What really happens when you mix medications? | Russ Altman

188,917 views ・ 2016-03-23

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Ivana Krivokuća Lektor: Tijana Mihajlović
00:12
So you go to the doctor and get some tests.
0
12811
3321
Odete kod doktora i obavite neke analize.
00:16
The doctor determines that you have high cholesterol
1
16674
2620
Doktor utvrdi da imate visok holesterol
00:19
and you would benefit from medication to treat it.
2
19318
3171
i da bi bilo dobro da uzimate lekove kako biste to lečili,
00:22
So you get a pillbox.
3
22981
1556
pa uzmete pilule.
00:25
You have some confidence,
4
25505
1199
Verujete, vaš lekar veruje da će to da pomogne.
00:26
your physician has some confidence that this is going to work.
5
26728
2937
Kompanija koja je izumela lek je obavila dosta ispitivanja,
00:29
The company that invented it did a lot of studies, submitted it to the FDA.
6
29689
3553
podnela ga na odobrenje Upravi za hranu i lekove.
00:33
They studied it very carefully, skeptically, they approved it.
7
33266
3107
Ispitali su ga veoma pažljivo, skeptično i odobrili ga.
00:36
They have a rough idea of how it works,
8
36397
1889
Imaju izvesnu predstavu o tome kako deluje,
00:38
they have a rough idea of what the side effects are.
9
38310
2453
o tome koje su nuspojave.
00:40
It should be OK.
10
40787
1150
Trebalo bi da bude u redu.
00:42
You have a little more of a conversation with your physician
11
42864
2818
Dodatno ste pričali sa svojim lekarom
00:45
and the physician is a little worried because you've been blue,
12
45706
2963
i on je malo zabrinut jer ste tužni,
00:48
haven't felt like yourself,
13
48693
1293
niste baš svoji,
ne uživate u stvarima u životu kao i obično.
00:50
you haven't been able to enjoy things in life quite as much as you usually do.
14
50010
3731
00:53
Your physician says, "You know, I think you have some depression.
15
53765
3186
Lekar vam kaže: „Znate, mislim da imate depresiju.
00:57
I'm going to have to give you another pill."
16
57792
2315
Moraću da vam dam druge pilule.“
01:00
So now we're talking about two medications.
17
60934
2483
Tako sad govorimo o dva leka.
01:03
This pill also -- millions of people have taken it,
18
63441
3104
Sa tim pilulama je isto - milioni su ih uzimali,
01:06
the company did studies, the FDA looked at it -- all good.
19
66569
3631
kompanija je ispitivala,
Uprava za hranu i lekove je pregledala, sve je u redu.
01:10
Think things should go OK.
20
70823
2057
Mislite da će sa ovim da bude sve u redu.
01:12
Think things should go OK.
21
72904
2197
Mislite da će i sa ovim da bude sve u redu.
01:15
Well, wait a minute.
22
75125
1439
Ipak, sačekajte malo.
01:16
How much have we studied these two together?
23
76588
3517
Koliko smo ova dva leka izučavali zajedno?
01:20
Well, it's very hard to do that.
24
80630
2300
Pa, to je vrlo teško uraditi.
01:22
In fact, it's not traditionally done.
25
82954
2130
Zapravo, to se po običaju ne radi.
01:25
We totally depend on what we call "post-marketing surveillance,"
26
85108
5518
Potpuno zavisimo od onoga što zovemo „postmarketinški nadzor“,
01:30
after the drugs hit the market.
27
90650
1880
nakon što lek bude pušten na tržište.
01:32
How can we figure out if bad things are happening
28
92996
2848
Kako možemo da otkrijemo da li se nešto loše dešava
01:35
between two medications?
29
95868
1357
između dva leka?
01:37
Three? Five? Seven?
30
97249
2030
Tri? Pet? Sedam?
01:39
Ask your favorite person who has several diagnoses
31
99708
2415
Pitajte svoju omiljenu osobu sa nekoliko dijagnoza
01:42
how many medications they're on.
32
102147
1834
koliko lekova uzima.
01:44
Why do I care about this problem?
33
104530
1580
Zašto je meni stalo do ovog problema? Jako mi je stalo do toga.
01:46
I care about it deeply.
34
106134
1157
01:47
I'm an informatics and data science guy and really, in my opinion,
35
107315
4304
Ja sam tip koji se bavi informatikom i naukom o podacima,
i prema mom mišljenju, jedina nada da razumemo ove interakcije
01:51
the only hope -- only hope -- to understand these interactions
36
111643
3745
01:55
is to leverage lots of different sources of data
37
115412
3056
je da usaglasimo mnogo različitih izvora podataka
01:58
in order to figure out when drugs can be used together safely
38
118492
3556
kako bismo otkrili kada se lekovi mogu bezbedno koristiti zajedno,
02:02
and when it's not so safe.
39
122072
1777
a kada baš i nije bezbedno.
02:04
So let me tell you a data science story.
40
124615
2051
Dopustite da vam ispričam priču o nauci o podacima.
02:06
And it begins with my student Nick.
41
126690
2154
Počinje sa mojim studentom Nikom.
02:08
Let's call him "Nick," because that's his name.
42
128868
2380
Zvaćemo ga „Nik“, jer mu je to ime.
02:11
(Laughter)
43
131272
1592
(Smeh)
02:12
Nick was a young student.
44
132888
1201
Nik je bio mladi student.
02:14
I said, "You know, Nick, we have to understand how drugs work
45
134113
3079
Rekao sam: „Znaš, Nik, moramo da razumemo kako lekovi deluju,
kako deluju zajedno i kako deluju zasebno,
02:17
and how they work together and how they work separately,
46
137216
2626
02:19
and we don't have a great understanding.
47
139866
1922
a ne razumemo mnogo o tome.
02:21
But the FDA has made available an amazing database.
48
141812
2405
Međutim, Uprava za hranu i lekove je objavila neverovatnu bazu podataka.
02:24
It's a database of adverse events.
49
144241
1699
To je baza podataka o neželjenim događajima.
02:26
They literally put on the web --
50
146321
1642
Bukvalno su je postavili na mrežu -
02:27
publicly available, you could all download it right now --
51
147987
3119
javno je dostupna, svi možete da je sada skinete -
02:31
hundreds of thousands of adverse event reports
52
151130
3627
stotine hiljada izveštaja o neželjenim događajijma
02:34
from patients, doctors, companies, pharmacists.
53
154781
3760
od pacijenata, doktora, kompanija, farmaceuta.
02:38
And these reports are pretty simple:
54
158565
1749
Ti izveštaji su prilično jednostavni.
02:40
it has all the diseases that the patient has,
55
160338
2658
Tu su sve bolesti koje pacijent ima,
02:43
all the drugs that they're on,
56
163020
1767
svi lekovi koje uzima
02:44
and all the adverse events, or side effects, that they experience.
57
164811
3818
i svi neželjeni događaji ili nuspojave koje doživljavaju.
02:48
It is not all of the adverse events that are occurring in America today,
58
168653
3436
To nisu svi neželjeni događaji koji se danas javljaju u Americi,
02:52
but it's hundreds and hundreds of thousands of drugs.
59
172113
2578
ali to su stotine i stotine hiljada lekova.
02:54
So I said to Nick,
60
174715
1299
Rekao sam Niku:
02:56
"Let's think about glucose.
61
176038
1826
„Razmotrimo glukozu.
02:57
Glucose is very important, and we know it's involved with diabetes.
62
177888
3567
Glukoza je veoma važna i znamo da je u vezi sa dijabetesom.
03:01
Let's see if we can understand glucose response.
63
181479
3970
Hajde da vidimo da li možemo da razumemo reakciju glukoze.“
03:05
I sent Nick off. Nick came back.
64
185473
2458
Ispratio sam Nika. Vratio se.
03:08
"Russ," he said,
65
188248
1786
„Ras“, rekao je,
03:10
"I've created a classifier that can look at the side effects of a drug
66
190351
5112
„Napravio sam klasifikator koji može da sagleda neželjene efekte leka
03:15
based on looking at this database,
67
195487
2051
na osnovu pregleda baze podataka
03:17
and can tell you whether that drug is likely to change glucose or not."
68
197562
4271
i može nam reći da li postoji šansa
da će taj lek promeniti nivo glukoze ili ne.“
03:21
He did it. It was very simple, in a way.
69
201857
2016
Uspeo je. Bilo je prosto, na neki način.
03:23
He took all the drugs that were known to change glucose
70
203897
2635
Uzeo je sve lekove za koje se zna da menjaju nivo glukoze
03:26
and a bunch of drugs that don't change glucose,
71
206556
2389
i gomilu lekova koji ne menjaju nivo glukoze
03:28
and said, "What's the difference in their side effects?
72
208969
2888
i zapitao se: „U čemu je razlika između njihovih nuspojava?
03:31
Differences in fatigue? In appetite? In urination habits?"
73
211881
4852
Razlike u osećaju premora? Apetitu? U pogledu vršenja mokrenja?“
03:36
All those things conspired to give him a really good predictor.
74
216757
2960
Sve to u sklopu mu je dalo veoma dobro sredstvo predviđanja.
03:39
He said, "Russ, I can predict with 93 percent accuracy
75
219741
2548
Rekao je: „Ras, mogu da predvidim sa 93 posto verovatnoće tačnosti
03:42
when a drug will change glucose."
76
222313
1572
kada će lek menjati nivo glukoze.“
03:43
I said, "Nick, that's great."
77
223909
1416
Rekao sam: „Nik, to je sjajno.“
03:45
He's a young student, you have to build his confidence.
78
225349
2896
On je mladi student, morate da mu podignete samopouzdanje.
03:48
"But Nick, there's a problem.
79
228269
1390
„Ipak, Nik, postoji problem.
03:49
It's that every physician in the world knows all the drugs that change glucose,
80
229683
3960
Činjenica je da svaki lekar na svetu zna sve lekove koji menjaju nivo glukoze
03:53
because it's core to our practice.
81
233667
2038
jer je to u suštini naše prakse.
03:55
So it's great, good job, but not really that interesting,
82
235729
3722
Tako da je to sjajno, odlično obavljeno, ali nije baš naročito zanimljivo,
03:59
definitely not publishable."
83
239475
1531
definitivno ne nešto što se može objaviti.“
04:01
(Laughter)
84
241030
1014
(Smeh)
04:02
He said, "I know, Russ. I thought you might say that."
85
242068
2550
Rekao je: „Znam, Ras. Pretpostavio sam da ćeš to reći.“
04:04
Nick is smart.
86
244642
1152
Nik je pametan.
„Pretpostavio sam da ćeš to reći, pa sam sproveo još jedan eksperiment.
04:06
"I thought you might say that, so I did one other experiment.
87
246149
2874
04:09
I looked at people in this database who were on two drugs,
88
249047
2928
Posmatrao sam ljude u ovoj bazi podataka koji uzimaju dva leka
04:11
and I looked for signals similar, glucose-changing signals,
89
251999
4422
i tražio sam slične signale, signale za promenu nivoa glukoze,
04:16
for people taking two drugs,
90
256445
1624
za osobe koje uzimaju dva leka,
04:18
where each drug alone did not change glucose,
91
258093
5569
pri čemu svaki lek sam po sebi ne menja glukozu,
04:23
but together I saw a strong signal."
92
263686
2460
ali vidim da zajednički daju jak signal.“
04:26
And I said, "Oh! You're clever. Good idea. Show me the list."
93
266170
3149
Rekao sam: „O, pametan si. Dobra ideja. Pokaži mi spisak.“
04:29
And there's a bunch of drugs, not very exciting.
94
269343
2254
Tu je bila gomila lekova, ne naročito zanimljivo.
04:31
But what caught my eye was, on the list there were two drugs:
95
271621
3932
Ono što mi je privuklo pažnju je da su na spisku bila dva leka:
04:35
paroxetine, or Paxil, an antidepressant;
96
275577
3393
paroksetin ili Paksil, antidepresiv,
04:39
and pravastatin, or Pravachol, a cholesterol medication.
97
279756
3570
i pravastatin ili Pravakol, lek protiv holesterola.
04:43
And I said, "Huh. There are millions of Americans on those two drugs."
98
283936
4283
Rekoh: „Ha! Milioni Amerikanaca koriste ova dva leka.“
Zapravo, kako smo kasnije saznali,
04:48
In fact, we learned later,
99
288243
1246
04:49
15 million Americans on paroxetine at the time, 15 million on pravastatin,
100
289513
6032
15 miliona Amerikanaca uzimalo je paroksetin u to vreme
i 15 miliona pravastatin, a milion, prema našoj proceni, uzimalo je oba.
04:55
and a million, we estimated, on both.
101
295569
2817
04:58
So that's a million people
102
298767
1254
Dakle, to je milion ljudi
05:00
who might be having some problems with their glucose
103
300045
2453
koji možda imaju probleme sa glukozom
05:02
if this machine-learning mumbo jumbo that he did in the FDA database
104
302522
3206
ako ovo čudo od mašinskog učenja koje je on sproveo u bazi Uprave
05:05
actually holds up.
105
305752
1254
zaista drži vodu.
Ipak, rekao sam: „I dalje nije za objavljivanje,
05:07
But I said, "It's still not publishable,
106
307030
1927
05:08
because I love what you did with the mumbo jumbo,
107
308981
2296
mada mi se dopada to što si uradio sa tim čudesima, sa mašinskim učenjem,
05:11
with the machine learning,
108
311301
1246
05:12
but it's not really standard-of-proof evidence that we have."
109
312571
3864
ali to što imamo baš i nije odgovarajuća vrsta dokaza.“
05:17
So we have to do something else.
110
317618
1589
Moramo da uradimo nešto drugo.
05:19
Let's go into the Stanford electronic medical record.
111
319231
2876
Hajde da uđemo u elektronski medicinski zapis Stenforda.
Imamo njegovu kopiju koja je u redu za istraživanje,
05:22
We have a copy of it that's OK for research,
112
322131
2064
05:24
we removed identifying information.
113
324219
2046
uklonili smo informacije za identifikaciju,
05:26
And I said, "Let's see if people on these two drugs
114
326581
2503
i rekao sam: „Hajde da vidimo da li osobe koje uzimaju ova dva leka
05:29
have problems with their glucose."
115
329108
1769
imaju probleme sa glukozom.“
05:31
Now there are thousands and thousands of people
116
331242
2207
Postoje hiljade i hiljade ljudi
05:33
in the Stanford medical records that take paroxetine and pravastatin.
117
333473
3459
u stenfordskim medicinskim podacima koji uzimaju parokesetin i pravastatin.
05:36
But we needed special patients.
118
336956
1799
Međutim, bili su nam potrebni posebni pacijenti.
05:38
We needed patients who were on one of them and had a glucose measurement,
119
338779
4597
Bili su nam potrebni pacijenti
koji su uzimali jedan od tih lekova i imali izmerenu glukozu,
05:43
then got the second one and had another glucose measurement,
120
343400
3449
zatim dobili drugi lek i imali drugu meru glukoze,
05:46
all within a reasonable period of time -- something like two months.
121
346873
3615
a sve to u okviru prihvatljivog vremenskog perioda -
otprilike oko dva meseca.
05:50
And when we did that, we found 10 patients.
122
350512
3159
Kada smo to uradili, pronašli smo deset pacijenata.
05:54
However, eight out of the 10 had a bump in their glucose
123
354592
4538
Međutim, osmoro od tih deset je imalo porast glukoze
05:59
when they got the second P -- we call this P and P --
124
359154
2645
kada su dobili drugi P - nazivamo ih P i P -
06:01
when they got the second P.
125
361823
1310
kada su dobili drugi P.
06:03
Either one could be first, the second one comes up,
126
363157
2562
Bilo koji može biti prvi, zatim nastupa drugi,
06:05
glucose went up 20 milligrams per deciliter.
127
365743
2847
nivo glukoze raste za 1,1 mmol/l.
06:08
Just as a reminder,
128
368614
1158
Samo da podsetim,
06:09
you walk around normally, if you're not diabetic,
129
369796
2325
normalno se krećete, ako niste dijabetičar,
sa glukozom od oko 5.
06:12
with a glucose of around 90.
130
372145
1359
06:13
And if it gets up to 120, 125,
131
373528
2076
Ako dostigne 6,6 - 6,9,
06:15
your doctor begins to think about a potential diagnosis of diabetes.
132
375628
3450
vaš doktor će početi da pomišlja na potencijalnu dijagnozu dijabetesa.
06:19
So a 20 bump -- pretty significant.
133
379102
2991
Tako da porast od 1,1 prilično ima značaja.
06:22
I said, "Nick, this is very cool.
134
382601
1904
Rekao sam: „Nik, ovo je veoma zanimljivo,
06:25
But, I'm sorry, we still don't have a paper,
135
385616
2053
ali, žao mi je, i dalje nemamo rad,
06:27
because this is 10 patients and -- give me a break --
136
387693
2579
jer ovo je deset pacijenata i, ma daj,
to nije dovoljno pacijenata.“
06:30
it's not enough patients."
137
390296
1245
06:31
So we said, what can we do?
138
391565
1306
Stoga smo se zapitali šta možemo da uradimo.
06:32
And we said, let's call our friends at Harvard and Vanderbilt,
139
392895
2976
Rešili smo da pozovemo naše prijatelje sa Harvarda i Vanderbilta -
06:35
who also -- Harvard in Boston, Vanderbilt in Nashville,
140
395895
2587
Harvarda u Bostonu i Vanderbilta u Nešvilu -
06:38
who also have electronic medical records similar to ours.
141
398506
2821
koji imaju elektronske medicinske podatke slične našim.
06:41
Let's see if they can find similar patients
142
401351
2020
Hajde da vidimo da li mogu da nađu slične pacijente
06:43
with the one P, the other P, the glucose measurements
143
403395
3276
sa jednim P, drugim P, merama glukoze
06:46
in that range that we need.
144
406695
1600
u opsegu koji nam je potreban.
06:48
God bless them, Vanderbilt in one week found 40 such patients,
145
408787
4955
Bog ih blagoslovio, Vanderbilt je pronašao 40 takvih pacijenata za nedelju dana,
06:53
same trend.
146
413766
1189
utvrđena je ista tendencija.
06:55
Harvard found 100 patients, same trend.
147
415804
3620
Harvard je pronašao 100 pacijenata, ista tendencija.
06:59
So at the end, we had 150 patients from three diverse medical centers
148
419448
4281
Tako smo na kraju imali 150 pacijenata iz tri različita medicinska centra
07:03
that were telling us that patients getting these two drugs
149
423753
3297
koji su nam ukazivali da pacijenti koji uzimaju ova dva leka
07:07
were having their glucose bump somewhat significantly.
150
427074
2703
imaju donekle značajan porast glukoze.
07:10
More interestingly, we had left out diabetics,
151
430317
2810
Što je još zanimljivije, izostavili smo dijabetičare,
07:13
because diabetics already have messed up glucose.
152
433151
2317
jer dijabetičari već imaju poremećenu glukozu.
07:15
When we looked at the glucose of diabetics,
153
435492
2238
Kada smo pogledali glukozu dijabetičara,
07:17
it was going up 60 milligrams per deciliter, not just 20.
154
437754
3435
bila je povišena za 3,3 mmol/l, ne samo 1,1.
07:21
This was a big deal, and we said, "We've got to publish this."
155
441760
3452
Ovo je bila velika stvar i rekli smo: „Moramo da objavimo ovo.“
07:25
We submitted the paper.
156
445236
1179
Predali smo rad.
07:26
It was all data evidence,
157
446439
2111
Sasvim je obuhvatao dokaze zasnovane na podacima,
07:28
data from the FDA, data from Stanford,
158
448574
2483
podacima iz Uprave za hranu i lekove, podacima iz Stenforda,
07:31
data from Vanderbilt, data from Harvard.
159
451081
1946
iz Vanderbilta i Harvarda.
07:33
We had not done a single real experiment.
160
453051
2396
Nismo sproveli nijedan pravi eksperiment.
07:36
But we were nervous.
161
456495
1296
Ipak, bili smo nervozni.
07:38
So Nick, while the paper was in review, went to the lab.
162
458201
3730
Zato je Nik otišao u laboratoriju dok je rad bio pod razmatranjem.
07:41
We found somebody who knew about lab stuff.
163
461955
2462
Našli smo nekog ko se razumeo u laboratorijske stvari.
07:44
I don't do that.
164
464441
1393
Ja to ne radim.
07:45
I take care of patients, but I don't do pipettes.
165
465858
2417
Brinem se o pacijentima, ali ne koristim pipete.
07:49
They taught us how to feed mice drugs.
166
469420
3053
Naučili su nas kako da miševima dajemo lekove.
07:52
We took mice and we gave them one P, paroxetine.
167
472864
2414
Uzeli smo miševe i dali im jedan P, paroksetin.
07:55
We gave some other mice pravastatin.
168
475302
2508
Nekim drugim miševima smo dali pravastatin,
07:57
And we gave a third group of mice both of them.
169
477834
3595
a trećoj grupi miševa smo dali oba.
08:01
And lo and behold, glucose went up 20 to 60 milligrams per deciliter
170
481893
3946
I gle čuda, glukoza se popela za 1,1 do 3,3 mmol/l kod miševa.
08:05
in the mice.
171
485863
1171
Rad je prihvaćen samo na osnovu informatičkih dokaza,
08:07
So the paper was accepted based on the informatics evidence alone,
172
487058
3158
08:10
but we added a little note at the end,
173
490240
1894
ali smo na kraju dodali malu belešku
08:12
saying, oh by the way, if you give these to mice, it goes up.
174
492158
2899
u kojoj smo naveli da, uzgred, ako ovo date miševima, poveća se.
08:15
That was great, and the story could have ended there.
175
495081
2508
To je bilo sjajno, priča se mogla tu završiti.
08:17
But I still have six and a half minutes.
176
497613
1997
Međutim, imam još šest i po minuta.
08:19
(Laughter)
177
499634
2807
(Smeh)
08:22
So we were sitting around thinking about all of this,
178
502465
2815
Sedeli smo tako i razmišljali o ovome
08:25
and I don't remember who thought of it, but somebody said,
179
505304
2735
i ne sećam se ko se setio toga, ali neko je rekao:
„Pitam se da li pacijenti koji uzimaju ova dva leka
08:28
"I wonder if patients who are taking these two drugs
180
508063
3201
08:31
are noticing side effects of hyperglycemia.
181
511288
3553
primećuju nuspojave hiperglikemije.
08:34
They could and they should.
182
514865
1496
Mogli bi da osete i trebalo bi.
08:36
How would we ever determine that?"
183
516761
1877
Kako bismo uopšte to ustanovili?“
08:39
We said, well, what do you do?
184
519551
1443
Rekli smo, pa, šta ćeš uraditi?
08:41
You're taking a medication, one new medication or two,
185
521018
2580
Uzimaš jedan lek, jedan ili dva nova leka
08:43
and you get a funny feeling.
186
523622
1538
i dobiješ čudan osećaj.
08:45
What do you do?
187
525184
1151
Šta onda radiš?
08:46
You go to Google
188
526359
1151
Odeš na Gugl
08:47
and type in the two drugs you're taking or the one drug you're taking,
189
527534
3349
i uneseš dva leka koja uzimaš ili jedan lek koji uzimaš
08:50
and you type in "side effects."
190
530907
1603
i uneseš „nuspojave“.
08:52
What are you experiencing?
191
532534
1356
Šta je to što doživljavate?
08:54
So we said OK,
192
534239
1151
Rekli smo, u redu,
08:55
let's ask Google if they will share their search logs with us,
193
535414
3056
hajde da pitamo Gugl da li hoće da podele sa nama unose pretraga,
08:58
so that we can look at the search logs
194
538494
1833
tako da možemo da ih pogledamo
09:00
and see if patients are doing these kinds of searches.
195
540351
2565
i vidimo da li pacijenti sprovode takve pretrage.
09:02
Google, I am sorry to say, denied our request.
196
542940
3275
Gugl je, nažalost, odbio naš zahtev.
09:06
So I was bummed.
197
546819
1151
Tako da sam se baš osećao loše.
09:07
I was at a dinner with a colleague who works at Microsoft Research
198
547994
3166
Bio sam na večeri sa kolegom koji radi na istraživanjima u Majkrosoftu
09:11
and I said, "We wanted to do this study,
199
551184
1941
i rekao sam: „Hteli smo da sprovedemo istraživanje
09:13
Google said no, it's kind of a bummer."
200
553149
1880
i Gugl je odbio, baš bezveze.“
09:15
He said, "Well, we have the Bing searches."
201
555053
2086
Odgovorio je: „Pa, mi imamo pretrage sa Binga.“
09:18
(Laughter)
202
558195
3483
(Smeh)
09:22
Yeah.
203
562805
1267
Da.
09:24
That's great.
204
564096
1151
To je sjajno.
09:25
Now I felt like I was --
205
565271
1151
Sada sam se osećao kao da -
09:26
(Laughter)
206
566446
1000
(Smeh)
09:27
I felt like I was talking to Nick again.
207
567470
2412
Kao da ponovo pričam sa Nikom.
09:30
He works for one of the largest companies in the world,
208
570437
2624
Radi u jednoj od najvećih kompanija na svetu
i već pokušavam da učinim da se oseća bolje.
09:33
and I'm already trying to make him feel better.
209
573085
2206
09:35
But he said, "No, Russ -- you might not understand.
210
575315
2445
Međutim, rekao je: „Ne, Ras, možda me nisi razumeo.
09:37
We not only have Bing searches,
211
577784
1500
Ne samo da imamo pretrage sa Binga,
09:39
but if you use Internet Explorer to do searches at Google,
212
579308
3340
već ako koristiš Internet Eksplorer da bi pretraživao na Guglu,
09:42
Yahoo, Bing, any ...
213
582672
1891
Jahuu, Bingu, gde god,
09:44
Then, for 18 months, we keep that data for research purposes only."
214
584587
3643
tada čuvamo te podatke 18 meseci samo u svrhe istraživanja.“
09:48
I said, "Now you're talking!"
215
588254
1936
Uzviknuo sam: „To je već druga priča!“
09:50
This was Eric Horvitz, my friend at Microsoft.
216
590214
2198
To je bio Erik Horvic, moj prijatelj sa Majkrosofta.
09:52
So we did a study
217
592436
1695
Tako smo sproveli istraživanje
09:54
where we defined 50 words that a regular person might type in
218
594155
4619
gde smo odredili 50 reči koje bi bilo koja osoba mogla uneti
09:58
if they're having hyperglycemia,
219
598798
1602
ako imaju hiperglikemiju,
10:00
like "fatigue," "loss of appetite," "urinating a lot," "peeing a lot" --
220
600424
4762
kao što su „premor“, „gubitak apetita“, „učestalo mokrenje“, „često piškanje“ -
10:05
forgive me, but that's one of the things you might type in.
221
605210
2767
oprostite, ali to je jedna od stvari koje biste mogli uneti.
Dakle, imali smo 50 fraza koje smo nazvali „dijabetskim rečima“.
10:08
So we had 50 phrases that we called the "diabetes words."
222
608001
2790
10:10
And we did first a baseline.
223
610815
2063
Prvo smo ustanovili polaznu liniju.
10:12
And it turns out that about .5 to one percent
224
612902
2704
Ispostavilo se da oko 0,5 do 1 posto
10:15
of all searches on the Internet involve one of those words.
225
615630
2982
svih pretraga na internetu obuhvata jednu od ovih reči.
10:18
So that's our baseline rate.
226
618636
1742
To je naša osnova.
10:20
If people type in "paroxetine" or "Paxil" -- those are synonyms --
227
620402
4143
Ako ljudi unesu „paroksetin“ ili „Paksil“ - to su sinonimi -
10:24
and one of those words,
228
624569
1215
i jednu od ovih reči,
10:25
the rate goes up to about two percent of diabetes-type words,
229
625808
4890
dolazi do porasta od oko dva posto za reči koje odgovaraju dijabetesu
10:30
if you already know that there's that "paroxetine" word.
230
630722
3044
ako već znate da je prisutna ta reč „paroksetin“.
10:34
If it's "pravastatin," the rate goes up to about three percent from the baseline.
231
634191
4547
Ako je u pitanju „pravastatin“, porast je oko tri posto u odnosu na polaznu liniju.
10:39
If both "paroxetine" and "pravastatin" are present in the query,
232
639171
4390
Ako su u upitu prisutni i „paroksetin“ i „pravastatin“,
10:43
it goes up to 10 percent,
233
643585
1669
porast je oko 10 posto,
10:45
a huge three- to four-fold increase
234
645278
3461
ogromno trostruko do četvorostruko povećanje
10:48
in those searches with the two drugs that we were interested in,
235
648763
3389
u tim pretragama sa dva leka koja su nas zanimala
10:52
and diabetes-type words or hyperglycemia-type words.
236
652176
3566
i reči vezanih za dijabetes ili hiperglikemiju.
10:56
We published this,
237
656216
1265
Objavili smo ovo
10:57
and it got some attention.
238
657505
1466
i pridobilo je pažnju.
10:58
The reason it deserves attention
239
658995
1778
Razlog zbog kojeg zaslužuje pažnju
11:00
is that patients are telling us their side effects indirectly
240
660797
4312
je što nam pacijenti indirektno govore o svojim nuspojavama
11:05
through their searches.
241
665133
1156
kroz svoje pretrage.
11:06
We brought this to the attention of the FDA.
242
666313
2138
Izneli smo ovo pred Upravu za hranu i lekove.
11:08
They were interested.
243
668475
1269
Bili su zainteresovani.
11:09
They have set up social media surveillance programs
244
669768
3606
Postavili su programe za nadgledanje društvenih medija
11:13
to collaborate with Microsoft,
245
673398
1751
kako bi sarađivali sa Majkrosoftom,
11:15
which had a nice infrastructure for doing this, and others,
246
675173
2794
koji je imao finu infrastrukturu za sprovođenje ovog, i drugima,
11:17
to look at Twitter feeds,
247
677991
1282
da bi pregledali unose na Tviteru,
11:19
to look at Facebook feeds,
248
679297
1716
unose na Fejsbuku,
da bi pregledali unose pretraga,
11:21
to look at search logs,
249
681037
1311
11:22
to try to see early signs that drugs, either individually or together,
250
682372
4909
da bi pokušali da uoče rane znake da lekovi, bilo zasebno ili zajedno,
11:27
are causing problems.
251
687305
1589
stvaraju probleme.
11:28
What do I take from this? Why tell this story?
252
688918
2174
Šta ovde smatram značajnim? Zašto sam ispričao ovu priču?
11:31
Well, first of all,
253
691116
1207
Pa, pre svega, sada imamo nadu u podatke velikih i malih razmera
11:32
we have now the promise of big data and medium-sized data
254
692347
4037
11:36
to help us understand drug interactions
255
696408
2918
koji će nam pomoći da razumemo interakcije lekova
11:39
and really, fundamentally, drug actions.
256
699350
2420
i ono što je zaista u osnovi, dejstva lekova.
11:41
How do drugs work?
257
701794
1413
Kako lekovi deluju?
11:43
This will create and has created a new ecosystem
258
703231
2836
Ovo će stvoriti i stvorilo je novi ekosistem
11:46
for understanding how drugs work and to optimize their use.
259
706091
3267
za razumevanje dejstva lekova i njihovo najoptimalno korišćenje.
11:50
Nick went on; he's a professor at Columbia now.
260
710303
2659
Nik je nastavio sa ovim; danas je profesor na Kolumbiji.
11:52
He did this in his PhD for hundreds of pairs of drugs.
261
712986
4072
Ovo je sproveo u svom doktoratu na stotinama parova lekova.
11:57
He found several very important interactions,
262
717082
2517
Otkrio je nekoliko veoma važnih interakcija
11:59
and so we replicated this
263
719623
1214
i tako smo ovo ponovili
12:00
and we showed that this is a way that really works
264
720861
2574
i pokazali da je ovaj način zaista delotvoran
12:03
for finding drug-drug interactions.
265
723459
2339
u pronalaženju interakcija između lekova.
12:06
However, there's a couple of things.
266
726282
1734
Međutim, u igri je još par stvari.
12:08
We don't just use pairs of drugs at a time.
267
728040
3046
Ne koristimo samo parove lekova u isto vreme.
12:11
As I said before, there are patients on three, five, seven, nine drugs.
268
731110
4469
Kao što sam već rekao,
ima pacijenata koji uzimaju tri, pet, sedam, devet lekova.
12:15
Have they been studied with respect to their nine-way interaction?
269
735981
3642
Jesu li oni izučavani imajući u vidu njihovu devetostruku interakciju?
12:19
Yes, we can do pair-wise, A and B, A and C, A and D,
270
739647
4208
Da, možemo da uzemo parove, A i B, A i C, A i D,
12:23
but what about A, B, C, D, E, F, G all together,
271
743879
4286
ali šta ako A, B, C, D, E, F i G zajedno,
12:28
being taken by the same patient,
272
748189
1762
ako ih uzima isti pacijent,
12:29
perhaps interacting with each other
273
749975
2118
možda međusobno ulaze u interakciju
12:32
in ways that either makes them more effective or less effective
274
752117
3778
na načine koji ih čine bilo više ili manje efikasnim
12:35
or causes side effects that are unexpected?
275
755919
2332
ili stvaraju neočekivane nuspojave?
12:38
We really have no idea.
276
758275
1827
Zaista nemamo predstavu.
12:40
It's a blue sky, open field for us to use data
277
760126
3756
To je ogromno otvoreno polje u kome možemo koristiti podatke
12:43
to try to understand the interaction of drugs.
278
763906
2502
da bismo pokušali da razumemo interakciju lekova.
12:46
Two more lessons:
279
766848
1370
Još dve lekcije.
12:48
I want you to think about the power that we were able to generate
280
768242
4199
Želim da razmislite o moći koji smo uspeli da proizvedemo podacima
12:52
with the data from people who had volunteered their adverse reactions
281
772465
4711
od ljudi koji su dobrovoljno prijavili svoje neželjene reakcije
12:57
through their pharmacists, through themselves, through their doctors,
282
777200
3269
preko njihovih farmaceuta, njih samih, njihovih doktora,
13:00
the people who allowed the databases at Stanford, Harvard, Vanderbilt,
283
780493
3667
ljudi koji su dozvolili pristup bazama podataka
na Stenfordu, Harvardu, Vanderbiltu kako bi bile korišćene u istraživanju.
13:04
to be used for research.
284
784184
1427
13:05
People are worried about data.
285
785929
1445
Ljudi su zabrinuti zbog podataka.
13:07
They're worried about their privacy and security -- they should be.
286
787398
3187
Zabrinuti su zbog svoje privatnosti i bezbednosti i treba da budu.
13:10
We need secure systems.
287
790609
1151
Potrebni su nam bezbedni sistemi.
13:11
But we can't have a system that closes that data off,
288
791784
3406
Ipak, ne smemo imati sistem koji blokira pristup tim podacima
13:15
because it is too rich of a source
289
795214
2752
jer su previše bogat izvor
13:17
of inspiration, innovation and discovery
290
797990
3971
inspiracije, inovacije i otkrića
13:21
for new things in medicine.
291
801985
1578
za nove stvari u medicini.
13:24
And the final thing I want to say is,
292
804494
1794
Poslednje što želim da kažem
13:26
in this case we found two drugs and it was a little bit of a sad story.
293
806312
3357
je da smo ovde otkrili dva leka i to je bila pomalo tužna priča.
13:29
The two drugs actually caused problems.
294
809693
1921
Dva leka su stvarala probleme.
13:31
They increased glucose.
295
811638
1475
Povećavala su nivo glukoze.
13:33
They could throw somebody into diabetes
296
813137
2446
Mogli su da prouzrokuju dijabetes kod nekoga
13:35
who would otherwise not be in diabetes,
297
815607
2294
ko inače ne bi imao dijabetes,
13:37
and so you would want to use the two drugs very carefully together,
298
817925
3175
tako da biste hteli da koristite ta dva leka vrlo pažljivo zajedno,
13:41
perhaps not together,
299
821124
1151
možda ne zajedno,
13:42
make different choices when you're prescribing.
300
822299
2340
doneti drugačije odluke prilikom propisivanja lekova.
13:44
But there was another possibility.
301
824663
1846
Međutim, postoji još jedna mogućnost.
13:46
We could have found two drugs or three drugs
302
826533
2344
Mogli smo da otkrijemo dva ili tri leka
13:48
that were interacting in a beneficial way.
303
828901
2261
koji ulaze u interakciju na povoljan način.
13:51
We could have found new effects of drugs
304
831616
2712
Mogli smo naći nova dejstva lekova
13:54
that neither of them has alone,
305
834352
2160
koje nijedan od njih nema zasebno,
13:56
but together, instead of causing a side effect,
306
836536
2493
već zajedno, umesto da uzrokuju nuspojavu,
13:59
they could be a new and novel treatment
307
839053
2425
mogu biti novi način lečenja
14:01
for diseases that don't have treatments
308
841502
1882
za bolesti koje se ne leče
14:03
or where the treatments are not effective.
309
843408
2007
ili gde način lečenja nije delotvoran.
14:05
If we think about drug treatment today,
310
845439
2395
Ako razmislite o lečenju lekovima danas,
14:07
all the major breakthroughs --
311
847858
1752
svim većim otkrićima -
14:09
for HIV, for tuberculosis, for depression, for diabetes --
312
849634
4297
kod HIV-a, tuberkuloze, depresije, dijabetesa -
14:13
it's always a cocktail of drugs.
313
853955
2830
uvek je tu mešavina lekova.
14:16
And so the upside here,
314
856809
1730
Dobra strana u ovome,
14:18
and the subject for a different TED Talk on a different day,
315
858563
2849
kao i tema nekog drugog TED govora nekog drugog dana
14:21
is how can we use the same data sources
316
861436
2593
je kako možemo da koristimo iste izvore podataka
14:24
to find good effects of drugs in combination
317
864053
3563
da bismo otkrili dobra dejstva lekova u kombinaciji
14:27
that will provide us new treatments,
318
867640
2175
koji će nam pružiti nova lečenja,
14:29
new insights into how drugs work
319
869839
1852
nove uvide u to kako lekovi deluju
14:31
and enable us to take care of our patients even better?
320
871715
3786
i omogućiti nam da se još bolje staramo o našim pacijentima.
14:35
Thank you very much.
321
875525
1166
Hvala vam mnogo.
14:36
(Applause)
322
876715
3499
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7