What really happens when you mix medications? | Russ Altman

188,917 views ・ 2016-03-23

TED


请双击下面的英文字幕来播放视频。

翻译人员: Elvis Liu 校对人员: Tom Liu
00:12
So you go to the doctor and get some tests.
0
12811
3321
你去看医生的时候做了一些检查
00:16
The doctor determines that you have high cholesterol
1
16674
2620
医生说你的血脂高
00:19
and you would benefit from medication to treat it.
2
19318
3171
所以吃药会有帮助
00:22
So you get a pillbox.
3
22981
1556
那么你就买了一盒药
00:25
You have some confidence,
4
25505
1199
你有信心,
00:26
your physician has some confidence that this is going to work.
5
26728
2937
你的医生也有信心 觉得这会对你有帮助
00:29
The company that invented it did a lot of studies, submitted it to the FDA.
6
29689
3553
发明这个的药物公司做过很多研究 呈送到FDA
00:33
They studied it very carefully, skeptically, they approved it.
7
33266
3107
他们充满怀疑地研究,后来许可了。
00:36
They have a rough idea of how it works,
8
36397
1889
他们大概地知道这个药的机理
00:38
they have a rough idea of what the side effects are.
9
38310
2453
和药物的副作用
00:40
It should be OK.
10
40787
1150
它应该可以
00:42
You have a little more of a conversation with your physician
11
42864
2818
你跟你的医生又谈了一会儿
00:45
and the physician is a little worried because you've been blue,
12
45706
2963
医生对你有点儿担心 因为你有些抑郁
00:48
haven't felt like yourself,
13
48693
1293
感觉你不是自己
00:50
you haven't been able to enjoy things in life quite as much as you usually do.
14
50010
3731
你对生活不像以前那么充满兴趣
00:53
Your physician says, "You know, I think you have some depression.
15
53765
3186
你的医生说,“你知道吗, 我觉得你有些抑郁。
00:57
I'm going to have to give you another pill."
16
57792
2315
我会给你另一种药“
01:00
So now we're talking about two medications.
17
60934
2483
所以 现在我们所谈论的是两种药物
01:03
This pill also -- millions of people have taken it,
18
63441
3104
这种药--上百万人服用过
01:06
the company did studies, the FDA looked at it -- all good.
19
66569
3631
公司做过很多研究,FDA许可的-- 不会错
01:10
Think things should go OK.
20
70823
2057
你会想应该没问题
01:12
Think things should go OK.
21
72904
2197
应该没问题
01:15
Well, wait a minute.
22
75125
1439
等等
01:16
How much have we studied these two together?
23
76588
3517
我们知道两种药物一起服用的研究吗
01:20
Well, it's very hard to do that.
24
80630
2300
而这是很难做到的。
01:22
In fact, it's not traditionally done.
25
82954
2130
实际上 还从来没有
01:25
We totally depend on what we call "post-marketing surveillance,"
26
85108
5518
在药物上市之后
我们完全地依赖于我们叫做 “市场后监测”
01:30
after the drugs hit the market.
27
90650
1880
01:32
How can we figure out if bad things are happening
28
92996
2848
我们如何能够弄清楚
在两种,三种或五种药物
01:35
between two medications?
29
95868
1357
混合之后 会有哪些坏处呢?
01:37
Three? Five? Seven?
30
97249
2030
01:39
Ask your favorite person who has several diagnoses
31
99708
2415
问问你最喜欢的被诊断了 几个不同疾病的人
01:42
how many medications they're on.
32
102147
1834
他们在吃多少种药
01:44
Why do I care about this problem?
33
104530
1580
我为什么关心这个问题呢?
我对这非常在意
01:46
I care about it deeply.
34
106134
1157
我是信息和数据科学家 真的,以我的意见来说
01:47
I'm an informatics and data science guy and really, in my opinion,
35
107315
4304
唯一的能够理解这些药物相互作用 的希望
01:51
the only hope -- only hope -- to understand these interactions
36
111643
3745
01:55
is to leverage lots of different sources of data
37
115412
3056
就是平衡不同来源的数据
以便弄清楚药物在一起什么时候安全
01:58
in order to figure out when drugs can be used together safely
38
118492
3556
什么时候不安全
02:02
and when it's not so safe.
39
122072
1777
02:04
So let me tell you a data science story.
40
124615
2051
让我来告诉你们一些数据科学的故事
02:06
And it begins with my student Nick.
41
126690
2154
它来自于我的学生尼克
02:08
Let's call him "Nick," because that's his name.
42
128868
2380
我们叫他“尼克” 因为那是他的名字
笑声
02:11
(Laughter)
43
131272
1592
02:12
Nick was a young student.
44
132888
1201
尼克是一个年轻学生
我说,“你知道吗,尼克 我们需要理解药物的工作机理
02:14
I said, "You know, Nick, we have to understand how drugs work
45
134113
3079
不仅是它们单独作用 还有它们的协同机理
02:17
and how they work together and how they work separately,
46
137216
2626
02:19
and we don't have a great understanding.
47
139866
1922
目前我们还知道得不多
02:21
But the FDA has made available an amazing database.
48
141812
2405
但FDA已经提供了一个惊人的数据库
是关于反作用事件的数据库
02:24
It's a database of adverse events.
49
144241
1699
02:26
They literally put on the web --
50
146321
1642
他们发表在互联网上--
02:27
publicly available, you could all download it right now --
51
147987
3119
可公开使用 你现在就可以下载
成千上万例的
02:31
hundreds of thousands of adverse event reports
52
151130
3627
从病人,医生,公司, 药房的反作用报告
02:34
from patients, doctors, companies, pharmacists.
53
154781
3760
02:38
And these reports are pretty simple:
54
158565
1749
这些报告很简单:
02:40
it has all the diseases that the patient has,
55
160338
2658
它具有病人所有的疾病
他们在用的所有药物
02:43
all the drugs that they're on,
56
163020
1767
02:44
and all the adverse events, or side effects, that they experience.
57
164811
3818
以及他们所经过的所有的 反作用、副作用
02:48
It is not all of the adverse events that are occurring in America today,
58
168653
3436
它还不是所有的在美國发生的 反作用事件
但它有成百上千种药物
02:52
but it's hundreds and hundreds of thousands of drugs.
59
172113
2578
02:54
So I said to Nick,
60
174715
1299
所以我对尼克说
“让我们考虑葡萄糖
02:56
"Let's think about glucose.
61
176038
1826
02:57
Glucose is very important, and we know it's involved with diabetes.
62
177888
3567
血糖很重要 我们知道它和糖尿病相关
让我们看看是否理解血糖的反应
03:01
Let's see if we can understand glucose response.
63
181479
3970
03:05
I sent Nick off. Nick came back.
64
185473
2458
我让尼克去做了。尼克又回来了。
”罗斯,“ 他说
03:08
"Russ," he said,
65
188248
1786
”我已经根据这个数据库 创建了一个分类
03:10
"I've created a classifier that can look at the side effects of a drug
66
190351
5112
可以查看一个药物的副作用
03:15
based on looking at this database,
67
195487
2051
并告诉你这个药物是否会改变血糖。“
03:17
and can tell you whether that drug is likely to change glucose or not."
68
197562
4271
03:21
He did it. It was very simple, in a way.
69
201857
2016
他这样做了,而且在他来说很简单
03:23
He took all the drugs that were known to change glucose
70
203897
2635
他把所有我们知道会改变血糖的药物
03:26
and a bunch of drugs that don't change glucose,
71
206556
2389
还有很多不会改变血糖的都分了类
03:28
and said, "What's the difference in their side effects?
72
208969
2888
他说,“他们的副作用有不同吗?”
03:31
Differences in fatigue? In appetite? In urination habits?"
73
211881
4852
在疲劳?胃口? 以及排尿习惯方面有不同吗?
03:36
All those things conspired to give him a really good predictor.
74
216757
2960
所有这些指标都给予他 一个很好的预测
03:39
He said, "Russ, I can predict with 93 percent accuracy
75
219741
2548
他说,“罗斯, 我能以93%的精确度预测
一个药物会改变血糖”
03:42
when a drug will change glucose."
76
222313
1572
03:43
I said, "Nick, that's great."
77
223909
1416
我说,“尼克, 那很好。”
他是一个年轻的学生 你得帮他建立自信
03:45
He's a young student, you have to build his confidence.
78
225349
2896
“但是尼克, 有一个问题
03:48
"But Nick, there's a problem.
79
228269
1390
03:49
It's that every physician in the world knows all the drugs that change glucose,
80
229683
3960
要让这世界上的每一个医生都知道 所有改变血糖的药物
03:53
because it's core to our practice.
81
233667
2038
这是我们作业的核心
03:55
So it's great, good job, but not really that interesting,
82
235729
3722
很好 做的好 但并不是那么有趣
03:59
definitely not publishable."
83
239475
1531
绝对不能发表
(笑声)
04:01
(Laughter)
84
241030
1014
他说,“我知道,罗斯 我知道你会那样说。”
04:02
He said, "I know, Russ. I thought you might say that."
85
242068
2550
尼克很聪明
04:04
Nick is smart.
86
244642
1152
“我想到你会这么说, 所以我做了另一个试验。
04:06
"I thought you might say that, so I did one other experiment.
87
246149
2874
我查看了在这个数据中 服用两种药物的病人,
04:09
I looked at people in this database who were on two drugs,
88
249047
2928
04:11
and I looked for signals similar, glucose-changing signals,
89
251999
4422
我查看相似的,血糖改变信号,
04:16
for people taking two drugs,
90
256445
1624
对那些服用两种药物的人,
一种药物本身不改变血糖,
04:18
where each drug alone did not change glucose,
91
258093
5569
04:23
but together I saw a strong signal."
92
263686
2460
但一起的时候,我看到了很强的信号。“
04:26
And I said, "Oh! You're clever. Good idea. Show me the list."
93
266170
3149
我说,”喔!你真聪明。 好主意。给我看看列表。“
04:29
And there's a bunch of drugs, not very exciting.
94
269343
2254
有很多药物 但并不令人兴奋
04:31
But what caught my eye was, on the list there were two drugs:
95
271621
3932
但在列表上有两种药物 吸引了我的眼球:
04:35
paroxetine, or Paxil, an antidepressant;
96
275577
3393
paroxetine, 或 Paxil, 一种抗抑郁药物
04:39
and pravastatin, or Pravachol, a cholesterol medication.
97
279756
3570
和pravastatin, 或Pravachol, 抗胆固醇药物
04:43
And I said, "Huh. There are millions of Americans on those two drugs."
98
283936
4283
然后我说,“呵 上百万的美国人都在用这两种药物。”
04:48
In fact, we learned later,
99
288243
1246
事实上,我们后来知道,
04:49
15 million Americans on paroxetine at the time, 15 million on pravastatin,
100
289513
6032
一千五百万的美国人在用paroxetine 而同时 一千五百万人服用pravastatin
04:55
and a million, we estimated, on both.
101
295569
2817
我们估计 有一百万人 两者同时服用
04:58
So that's a million people
102
298767
1254
所以是一百万人
可能在血糖上会有问题
05:00
who might be having some problems with their glucose
103
300045
2453
05:02
if this machine-learning mumbo jumbo that he did in the FDA database
104
302522
3206
但会不会他在FDA数据库 的异想天开
05:05
actually holds up.
105
305752
1254
只是瞎猫碰上了死老鼠呢?
05:07
But I said, "It's still not publishable,
106
307030
1927
但我说,“还是不能发表。”
05:08
because I love what you did with the mumbo jumbo,
107
308981
2296
因为我喜欢你用搜索技术
所做出来的奇思妙想
05:11
with the machine learning,
108
311301
1246
05:12
but it's not really standard-of-proof evidence that we have."
109
312571
3864
但它不是我们真正的标准证据
05:17
So we have to do something else.
110
317618
1589
所以我们必须再做些其他的
让我们进入斯坦福的医疗记录电子库
05:19
Let's go into the Stanford electronic medical record.
111
319231
2876
我们有拷贝权,搜索时许可的
05:22
We have a copy of it that's OK for research,
112
322131
2064
我们挪开了个人信息
05:24
we removed identifying information.
113
324219
2046
05:26
And I said, "Let's see if people on these two drugs
114
326581
2503
然后我说, “让我们看看同时服用这两种药物的人
和他们的血糖问题。”
05:29
have problems with their glucose."
115
329108
1769
在斯坦福的医疗记录里 有成千上万的人
05:31
Now there are thousands and thousands of people
116
331242
2207
05:33
in the Stanford medical records that take paroxetine and pravastatin.
117
333473
3459
在服用paroxetine and pravastatin
05:36
But we needed special patients.
118
336956
1799
但我们需要很特别的病人
05:38
We needed patients who were on one of them and had a glucose measurement,
119
338779
4597
我们需要服用其中一种药物的病人 有血糖纪录
05:43
then got the second one and had another glucose measurement,
120
343400
3449
然后在服用第二种以后 有另一次血糖纪录
05:46
all within a reasonable period of time -- something like two months.
121
346873
3615
并且是在一个比较合理的阶段以内 比如像两个月
当我们这样做以后 我们发现了10个病人
05:50
And when we did that, we found 10 patients.
122
350512
3159
然而,10个中有8个在血糖上有变化
05:54
However, eight out of the 10 had a bump in their glucose
123
354592
4538
05:59
when they got the second P -- we call this P and P --
124
359154
2645
当他们服用第二个P药物的时候 我们把这个叫做P和P--
06:01
when they got the second P.
125
361823
1310
当他们服用第二个P时
可以是任意一个在先 第二个服用后
06:03
Either one could be first, the second one comes up,
126
363157
2562
06:05
glucose went up 20 milligrams per deciliter.
127
365743
2847
血糖升高了20mg/dl
06:08
Just as a reminder,
128
368614
1158
给一个小小的提示
06:09
you walk around normally, if you're not diabetic,
129
369796
2325
当你没有糖尿病 正常的四处活动时
你的血糖是90
06:12
with a glucose of around 90.
130
372145
1359
06:13
And if it gets up to 120, 125,
131
373528
2076
如果升高到120, 125,
06:15
your doctor begins to think about a potential diagnosis of diabetes.
132
375628
3450
你的医生会认为是潜在的糖尿病。
所以 一个20 的升高--太明显了。
06:19
So a 20 bump -- pretty significant.
133
379102
2991
06:22
I said, "Nick, this is very cool.
134
382601
1904
我说,“尼克,这太好了。
但很抱歉,我们还是没有文章
06:25
But, I'm sorry, we still don't have a paper,
135
385616
2053
06:27
because this is 10 patients and -- give me a break --
136
387693
2579
因为这是10个病人,而且 让我想想
没有足够的病人。“
06:30
it's not enough patients."
137
390296
1245
06:31
So we said, what can we do?
138
391565
1306
所以我们说 我们还能怎么做呢?
06:32
And we said, let's call our friends at Harvard and Vanderbilt,
139
392895
2976
后来我们决定打电话 给我们在Harvard和Vanderbilt的朋友
06:35
who also -- Harvard in Boston, Vanderbilt in Nashville,
140
395895
2587
在波士顿的哈佛和纳什维尔的 范德比尔
06:38
who also have electronic medical records similar to ours.
141
398506
2821
也都有和我们相似的医疗电子记录
06:41
Let's see if they can find similar patients
142
401351
2020
我们想看看他们是否能够找到 相似的病人
06:43
with the one P, the other P, the glucose measurements
143
403395
3276
服用一种P, 然后另一种P
并在我们需要的那个范围内 做过血糖检测
06:46
in that range that we need.
144
406695
1600
06:48
God bless them, Vanderbilt in one week found 40 such patients,
145
408787
4955
上帝祝福他们。范德贝尔 在一周内发现40个这样的病人
06:53
same trend.
146
413766
1189
都有同样的血糖增长
06:55
Harvard found 100 patients, same trend.
147
415804
3620
哈佛发现100个同样的病人, 也有着一样的增长
06:59
So at the end, we had 150 patients from three diverse medical centers
148
419448
4281
所以,最后我们有150个病人 来自三个不同的的医学中心
07:03
that were telling us that patients getting these two drugs
149
423753
3297
这150个病人的记录告诉我们 这些使用这两种药物的病人
在某种程度上都有血糖的明显改变
07:07
were having their glucose bump somewhat significantly.
150
427074
2703
更令人感兴趣的是 我们没有算上糖尿病人
07:10
More interestingly, we had left out diabetics,
151
430317
2810
因为糖尿病人的血糖本身就是 一本糊涂账
07:13
because diabetics already have messed up glucose.
152
433151
2317
07:15
When we looked at the glucose of diabetics,
153
435492
2238
当我们查看糖尿病人的血糖
07:17
it was going up 60 milligrams per deciliter, not just 20.
154
437754
3435
它通常是升高60mg以上 而不是只有20
07:21
This was a big deal, and we said, "We've got to publish this."
155
441760
3452
这是一个了不起的结果。然后我们说, “我们一定要发表这个结果。”
我们呈送了文章
07:25
We submitted the paper.
156
445236
1179
07:26
It was all data evidence,
157
446439
2111
全是数据证据
07:28
data from the FDA, data from Stanford,
158
448574
2483
来自FDA,来自斯坦福
来自范德贝尔,来自哈佛
07:31
data from Vanderbilt, data from Harvard.
159
451081
1946
我们还没做一个实验
07:33
We had not done a single real experiment.
160
453051
2396
07:36
But we were nervous.
161
456495
1296
但我们很紧张
07:38
So Nick, while the paper was in review, went to the lab.
162
458201
3730
所以当文章在审查阶段 尼克去了实验室
07:41
We found somebody who knew about lab stuff.
163
461955
2462
我们找到了一些懂得实验的人
07:44
I don't do that.
164
464441
1393
我做不了那个活
07:45
I take care of patients, but I don't do pipettes.
165
465858
2417
我看病人 我不用移液器
07:49
They taught us how to feed mice drugs.
166
469420
3053
他们教我们怎样喂老鼠吃药
07:52
We took mice and we gave them one P, paroxetine.
167
472864
2414
我们拿过老鼠 给它们喂一种P paroxetine
07:55
We gave some other mice pravastatin.
168
475302
2508
我们又给某些老鼠pravastatin.
07:57
And we gave a third group of mice both of them.
169
477834
3595
我们给了第三组老鼠两种药
08:01
And lo and behold, glucose went up 20 to 60 milligrams per deciliter
170
481893
3946
老鼠的血糖
升高了20-60毫克/分升
08:05
in the mice.
171
485863
1171
08:07
So the paper was accepted based on the informatics evidence alone,
172
487058
3158
所以 基于尽有信息考据的文章 被接受了
08:10
but we added a little note at the end,
173
490240
1894
但是我门在文章的结尾 加上了一个小小的注解
顺便说一下 如果你给老鼠喂两种药 血糖会升高
08:12
saying, oh by the way, if you give these to mice, it goes up.
174
492158
2899
这太棒了 故事在此应该了结了
08:15
That was great, and the story could have ended there.
175
495081
2508
08:17
But I still have six and a half minutes.
176
497613
1997
但我还要讲六分半钟
08:19
(Laughter)
177
499634
2807
笑声
08:22
So we were sitting around thinking about all of this,
178
502465
2815
当我们坐在一起 想着这件事时
我记不得是谁说的了 但有人说:
08:25
and I don't remember who thought of it, but somebody said,
179
505304
2735
“我好奇那些服用 这两种药的病人
08:28
"I wonder if patients who are taking these two drugs
180
508063
3201
是否注意到自己有高血糖的症状
08:31
are noticing side effects of hyperglycemia.
181
511288
3553
08:34
They could and they should.
182
514865
1496
他们理应注意到的
08:36
How would we ever determine that?"
183
516761
1877
我们又怎样确定他们 是否真有呢
08:39
We said, well, what do you do?
184
519551
1443
我们说:那你怎么做呢?
08:41
You're taking a medication, one new medication or two,
185
521018
2580
“如果你在服用一种新药 或者是两种
08:43
and you get a funny feeling.
186
523622
1538
然后你有了一种奇怪的感觉
你会怎么做?
08:45
What do you do?
187
525184
1151
08:46
You go to Google
188
526359
1151
你会在谷歌上查找
08:47
and type in the two drugs you're taking or the one drug you're taking,
189
527534
3349
你会在搜索栏上打出 两种药物的名称
08:50
and you type in "side effects."
190
530907
1603
然后输入”副作用“
08:52
What are you experiencing?
191
532534
1356
你觉得这想法怎么样?”
08:54
So we said OK,
192
534239
1151
于是我们说还不错
08:55
let's ask Google if they will share their search logs with us,
193
535414
3056
我们可以试着问问谷歌 他们能不能与我们分享搜索记录
08:58
so that we can look at the search logs
194
538494
1833
然后我们可以通过这些搜索记录
09:00
and see if patients are doing these kinds of searches.
195
540351
2565
进而知道病人是否在做这种搜索
09:02
Google, I am sorry to say, denied our request.
196
542940
3275
很遗憾的是,谷歌拒绝了我们的请求
09:06
So I was bummed.
197
546819
1151
于是我有点闷闷不乐
09:07
I was at a dinner with a colleague who works at Microsoft Research
198
547994
3166
当时我在和一个微软公司的同事吃饭
我说:”我们想要做一个调查,
09:11
and I said, "We wanted to do this study,
199
551184
1941
但谷歌拒绝了,这真令人烦恼”
09:13
Google said no, it's kind of a bummer."
200
553149
1880
他说“哦,我们有必应bing搜索啊”
09:15
He said, "Well, we have the Bing searches."
201
555053
2086
09:18
(Laughter)
202
558195
3483
(笑声)
09:22
Yeah.
203
562805
1267
是的
09:24
That's great.
204
564096
1151
这太棒了
我感觉我就像要...了一样
09:25
Now I felt like I was --
205
565271
1151
09:26
(Laughter)
206
566446
1000
(笑声)
09:27
I felt like I was talking to Nick again.
207
567470
2412
我感觉我就像又在和尼克说话了
09:30
He works for one of the largest companies in the world,
208
570437
2624
他在全世界最大的公司工作
我不想伤害他的自信心
09:33
and I'm already trying to make him feel better.
209
573085
2206
但他说:“不,罗斯... 你可能不知道
09:35
But he said, "No, Russ -- you might not understand.
210
575315
2445
我们不只有必应bing
09:37
We not only have Bing searches,
211
577784
1500
但是如果你用IE浏览器 在谷歌上搜索词条
09:39
but if you use Internet Explorer to do searches at Google,
212
579308
3340
09:42
Yahoo, Bing, any ...
213
582672
1891
或是在雅虎,bing上
09:44
Then, for 18 months, we keep that data for research purposes only."
214
584587
3643
然后我们将这些搜索信息 为了学术目的自动保存18个月
09:48
I said, "Now you're talking!"
215
588254
1936
我于是说:”你真有两下子!“
他叫 Eric Horvitz,我在微软的朋友
09:50
This was Eric Horvitz, my friend at Microsoft.
216
590214
2198
09:52
So we did a study
217
592436
1695
因此我们就这样做了调查
09:54
where we defined 50 words that a regular person might type in
218
594155
4619
我们先确定了高血糖症患者
09:58
if they're having hyperglycemia,
219
598798
1602
可能会搜索的50个词条
10:00
like "fatigue," "loss of appetite," "urinating a lot," "peeing a lot" --
220
600424
4762
比如”疲劳“”食欲不振“”尿频“等
10:05
forgive me, but that's one of the things you might type in.
221
605210
2767
不好意思,但这些是你可能输入的词语
于是我们有了50个 叫做“肥胖词语”的词条
10:08
So we had 50 phrases that we called the "diabetes words."
222
608001
2790
10:10
And we did first a baseline.
223
610815
2063
我们先是确定了基线搜索率
10:12
And it turns out that about .5 to one percent
224
612902
2704
大概0.5-1%的网络搜索
10:15
of all searches on the Internet involve one of those words.
225
615630
2982
含有一个这些词语
10:18
So that's our baseline rate.
226
618636
1742
这就是我们的底线比率
10:20
If people type in "paroxetine" or "Paxil" -- those are synonyms --
227
620402
4143
如果人们输入paroxetine或Paxil —它们是同义词—
10:24
and one of those words,
228
624569
1215
它们其中的一个
10:25
the rate goes up to about two percent of diabetes-type words,
229
625808
4890
那么如果搜索者已经知道了 这个药物术语的话
10:30
if you already know that there's that "paroxetine" word.
230
630722
3044
则在肥胖类内容的搜索中 它们出现的概率升高到了大约2%
如果是pravastatin 概率则超过了基线3%
10:34
If it's "pravastatin," the rate goes up to about three percent from the baseline.
231
634191
4547
10:39
If both "paroxetine" and "pravastatin" are present in the query,
232
639171
4390
如果paroxetine和pravastatin同时出现
10:43
it goes up to 10 percent,
233
643585
1669
那么比例则到达了10%
10:45
a huge three- to four-fold increase
234
645278
3461
这是在那些肥胖类或高血糖类 搜索中
出现我们研究的两种药物的概率的
10:48
in those searches with the two drugs that we were interested in,
235
648763
3389
三至四倍的增长
10:52
and diabetes-type words or hyperglycemia-type words.
236
652176
3566
我们发表了这个结果
10:56
We published this,
237
656216
1265
10:57
and it got some attention.
238
657505
1466
获取了一些注意
10:58
The reason it deserves attention
239
658995
1778
这个研究值得注意的原因是
11:00
is that patients are telling us their side effects indirectly
240
660797
4312
病人在通过他们的网上搜索
向我们间接地传达他们的副作用
11:05
through their searches.
241
665133
1156
11:06
We brought this to the attention of the FDA.
242
666313
2138
我们吸引了FDA的注意
11:08
They were interested.
243
668475
1269
他们很感兴趣
11:09
They have set up social media surveillance programs
244
669768
3606
他们建立了社交网站监测项目
11:13
to collaborate with Microsoft,
245
673398
1751
和有着可以完成这些项目的设施的
11:15
which had a nice infrastructure for doing this, and others,
246
675173
2794
微软合作
11:17
to look at Twitter feeds,
247
677991
1282
在推特网页上
脸书上
11:19
to look at Facebook feeds,
248
679297
1716
观察人们的搜索内容
11:21
to look at search logs,
249
681037
1311
11:22
to try to see early signs that drugs, either individually or together,
250
682372
4909
以此来发现一种或多种药物 可能在产生问题的
11:27
are causing problems.
251
687305
1589
早期迹象
11:28
What do I take from this? Why tell this story?
252
688918
2174
那么我们由此学到了什么? 为什么讲这个故事?
第一
11:31
Well, first of all,
253
691116
1207
我们现在有了大数据的支持
11:32
we have now the promise of big data and medium-sized data
254
692347
4037
11:36
to help us understand drug interactions
255
696408
2918
来帮助我们了解药物的相互作用
11:39
and really, fundamentally, drug actions.
256
699350
2420
更本上就是药物的机理
11:41
How do drugs work?
257
701794
1413
药物是怎样起效的?
这已经创造了一种新的系统
11:43
This will create and has created a new ecosystem
258
703231
2836
来了解药物的工作原理 以及优化它们的使用
11:46
for understanding how drugs work and to optimize their use.
259
706091
3267
11:50
Nick went on; he's a professor at Columbia now.
260
710303
2659
尼克继续从事着这事 他现在是哥伦比亚大学的教授
11:52
He did this in his PhD for hundreds of pairs of drugs.
261
712986
4072
他在他的PhD中研究了 成百对的药物
他发现了几种十分重要的药物反应
11:57
He found several very important interactions,
262
717082
2517
11:59
and so we replicated this
263
719623
1214
于是我们记录了这些结果
12:00
and we showed that this is a way that really works
264
720861
2574
而且我们展示了这种方法
12:03
for finding drug-drug interactions.
265
723459
2339
在发现药物相互作用上的可行性
12:06
However, there's a couple of things.
266
726282
1734
然而,这有几件事
我们不只是研究一对药物
12:08
We don't just use pairs of drugs at a time.
267
728040
3046
12:11
As I said before, there are patients on three, five, seven, nine drugs.
268
731110
4469
像我之前说的,有的人同时服用 3.5.7.9种药物
12:15
Have they been studied with respect to their nine-way interaction?
269
735981
3642
他们的九种药物反应有被研究过吗?
12:19
Yes, we can do pair-wise, A and B, A and C, A and D,
270
739647
4208
是的,我们确实可以用排列组合 a和b,a和c,a和d
12:23
but what about A, B, C, D, E, F, G all together,
271
743879
4286
但如果是a,b,c,d,e,f,g全部混在一起呢?
它们被同一个患者服用
12:28
being taken by the same patient,
272
748189
1762
12:29
perhaps interacting with each other
273
749975
2118
可能会和对方反应
有可能是让药效增强或是减弱
12:32
in ways that either makes them more effective or less effective
274
752117
3778
12:35
or causes side effects that are unexpected?
275
755919
2332
更甚是始料不及的副作用?
我们真不知道
12:38
We really have no idea.
276
758275
1827
12:40
It's a blue sky, open field for us to use data
277
760126
3756
我们可以很自由地使用数据
12:43
to try to understand the interaction of drugs.
278
763906
2502
来了解药物的协同机理
12:46
Two more lessons:
279
766848
1370
另外两个教训:
我想让你们想想 我们使用人们
12:48
I want you to think about the power that we were able to generate
280
768242
4199
通过他们的药师,医生或是自己 上传的药物反作用案例
12:52
with the data from people who had volunteered their adverse reactions
281
772465
4711
那些为斯坦福,哈佛和范德比尔数据库 提供了资料的案例
12:57
through their pharmacists, through themselves, through their doctors,
282
777200
3269
来用作研究
13:00
the people who allowed the databases at Stanford, Harvard, Vanderbilt,
283
780493
3667
能够产生的力量有多大
13:04
to be used for research.
284
784184
1427
13:05
People are worried about data.
285
785929
1445
人们担心自己的数据被泄露
13:07
They're worried about their privacy and security -- they should be.
286
787398
3187
他们害怕自己的隐私和信息安全被偷取 --他们理应这样想
因此我们需要安全的网络系统
13:10
We need secure systems.
287
790609
1151
13:11
But we can't have a system that closes that data off,
288
791784
3406
但是我们不应该容忍那些 垄断这些数据的网络系统
因为网络资源是在药理方面
13:15
because it is too rich of a source
289
795214
2752
13:17
of inspiration, innovation and discovery
290
797990
3971
创造灵感,创新和发现的
13:21
for new things in medicine.
291
801985
1578
强大资源
我最后想说的是
13:24
And the final thing I want to say is,
292
804494
1794
在这个案例中 我们发现了两种药物,十分遗憾
13:26
in this case we found two drugs and it was a little bit of a sad story.
293
806312
3357
13:29
The two drugs actually caused problems.
294
809693
1921
这两种药物实际上产生了麻烦
13:31
They increased glucose.
295
811638
1475
它们增加血糖含量
它们可能让 原本没有糖尿病的人
13:33
They could throw somebody into diabetes
296
813137
2446
13:35
who would otherwise not be in diabetes,
297
815607
2294
患上糖尿病
13:37
and so you would want to use the two drugs very carefully together,
298
817925
3175
所以当你同时使用这两种药时 会千万小心
分开用时也是
13:41
perhaps not together,
299
821124
1151
订购药物时做出其他选择
13:42
make different choices when you're prescribing.
300
822299
2340
13:44
But there was another possibility.
301
824663
1846
但也有另一种可能
13:46
We could have found two drugs or three drugs
302
826533
2344
我们可能可以发现 二至三种药物
13:48
that were interacting in a beneficial way.
303
828901
2261
能通过有益的方式相互反应
13:51
We could have found new effects of drugs
304
831616
2712
我们也可以发现药物的新作用
单独不具有的
13:54
that neither of them has alone,
305
834352
2160
13:56
but together, instead of causing a side effect,
306
836536
2493
但是在一起服用, 不是产生副作用
而是成为一种新型治疗手段
13:59
they could be a new and novel treatment
307
839053
2425
14:01
for diseases that don't have treatments
308
841502
1882
治疗那些无药可医的病症
或是旧的治疗方法效果不明显的疾病
14:03
or where the treatments are not effective.
309
843408
2007
如果我们今天纵观药物治疗
14:05
If we think about drug treatment today,
310
845439
2395
14:07
all the major breakthroughs --
311
847858
1752
所有的重大突破--
14:09
for HIV, for tuberculosis, for depression, for diabetes --
312
849634
4297
治疗艾滋病,肺结核,抑郁症 或是糖尿病的--
14:13
it's always a cocktail of drugs.
313
853955
2830
都是几种药物的混合疗法
14:16
And so the upside here,
314
856809
1730
所以我们目前所做的
14:18
and the subject for a different TED Talk on a different day,
315
858563
2849
也是TED大会今后探讨的话题
14:21
is how can we use the same data sources
316
861436
2593
就是我们怎样使用同样的数据资源
来寻找药物混合使用后的好处
14:24
to find good effects of drugs in combination
317
864053
3563
14:27
that will provide us new treatments,
318
867640
2175
这将会为我们提供新的疗法
14:29
new insights into how drugs work
319
869839
1852
药物工作原理的新视角
14:31
and enable us to take care of our patients even better?
320
871715
3786
使我们可以更好地治愈我们的病人
14:35
Thank you very much.
321
875525
1166
十分感谢
14:36
(Applause)
322
876715
3499
掌声
Subtitled by:治洋 Liu
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7