λ™μΌν•˜κ²Œ
04:48
in the exact same way.
109
288260
2000
λ³Ό 수 있기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
04:50
So I can drill into what I've done
110
290260
2000
즉, μ œκ°€ νŠΉμ • μ‹œκ°„ κ°„κ²©λ™μ•ˆ
04:52
over specific time frames.
111
292260
2000
무엇을 ν–ˆλŠ”μ§€λ₯Ό μžμ„Ένžˆ μ‚΄νŽ΄λ³Ό 수 μžˆμŠ΅λ‹ˆλ‹€
04:54
Here, in fact, is the state
112
294260
2000
여기에, 사싀, μ œκ°€ κ·Έλ™μ•ˆ ν–ˆλ˜
04:56
of all the demo that I just gave.
113
296260
2000
λͺ¨λ“  데λͺ¨λ“€μ΄ λ“€μ–΄ μžˆκ΅°μš”.
04:58
And I can sort of replay some stuff that I was looking at earlier today.
114
298260
3000
그리고 μ €λŠ” μ œκ°€ 였늘 일찍이 ν–ˆλ˜ 것듀을 λ˜ν’€μ΄ν•΄λ³Ό 수 μžˆμŠ΅λ‹ˆλ‹€.
05:01
And, if I want to step back and look at everything,
115
301260
3000
그리고 λ§Œμ•½ ν•œκ±ΈμŒ λ¬ΌλŸ¬μ„œμ„œ λͺ¨λ“  것을 보고자 ν•œλ‹€λ©΄
05:04
I can slice and dice my history,
116
304260
2000
μ €λŠ” μ €μ˜ 기둝듀, μ•„λ§ˆλ„ μ €μ˜ 검색 기둝듀을
05:06
perhaps by my search history --
117
306260
2000
μƒ…μƒ…νžˆ μ°Ύμ•„λ³Ό 수 μžˆμŠ΅λ‹ˆλ‹€.
05:08
here, I was doing some nepotistic searching,
118
308260
2000
μ—¬κΈ°, μ €λŠ” 저와 μΉœλ°€ν•œ 것듀을 κ²€μƒ‰ν–ˆμŠ΅λ‹ˆλ‹€
05:10
looking for Bing, over here for Live Labs Pivot.
119
310260
3000
Bing κ²€μƒ‰μ—”μ§„μ—μ„œ, 라이브랩 피봇에 κ΄€ν•΄μ„œ κ²€μƒ‰ν–ˆμŠ΅λ‹ˆλ‹€.
05:13
And from these, I can drill into the web page
120
313260
2000
이것듀을 ν†΅ν•΄μ„œ μ €λŠ” μ›ΉνŽ˜μ΄μ§€λ₯Ό μ‚΄νŽ΄λ³Ό 수 있고
05:15
and just launch them again.
121
315260
2000
λ‹€μ‹œ κ·Έ νŽ˜μ΄μ§€λ“€μ„ μ—΄μ–΄λ³Ό μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.
05:17
It's one metaphor repurposed multiple times,
122
317260
3000
이것이 ν•˜λ‚˜μ˜ 메타포가 λͺ©μ μ— 따라 μ—¬λŸ¬λ²ˆ μž¬μƒμ‚°λœ 것이고,
05:20
and in each case it makes the whole greater
123
320260
2000
각각의 κ²½μš°μ— λŒ€ν•΄ 데이터 뢀뢄합보닀
05:22
than the sum of the parts with the data.
124
322260
2000
전체 데이터가 더 큰 κ²ƒμž„μ„ 보여쀀 κ²ƒμž…λ‹ˆλ‹€
05:24
So right now, in this world,
125
324260
3000
μ§€κΈˆ, 이 μ„Έκ³„μ—μ„œ
05:27
we think about data as being this curse.
126
327260
3000
μš°λ¦¬λŠ” 데이터λ₯Ό 골치거리둜 μƒκ°ν•©λ‹ˆλ‹€.
05:30
We talk about the curse of information overload.
127
330260
3000
μš°λ¦¬λŠ” 정보 κ³Όλ‹€μ˜ κ³¨μΉ˜κ±°λ¦¬μ— λŒ€ν•΄μ„œ μ΄μ•ΌκΈ°ν•˜κ³ 
05:33
We talk about drowning in data.
128
333260
3000
λ„ˆλ¬΄λ„ λ§Žμ€ 데이터에 ν—ˆμš°μ κ±°λ¦¬λŠ” 것을 μ΄μ•ΌκΈ°ν•©λ‹ˆλ‹€.
05:36
What if we can actually turn that upside down
129
336260
2000
ν•˜μ§€λ§Œ μš°λ¦¬κ°€ 이λ₯Ό λ’€μ§šμ„ 수 μžˆλ‹€λ©΄, κ·ΈλŸ¬λ‹ˆκΉŒ
05:38
and turn the web upside down,
130
338260
2000
μ›Ή 자체λ₯Ό λ’€μ§šμ„ 수 μžˆλ‹€ μƒκ°ν•œλ‹€λ©΄ μ–΄λ–¨κΉŒμš”?
05:40
so that instead of navigating from one thing to the next,
131
340260
3000
ν•˜λ‚˜μ—μ„œ κ·Έ λ‹€μŒμœΌλ‘œ κ°€λŠ” 것이 μ•„λ‹ˆλΌ
05:43
we get used to the habit of being able to go from many things to many things,
132
343260
3000
μ—¬λŸ¬κ°œλ“€λ‘œλΆ€ν„° λ˜λ‹€λ₯Έ μ—¬λŸ¬κ°œλ‘œ μ΄λ™ν•˜λŠ” 것에 μ΅μˆ™ν•΄μ§€κ³ ,
05:46
and then being able to see the patterns
133
346260
2000
κΈ°μ‘΄μ—λŠ” 숨겨져 있던 νŠΉμ • νŒ¨ν„΄λ“€μ„
05:48
that were otherwise hidden?
134
348260
2000
λ³Ό 수 μžˆλ‹€λ©΄ μ–΄λ–¨κΉŒμš”?
05:50
If we can do that, then instead of being trapped in data,
135
350260
5000
λ§Œμ•½ μš°λ¦¬κ°€ 그것을 ν•  수 μžˆλ‹€λ©΄, μš°λ¦¬λŠ” μžλ£Œλ“€μ— κ°–ν˜€ μžˆλŠ” 것이 μ•„λ‹ˆλΌ
05:55
we might actually extract information.
136
355260
3000
μ‹€μ œλ‘œ κ·Έ μžλ£Œλ“€λ‘œλΆ€ν„° 정보λ₯Ό 끄집어 λ‚Ό 수 μžˆμ„ 것 μž…λ‹ˆλ‹€.
05:58
And, instead of dealing just with information,
137
358260
2000
그리고, λ‹¨μˆœνžˆ 정보λ₯Ό λ‹€λ£¨λŠ”λ°μ— κ·ΈμΉ˜λŠ” 것이 μ•„λ‹ˆλΌ,
06:00
we can tease out knowledge.
138
360260
2000
지식을 μ•Œμ•„λ‚΄λ €κ³  μ• μ“Έ 수 μžˆμŠ΅λ‹ˆλ‹€.
06:02
And if we get the knowledge, then maybe even there's wisdom to be found.
139
362260
3000
μš°λ¦¬κ°€ λ§Œμ•½ κ·Έ 지식듀을 μ•Œ 수 μžˆλ‹€λ©΄, μš°λ¦¬λŠ” μ•„λ§ˆλ„ μ§€ν˜œλ₯Ό μ°Ύμ•„λ‚Ό 수 μžˆμ„ 것 μž…λ‹ˆλ‹€.
06:05
So with that, I thank you.
140
365260
2000
κ°μ‚¬ν•©λ‹ˆλ‹€.
06:07
(Applause)
141
367260
8000
(λ°•μˆ˜)
이 μ›Ήμ‚¬μ΄νŠΈ 정보

이 μ‚¬μ΄νŠΈλŠ” μ˜μ–΄ ν•™μŠ΅μ— μœ μš©ν•œ YouTube λ™μ˜μƒμ„ μ†Œκ°œν•©λ‹ˆλ‹€. μ „ 세계 졜고의 μ„ μƒλ‹˜λ“€μ΄ κ°€λ₯΄μΉ˜λŠ” μ˜μ–΄ μˆ˜μ—…μ„ 보게 될 κ²ƒμž…λ‹ˆλ‹€. 각 λ™μ˜μƒ νŽ˜μ΄μ§€μ— ν‘œμ‹œλ˜λŠ” μ˜μ–΄ μžλ§‰μ„ 더블 ν΄λ¦­ν•˜λ©΄ κ·Έκ³³μ—μ„œ λ™μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€. λΉ„λ””μ˜€ μž¬μƒμ— 맞좰 μžλ§‰μ΄ μŠ€ν¬λ‘€λ©λ‹ˆλ‹€. μ˜κ²¬μ΄λ‚˜ μš”μ²­μ΄ μžˆλŠ” 경우 이 문의 양식을 μ‚¬μš©ν•˜μ—¬ λ¬Έμ˜ν•˜μ‹­μ‹œμ˜€.

https://forms.gle/WvT1wiN1qDtmnspy7