What really happens when you mix medications? | Russ Altman

189,957 views ・ 2016-03-23

TED


请双击下面的英文字幕来播放视频。

翻译人员: Elvis Liu 校对人员: Tom Liu
00:12
So you go to the doctor and get some tests.
0
12811
3321
你去看医生的时候做了一些检查
00:16
The doctor determines that you have high cholesterol
1
16674
2620
医生说你的血脂高
00:19
and you would benefit from medication to treat it.
2
19318
3171
所以吃药会有帮助
00:22
So you get a pillbox.
3
22981
1556
那么你就买了一盒药
00:25
You have some confidence,
4
25505
1199
你有信心,
00:26
your physician has some confidence that this is going to work.
5
26728
2937
你的医生也有信心 觉得这会对你有帮助
00:29
The company that invented it did a lot of studies, submitted it to the FDA.
6
29689
3553
发明这个的药物公司做过很多研究 呈送到FDA
00:33
They studied it very carefully, skeptically, they approved it.
7
33266
3107
他们充满怀疑地研究,后来许可了。
00:36
They have a rough idea of how it works,
8
36397
1889
他们大概地知道这个药的机理
00:38
they have a rough idea of what the side effects are.
9
38310
2453
和药物的副作用
00:40
It should be OK.
10
40787
1150
它应该可以
00:42
You have a little more of a conversation with your physician
11
42864
2818
你跟你的医生又谈了一会儿
00:45
and the physician is a little worried because you've been blue,
12
45706
2963
医生对你有点儿担心 因为你有些抑郁
00:48
haven't felt like yourself,
13
48693
1293
感觉你不是自己
00:50
you haven't been able to enjoy things in life quite as much as you usually do.
14
50010
3731
你对生活不像以前那么充满兴趣
00:53
Your physician says, "You know, I think you have some depression.
15
53765
3186
你的医生说,“你知道吗, 我觉得你有些抑郁。
00:57
I'm going to have to give you another pill."
16
57792
2315
我会给你另一种药“
01:00
So now we're talking about two medications.
17
60934
2483
所以 现在我们所谈论的是两种药物
01:03
This pill also -- millions of people have taken it,
18
63441
3104
这种药--上百万人服用过
01:06
the company did studies, the FDA looked at it -- all good.
19
66569
3631
公司做过很多研究,FDA许可的-- 不会错
01:10
Think things should go OK.
20
70823
2057
你会想应该没问题
01:12
Think things should go OK.
21
72904
2197
应该没问题
01:15
Well, wait a minute.
22
75125
1439
等等
01:16
How much have we studied these two together?
23
76588
3517
我们知道两种药物一起服用的研究吗
01:20
Well, it's very hard to do that.
24
80630
2300
而这是很难做到的。
01:22
In fact, it's not traditionally done.
25
82954
2130
实际上 还从来没有
01:25
We totally depend on what we call "post-marketing surveillance,"
26
85108
5518
在药物上市之后
我们完全地依赖于我们叫做 “市场后监测”
01:30
after the drugs hit the market.
27
90650
1880
01:32
How can we figure out if bad things are happening
28
92996
2848
我们如何能够弄清楚
在两种,三种或五种药物
01:35
between two medications?
29
95868
1357
混合之后 会有哪些坏处呢?
01:37
Three? Five? Seven?
30
97249
2030
01:39
Ask your favorite person who has several diagnoses
31
99708
2415
问问你最喜欢的被诊断了 几个不同疾病的人
01:42
how many medications they're on.
32
102147
1834
他们在吃多少种药
01:44
Why do I care about this problem?
33
104530
1580
我为什么关心这个问题呢?
我对这非常在意
01:46
I care about it deeply.
34
106134
1157
我是信息和数据科学家 真的,以我的意见来说
01:47
I'm an informatics and data science guy and really, in my opinion,
35
107315
4304
唯一的能够理解这些药物相互作用 的希望
01:51
the only hope -- only hope -- to understand these interactions
36
111643
3745
01:55
is to leverage lots of different sources of data
37
115412
3056
就是平衡不同来源的数据
以便弄清楚药物在一起什么时候安全
01:58
in order to figure out when drugs can be used together safely
38
118492
3556
什么时候不安全
02:02
and when it's not so safe.
39
122072
1777
02:04
So let me tell you a data science story.
40
124615
2051
让我来告诉你们一些数据科学的故事
02:06
And it begins with my student Nick.
41
126690
2154
它来自于我的学生尼克
02:08
Let's call him "Nick," because that's his name.
42
128868
2380
我们叫他“尼克” 因为那是他的名字
笑声
02:11
(Laughter)
43
131272
1592
02:12
Nick was a young student.
44
132888
1201
尼克是一个年轻学生
我说,“你知道吗,尼克 我们需要理解药物的工作机理
02:14
I said, "You know, Nick, we have to understand how drugs work
45
134113
3079
不仅是它们单独作用 还有它们的协同机理
02:17
and how they work together and how they work separately,
46
137216
2626
02:19
and we don't have a great understanding.
47
139866
1922
目前我们还知道得不多
02:21
But the FDA has made available an amazing database.
48
141812
2405
但FDA已经提供了一个惊人的数据库
是关于反作用事件的数据库
02:24
It's a database of adverse events.
49
144241
1699
02:26
They literally put on the web --
50
146321
1642
他们发表在互联网上--
02:27
publicly available, you could all download it right now --
51
147987
3119
可公开使用 你现在就可以下载
成千上万例的
02:31
hundreds of thousands of adverse event reports
52
151130
3627
从病人,医生,公司, 药房的反作用报告
02:34
from patients, doctors, companies, pharmacists.
53
154781
3760
02:38
And these reports are pretty simple:
54
158565
1749
这些报告很简单:
02:40
it has all the diseases that the patient has,
55
160338
2658
它具有病人所有的疾病
他们在用的所有药物
02:43
all the drugs that they're on,
56
163020
1767
02:44
and all the adverse events, or side effects, that they experience.
57
164811
3818
以及他们所经过的所有的 反作用、副作用
02:48
It is not all of the adverse events that are occurring in America today,
58
168653
3436
它还不是所有的在美國发生的 反作用事件
但它有成百上千种药物
02:52
but it's hundreds and hundreds of thousands of drugs.
59
172113
2578
02:54
So I said to Nick,
60
174715
1299
所以我对尼克说
“让我们考虑葡萄糖
02:56
"Let's think about glucose.
61
176038
1826
02:57
Glucose is very important, and we know it's involved with diabetes.
62
177888
3567
血糖很重要 我们知道它和糖尿病相关
让我们看看是否理解血糖的反应
03:01
Let's see if we can understand glucose response.
63
181479
3970
03:05
I sent Nick off. Nick came back.
64
185473
2458
我让尼克去做了。尼克又回来了。
”罗斯,“ 他说
03:08
"Russ," he said,
65
188248
1786
”我已经根据这个数据库 创建了一个分类
03:10
"I've created a classifier that can look at the side effects of a drug
66
190351
5112
可以查看一个药物的副作用
03:15
based on looking at this database,
67
195487
2051
并告诉你这个药物是否会改变血糖。“
03:17
and can tell you whether that drug is likely to change glucose or not."
68
197562
4271
03:21
He did it. It was very simple, in a way.
69
201857
2016
他这样做了,而且在他来说很简单
03:23
He took all the drugs that were known to change glucose
70
203897
2635
他把所有我们知道会改变血糖的药物
03:26
and a bunch of drugs that don't change glucose,
71
206556
2389
还有很多不会改变血糖的都分了类
03:28
and said, "What's the difference in their side effects?
72
208969
2888
他说,“他们的副作用有不同吗?”
03:31
Differences in fatigue? In appetite? In urination habits?"
73
211881
4852
在疲劳?胃口? 以及排尿习惯方面有不同吗?
03:36
All those things conspired to give him a really good predictor.
74
216757
2960
所有这些指标都给予他 一个很好的预测
03:39
He said, "Russ, I can predict with 93 percent accuracy
75
219741
2548
他说,“罗斯, 我能以93%的精确度预测
一个药物会改变血糖”
03:42
when a drug will change glucose."
76
222313
1572
03:43
I said, "Nick, that's great."
77
223909
1416
我说,“尼克, 那很好。”
他是一个年轻的学生 你得帮他建立自信
03:45
He's a young student, you have to build his confidence.
78
225349
2896
“但是尼克, 有一个问题
03:48
"But Nick, there's a problem.
79
228269
1390
03:49
It's that every physician in the world knows all the drugs that change glucose,
80
229683
3960
要让这世界上的每一个医生都知道 所有改变血糖的药物
03:53
because it's core to our practice.
81
233667
2038
这是我们作业的核心
03:55
So it's great, good job, but not really that interesting,
82
235729
3722
很好 做的好 但并不是那么有趣
03:59
definitely not publishable."
83
239475
1531
绝对不能发表
(笑声)
04:01
(Laughter)
84
241030
1014
他说,“我知道,罗斯 我知道你会那样说。”
04:02
He said, "I know, Russ. I thought you might say that."
85
242068
2550
尼克很聪明
04:04
Nick is smart.
86
244642
1152
“我想到你会这么说, 所以我做了另一个试验。
04:06
"I thought you might say that, so I did one other experiment.
87
246149
2874
我查看了在这个数据中 服用两种药物的病人,
04:09
I looked at people in this database who were on two drugs,
88
249047
2928
04:11
and I looked for signals similar, glucose-changing signals,
89
251999
4422
我查看相似的,血糖改变信号,
04:16
for people taking two drugs,
90
256445
1624
对那些服用两种药物的人,
一种药物本身不改变血糖,
04:18
where each drug alone did not change glucose,
91
258093
5569
04:23
but together I saw a strong signal."
92
263686
2460
但一起的时候,我看到了很强的信号。“
04:26
And I said, "Oh! You're clever. Good idea. Show me the list."
93
266170
3149
我说,”喔!你真聪明。 好主意。给我看看列表。“
04:29
And there's a bunch of drugs, not very exciting.
94
269343
2254
有很多药物 但并不令人兴奋
04:31
But what caught my eye was, on the list there were two drugs:
95
271621
3932
但在列表上有两种药物 吸引了我的眼球:
04:35
paroxetine, or Paxil, an antidepressant;
96
275577
3393
paroxetine, 或 Paxil, 一种抗抑郁药物
04:39
and pravastatin, or Pravachol, a cholesterol medication.
97
279756
3570
和pravastatin, 或Pravachol, 抗胆固醇药物
04:43
And I said, "Huh. There are millions of Americans on those two drugs."
98
283936
4283
然后我说,“呵 上百万的美国人都在用这两种药物。”
04:48
In fact, we learned later,
99
288243
1246
事实上,我们后来知道,
04:49
15 million Americans on paroxetine at the time, 15 million on pravastatin,
100
289513
6032
一千五百万的美国人在用paroxetine 而同时 一千五百万人服用pravastatin
04:55
and a million, we estimated, on both.
101
295569
2817
我们估计 有一百万人 两者同时服用
04:58
So that's a million people
102
298767
1254
所以是一百万人
可能在血糖上会有问题
05:00
who might be having some problems with their glucose
103
300045
2453
05:02
if this machine-learning mumbo jumbo that he did in the FDA database
104
302522
3206
但会不会他在FDA数据库 的异想天开
05:05
actually holds up.
105
305752
1254
只是瞎猫碰上了死老鼠呢?
05:07
But I said, "It's still not publishable,
106
307030
1927
但我说,“还是不能发表。”
05:08
because I love what you did with the mumbo jumbo,
107
308981
2296
因为我喜欢你用搜索技术
所做出来的奇思妙想
05:11
with the machine learning,
108
311301
1246
05:12
but it's not really standard-of-proof evidence that we have."
109
312571
3864
但它不是我们真正的标准证据
05:17
So we have to do something else.
110
317618
1589
所以我们必须再做些其他的
让我们进入斯坦福的医疗记录电子库
05:19
Let's go into the Stanford electronic medical record.
111
319231
2876
我们有拷贝权,搜索时许可的
05:22
We have a copy of it that's OK for research,
112
322131
2064
我们挪开了个人信息
05:24
we removed identifying information.
113
324219
2046
05:26
And I said, "Let's see if people on these two drugs
114
326581
2503
然后我说, “让我们看看同时服用这两种药物的人
和他们的血糖问题。”
05:29
have problems with their glucose."
115
329108
1769
在斯坦福的医疗记录里 有成千上万的人
05:31
Now there are thousands and thousands of people
116
331242
2207
05:33
in the Stanford medical records that take paroxetine and pravastatin.
117
333473
3459
在服用paroxetine and pravastatin
05:36
But we needed special patients.
118
336956
1799
但我们需要很特别的病人
05:38
We needed patients who were on one of them and had a glucose measurement,
119
338779
4597
我们需要服用其中一种药物的病人 有血糖纪录
05:43
then got the second one and had another glucose measurement,
120
343400
3449
然后在服用第二种以后 有另一次血糖纪录
05:46
all within a reasonable period of time -- something like two months.
121
346873
3615
并且是在一个比较合理的阶段以内 比如像两个月
当我们这样做以后 我们发现了10个病人
05:50
And when we did that, we found 10 patients.
122
350512
3159
然而,10个中有8个在血糖上有变化
05:54
However, eight out of the 10 had a bump in their glucose
123
354592
4538
05:59
when they got the second P -- we call this P and P --
124
359154
2645
当他们服用第二个P药物的时候 我们把这个叫做P和P--
06:01
when they got the second P.
125
361823
1310
当他们服用第二个P时
可以是任意一个在先 第二个服用后
06:03
Either one could be first, the second one comes up,
126
363157
2562
06:05
glucose went up 20 milligrams per deciliter.
127
365743
2847
血糖升高了20mg/dl
06:08
Just as a reminder,
128
368614
1158
给一个小小的提示
06:09
you walk around normally, if you're not diabetic,
129
369796
2325
当你没有糖尿病 正常的四处活动时
你的血糖是90
06:12
with a glucose of around 90.
130
372145
1359
06:13
And if it gets up to 120, 125,
131
373528
2076
如果升高到120, 125,
06:15
your doctor begins to think about a potential diagnosis of diabetes.
132
375628
3450
你的医生会认为是潜在的糖尿病。
所以 一个20 的升高--太明显了。
06:19
So a 20 bump -- pretty significant.
133
379102
2991
06:22
I said, "Nick, this is very cool.
134
382601
1904
我说,“尼克,这太好了。
但很抱歉,我们还是没有文章
06:25
But, I'm sorry, we still don't have a paper,
135
385616
2053
06:27
because this is 10 patients and -- give me a break --
136
387693
2579
因为这是10个病人,而且 让我想想
没有足够的病人。“
06:30
it's not enough patients."
137
390296
1245
06:31
So we said, what can we do?
138
391565
1306
所以我们说 我们还能怎么做呢?
06:32
And we said, let's call our friends at Harvard and Vanderbilt,
139
392895
2976
后来我们决定打电话 给我们在Harvard和Vanderbilt的朋友
06:35
who also -- Harvard in Boston, Vanderbilt in Nashville,
140
395895
2587
在波士顿的哈佛和纳什维尔的 范德比尔
06:38
who also have electronic medical records similar to ours.
141
398506
2821
也都有和我们相似的医疗电子记录
06:41
Let's see if they can find similar patients
142
401351
2020
我们想看看他们是否能够找到 相似的病人
06:43
with the one P, the other P, the glucose measurements
143
403395
3276
服用一种P, 然后另一种P
并在我们需要的那个范围内 做过血糖检测
06:46
in that range that we need.
144
406695
1600
06:48
God bless them, Vanderbilt in one week found 40 such patients,
145
408787
4955
上帝祝福他们。范德贝尔 在一周内发现40个这样的病人
06:53
same trend.
146
413766
1189
都有同样的血糖增长
06:55
Harvard found 100 patients, same trend.
147
415804
3620
哈佛发现100个同样的病人, 也有着一样的增长
06:59
So at the end, we had 150 patients from three diverse medical centers
148
419448
4281
所以,最后我们有150个病人 来自三个不同的的医学中心
07:03
that were telling us that patients getting these two drugs
149
423753
3297
这150个病人的记录告诉我们 这些使用这两种药物的病人
在某种程度上都有血糖的明显改变
07:07
were having their glucose bump somewhat significantly.
150
427074
2703
更令人感兴趣的是 我们没有算上糖尿病人
07:10
More interestingly, we had left out diabetics,
151
430317
2810
因为糖尿病人的血糖本身就是 一本糊涂账
07:13
because diabetics already have messed up glucose.
152
433151
2317
07:15
When we looked at the glucose of diabetics,
153
435492
2238
当我们查看糖尿病人的血糖
07:17
it was going up 60 milligrams per deciliter, not just 20.
154
437754
3435
它通常是升高60mg以上 而不是只有20
07:21
This was a big deal, and we said, "We've got to publish this."
155
441760
3452
这是一个了不起的结果。然后我们说, “我们一定要发表这个结果。”
我们呈送了文章
07:25
We submitted the paper.
156
445236
1179
07:26
It was all data evidence,
157
446439
2111
全是数据证据
07:28
data from the FDA, data from Stanford,
158
448574
2483
来自FDA,来自斯坦福
来自范德贝尔,来自哈佛
07:31
data from Vanderbilt, data from Harvard.
159
451081
1946
我们还没做一个实验
07:33
We had not done a single real experiment.
160
453051
2396
07:36
But we were nervous.
161
456495
1296
但我们很紧张
07:38
So Nick, while the paper was in review, went to the lab.
162
458201
3730
所以当文章在审查阶段 尼克去了实验室
07:41
We found somebody who knew about lab stuff.
163
461955
2462
我们找到了一些懂得实验的人
07:44
I don't do that.
164
464441
1393
我做不了那个活
07:45
I take care of patients, but I don't do pipettes.
165
465858
2417
我看病人 我不用移液器
07:49
They taught us how to feed mice drugs.
166
469420
3053
他们教我们怎样喂老鼠吃药
07:52
We took mice and we gave them one P, paroxetine.
167
472864
2414
我们拿过老鼠 给它们喂一种P paroxetine
07:55
We gave some other mice pravastatin.
168
475302
2508
我们又给某些老鼠pravastatin.
07:57
And we gave a third group of mice both of them.
169
477834
3595
我们给了第三组老鼠两种药
08:01
And lo and behold, glucose went up 20 to 60 milligrams per deciliter
170
481893
3946
老鼠的血糖
升高了20-60毫克/分升
08:05
in the mice.
171
485863
1171
08:07
So the paper was accepted based on the informatics evidence alone,
172
487058
3158
所以 基于尽有信息考据的文章 被接受了
08:10
but we added a little note at the end,
173
490240
1894
但是我门在文章的结尾 加上了一个小小的注解
顺便说一下 如果你给老鼠喂两种药 血糖会升高
08:12
saying, oh by the way, if you give these to mice, it goes up.
174
492158
2899
这太棒了 故事在此应该了结了
08:15
That was great, and the story could have ended there.
175
495081
2508
08:17
But I still have six and a half minutes.
176
497613
1997
但我还要讲六分半钟
08:19
(Laughter)
177
499634
2807
笑声
08:22
So we were sitting around thinking about all of this,
178
502465
2815
当我们坐在一起 想着这件事时
我记不得是谁说的了 但有人说:
08:25
and I don't remember who thought of it, but somebody said,
179
505304
2735
“我好奇那些服用 这两种药的病人
08:28
"I wonder if patients who are taking these two drugs
180
508063
3201
是否注意到自己有高血糖的症状
08:31
are noticing side effects of hyperglycemia.
181
511288
3553
08:34
They could and they should.
182
514865
1496
他们理应注意到的
08:36
How would we ever determine that?"
183
516761
1877
我们又怎样确定他们 是否真有呢
08:39
We said, well, what do you do?
184
519551
1443
我们说:那你怎么做呢?
08:41
You're taking a medication, one new medication or two,
185
521018
2580
“如果你在服用一种新药 或者是两种
08:43
and you get a funny feeling.
186
523622
1538
然后你有了一种奇怪的感觉
你会怎么做?
08:45
What do you do?
187
525184
1151
08:46
You go to Google
188
526359
1151
你会在谷歌上查找
08:47
and type in the two drugs you're taking or the one drug you're taking,
189
527534
3349
你会在搜索栏上打出 两种药物的名称
08:50
and you type in "side effects."
190
530907
1603
然后输入”副作用“
08:52
What are you experiencing?
191
532534
1356
你觉得这想法怎么样?”
08:54
So we said OK,
192
534239
1151
于是我们说还不错
08:55
let's ask Google if they will share their search logs with us,
193
535414
3056
我们可以试着问问谷歌 他们能不能与我们分享搜索记录
08:58
so that we can look at the search logs
194
538494
1833
然后我们可以通过这些搜索记录
09:00
and see if patients are doing these kinds of searches.
195
540351
2565
进而知道病人是否在做这种搜索
09:02
Google, I am sorry to say, denied our request.
196
542940
3275
很遗憾的是,谷歌拒绝了我们的请求
09:06
So I was bummed.
197
546819
1151
于是我有点闷闷不乐
09:07
I was at a dinner with a colleague who works at Microsoft Research
198
547994
3166
当时我在和一个微软公司的同事吃饭
我说:”我们想要做一个调查,
09:11
and I said, "We wanted to do this study,
199
551184
1941
但谷歌拒绝了,这真令人烦恼”
09:13
Google said no, it's kind of a bummer."
200
553149
1880
他说“哦,我们有必应bing搜索啊”
09:15
He said, "Well, we have the Bing searches."
201
555053
2086
09:18
(Laughter)
202
558195
3483
(笑声)
09:22
Yeah.
203
562805
1267
是的
09:24
That's great.
204
564096
1151
这太棒了
我感觉我就像要...了一样
09:25
Now I felt like I was --
205
565271
1151
09:26
(Laughter)
206
566446
1000
(笑声)
09:27
I felt like I was talking to Nick again.
207
567470
2412
我感觉我就像又在和尼克说话了
09:30
He works for one of the largest companies in the world,
208
570437
2624
他在全世界最大的公司工作
我不想伤害他的自信心
09:33
and I'm already trying to make him feel better.
209
573085
2206
但他说:“不,罗斯... 你可能不知道
09:35
But he said, "No, Russ -- you might not understand.
210
575315
2445
我们不只有必应bing
09:37
We not only have Bing searches,
211
577784
1500
但是如果你用IE浏览器 在谷歌上搜索词条
09:39
but if you use Internet Explorer to do searches at Google,
212
579308
3340
09:42
Yahoo, Bing, any ...
213
582672
1891
或是在雅虎,bing上
09:44
Then, for 18 months, we keep that data for research purposes only."
214
584587
3643
然后我们将这些搜索信息 为了学术目的自动保存18个月
09:48
I said, "Now you're talking!"
215
588254
1936
我于是说:”你真有两下子!“
他叫 Eric Horvitz,我在微软的朋友
09:50
This was Eric Horvitz, my friend at Microsoft.
216
590214
2198
09:52
So we did a study
217
592436
1695
因此我们就这样做了调查
09:54
where we defined 50 words that a regular person might type in
218
594155
4619
我们先确定了高血糖症患者
09:58
if they're having hyperglycemia,
219
598798
1602
可能会搜索的50个词条
10:00
like "fatigue," "loss of appetite," "urinating a lot," "peeing a lot" --
220
600424
4762
比如”疲劳“”食欲不振“”尿频“等
10:05
forgive me, but that's one of the things you might type in.
221
605210
2767
不好意思,但这些是你可能输入的词语
于是我们有了50个 叫做“肥胖词语”的词条
10:08
So we had 50 phrases that we called the "diabetes words."
222
608001
2790
10:10
And we did first a baseline.
223
610815
2063
我们先是确定了基线搜索率
10:12
And it turns out that about .5 to one percent
224
612902
2704
大概0.5-1%的网络搜索
10:15
of all searches on the Internet involve one of those words.
225
615630
2982
含有一个这些词语
10:18
So that's our baseline rate.
226
618636
1742
这就是我们的底线比率
10:20
If people type in "paroxetine" or "Paxil" -- those are synonyms --
227
620402
4143
如果人们输入paroxetine或Paxil —它们是同义词—
10:24
and one of those words,
228
624569
1215
它们其中的一个
10:25
the rate goes up to about two percent of diabetes-type words,
229
625808
4890
那么如果搜索者已经知道了 这个药物术语的话
10:30
if you already know that there's that "paroxetine" word.
230
630722
3044
则在肥胖类内容的搜索中 它们出现的概率升高到了大约2%
如果是pravastatin 概率则超过了基线3%
10:34
If it's "pravastatin," the rate goes up to about three percent from the baseline.
231
634191
4547
10:39
If both "paroxetine" and "pravastatin" are present in the query,
232
639171
4390
如果paroxetine和pravastatin同时出现
10:43
it goes up to 10 percent,
233
643585
1669
那么比例则到达了10%
10:45
a huge three- to four-fold increase
234
645278
3461
这是在那些肥胖类或高血糖类 搜索中
出现我们研究的两种药物的概率的
10:48
in those searches with the two drugs that we were interested in,
235
648763
3389
三至四倍的增长
10:52
and diabetes-type words or hyperglycemia-type words.
236
652176
3566
我们发表了这个结果
10:56
We published this,
237
656216
1265
10:57
and it got some attention.
238
657505
1466
获取了一些注意
10:58
The reason it deserves attention
239
658995
1778
这个研究值得注意的原因是
11:00
is that patients are telling us their side effects indirectly
240
660797
4312
病人在通过他们的网上搜索
向我们间接地传达他们的副作用
11:05
through their searches.
241
665133
1156
11:06
We brought this to the attention of the FDA.
242
666313
2138
我们吸引了FDA的注意
11:08
They were interested.
243
668475
1269
他们很感兴趣
11:09
They have set up social media surveillance programs
244
669768
3606
他们建立了社交网站监测项目
11:13
to collaborate with Microsoft,
245
673398
1751
和有着可以完成这些项目的设施的
11:15
which had a nice infrastructure for doing this, and others,
246
675173
2794
微软合作
11:17
to look at Twitter feeds,
247
677991
1282
在推特网页上
脸书上
11:19
to look at Facebook feeds,
248
679297
1716
观察人们的搜索内容
11:21
to look at search logs,
249
681037
1311
11:22
to try to see early signs that drugs, either individually or together,
250
682372
4909
以此来发现一种或多种药物 可能在产生问题的
11:27
are causing problems.
251
687305
1589
早期迹象
11:28
What do I take from this? Why tell this story?
252
688918
2174
那么我们由此学到了什么? 为什么讲这个故事?
第一
11:31
Well, first of all,
253
691116
1207
我们现在有了大数据的支持
11:32
we have now the promise of big data and medium-sized data
254
692347
4037
11:36
to help us understand drug interactions
255
696408
2918
来帮助我们了解药物的相互作用
11:39
and really, fundamentally, drug actions.
256
699350
2420
更本上就是药物的机理
11:41
How do drugs work?
257
701794
1413
药物是怎样起效的?
这已经创造了一种新的系统
11:43
This will create and has created a new ecosystem
258
703231
2836
来了解药物的工作原理 以及优化它们的使用
11:46
for understanding how drugs work and to optimize their use.
259
706091
3267
11:50
Nick went on; he's a professor at Columbia now.
260
710303
2659
尼克继续从事着这事 他现在是哥伦比亚大学的教授
11:52
He did this in his PhD for hundreds of pairs of drugs.
261
712986
4072
他在他的PhD中研究了 成百对的药物
他发现了几种十分重要的药物反应
11:57
He found several very important interactions,
262
717082
2517
11:59
and so we replicated this
263
719623
1214
于是我们记录了这些结果
12:00
and we showed that this is a way that really works
264
720861
2574
而且我们展示了这种方法
12:03
for finding drug-drug interactions.
265
723459
2339
在发现药物相互作用上的可行性
12:06
However, there's a couple of things.
266
726282
1734
然而,这有几件事
我们不只是研究一对药物
12:08
We don't just use pairs of drugs at a time.
267
728040
3046
12:11
As I said before, there are patients on three, five, seven, nine drugs.
268
731110
4469
像我之前说的,有的人同时服用 3.5.7.9种药物
12:15
Have they been studied with respect to their nine-way interaction?
269
735981
3642
他们的九种药物反应有被研究过吗?
12:19
Yes, we can do pair-wise, A and B, A and C, A and D,
270
739647
4208
是的,我们确实可以用排列组合 a和b,a和c,a和d
12:23
but what about A, B, C, D, E, F, G all together,
271
743879
4286
但如果是a,b,c,d,e,f,g全部混在一起呢?
它们被同一个患者服用
12:28
being taken by the same patient,
272
748189
1762
12:29
perhaps interacting with each other
273
749975
2118
可能会和对方反应
有可能是让药效增强或是减弱
12:32
in ways that either makes them more effective or less effective
274
752117
3778
12:35
or causes side effects that are unexpected?
275
755919
2332
更甚是始料不及的副作用?
我们真不知道
12:38
We really have no idea.
276
758275
1827
12:40
It's a blue sky, open field for us to use data
277
760126
3756
我们可以很自由地使用数据
12:43
to try to understand the interaction of drugs.
278
763906
2502
来了解药物的协同机理
12:46
Two more lessons:
279
766848
1370
另外两个教训:
我想让你们想想 我们使用人们
12:48
I want you to think about the power that we were able to generate
280
768242
4199
通过他们的药师,医生或是自己 上传的药物反作用案例
12:52
with the data from people who had volunteered their adverse reactions
281
772465
4711
那些为斯坦福,哈佛和范德比尔数据库 提供了资料的案例
12:57
through their pharmacists, through themselves, through their doctors,
282
777200
3269
来用作研究
13:00
the people who allowed the databases at Stanford, Harvard, Vanderbilt,
283
780493
3667
能够产生的力量有多大
13:04
to be used for research.
284
784184
1427
13:05
People are worried about data.
285
785929
1445
人们担心自己的数据被泄露
13:07
They're worried about their privacy and security -- they should be.
286
787398
3187
他们害怕自己的隐私和信息安全被偷取 --他们理应这样想
因此我们需要安全的网络系统
13:10
We need secure systems.
287
790609
1151
13:11
But we can't have a system that closes that data off,
288
791784
3406
但是我们不应该容忍那些 垄断这些数据的网络系统
因为网络资源是在药理方面
13:15
because it is too rich of a source
289
795214
2752
13:17
of inspiration, innovation and discovery
290
797990
3971
创造灵感,创新和发现的
13:21
for new things in medicine.
291
801985
1578
强大资源
我最后想说的是
13:24
And the final thing I want to say is,
292
804494
1794
在这个案例中 我们发现了两种药物,十分遗憾
13:26
in this case we found two drugs and it was a little bit of a sad story.
293
806312
3357
13:29
The two drugs actually caused problems.
294
809693
1921
这两种药物实际上产生了麻烦
13:31
They increased glucose.
295
811638
1475
它们增加血糖含量
它们可能让 原本没有糖尿病的人
13:33
They could throw somebody into diabetes
296
813137
2446
13:35
who would otherwise not be in diabetes,
297
815607
2294
患上糖尿病
13:37
and so you would want to use the two drugs very carefully together,
298
817925
3175
所以当你同时使用这两种药时 会千万小心
分开用时也是
13:41
perhaps not together,
299
821124
1151
订购药物时做出其他选择
13:42
make different choices when you're prescribing.
300
822299
2340
13:44
But there was another possibility.
301
824663
1846
但也有另一种可能
13:46
We could have found two drugs or three drugs
302
826533
2344
我们可能可以发现 二至三种药物
13:48
that were interacting in a beneficial way.
303
828901
2261
能通过有益的方式相互反应
13:51
We could have found new effects of drugs
304
831616
2712
我们也可以发现药物的新作用
单独不具有的
13:54
that neither of them has alone,
305
834352
2160
13:56
but together, instead of causing a side effect,
306
836536
2493
但是在一起服用, 不是产生副作用
而是成为一种新型治疗手段
13:59
they could be a new and novel treatment
307
839053
2425
14:01
for diseases that don't have treatments
308
841502
1882
治疗那些无药可医的病症
或是旧的治疗方法效果不明显的疾病
14:03
or where the treatments are not effective.
309
843408
2007
如果我们今天纵观药物治疗
14:05
If we think about drug treatment today,
310
845439
2395
14:07
all the major breakthroughs --
311
847858
1752
所有的重大突破--
14:09
for HIV, for tuberculosis, for depression, for diabetes --
312
849634
4297
治疗艾滋病,肺结核,抑郁症 或是糖尿病的--
14:13
it's always a cocktail of drugs.
313
853955
2830
都是几种药物的混合疗法
14:16
And so the upside here,
314
856809
1730
所以我们目前所做的
14:18
and the subject for a different TED Talk on a different day,
315
858563
2849
也是TED大会今后探讨的话题
14:21
is how can we use the same data sources
316
861436
2593
就是我们怎样使用同样的数据资源
来寻找药物混合使用后的好处
14:24
to find good effects of drugs in combination
317
864053
3563
14:27
that will provide us new treatments,
318
867640
2175
这将会为我们提供新的疗法
14:29
new insights into how drugs work
319
869839
1852
药物工作原理的新视角
14:31
and enable us to take care of our patients even better?
320
871715
3786
使我们可以更好地治愈我们的病人
14:35
Thank you very much.
321
875525
1166
十分感谢
14:36
(Applause)
322
876715
3499
掌声
Subtitled by:治洋 Liu
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog