The incredible inventions of intuitive AI | Maurice Conti

5,584,143 views ・ 2017-02-28

TED


Please double-click on the English subtitles below to play the video.

00:00
Translator: Leslie Gauthier Reviewer: Camille Martínez
0
0
7000
Prevodilac: Milenka Okuka Lektor: Mile Živković
00:12
How many of you are creatives,
1
12555
2289
Koliko vas su kreativci,
00:14
designers, engineers, entrepreneurs, artists,
2
14868
3624
dizajneri, inženjeri, preduzetnici, umetnici
00:18
or maybe you just have a really big imagination?
3
18516
2387
ili možda prosto imate veoma bujnu maštu?
00:20
Show of hands? (Cheers)
4
20927
1848
Pokažite ruke? (Klicanje)
00:22
That's most of you.
5
22799
1181
To je većina vas.
00:25
I have some news for us creatives.
6
25154
2294
Imam novosti za nas kreativce.
00:28
Over the course of the next 20 years,
7
28534
2573
U narednih 20 godina,
00:33
more will change around the way we do our work
8
33291
2973
više će se promeniti način na koji obavljamo naše poslove
00:37
than has happened in the last 2,000.
9
37202
2157
nego u poslednjih 2000 godina.
00:40
In fact, I think we're at the dawn of a new age in human history.
10
40331
4628
Zapravo, mislim da smo u praskozorju novog doba u ljudskoj istoriji.
00:45
Now, there have been four major historical eras defined by the way we work.
11
45465
4761
Sad, imali smo četiri značajne istorijske ere, definisane načinom našeg rada.
00:51
The Hunter-Gatherer Age lasted several million years.
12
51224
3275
Doba lovaca i sakupljača koje je trajalo nekoliko miliona godina.
00:54
And then the Agricultural Age lasted several thousand years.
13
54983
3576
A potom zemljoradničko doba koje je trajalo nekoliko hiljada godina.
00:59
The Industrial Age lasted a couple of centuries.
14
59015
3490
Industrijsko doba je trajalo nekoliko vekova.
01:02
And now the Information Age has lasted just a few decades.
15
62529
4287
A sadašnje informaciono doba je trajalo svega nekoliko decenija.
01:06
And now today, we're on the cusp of our next great era as a species.
16
66840
5220
Trenutno smo kao vrsta na samom početku naše nove značajne ere.
01:13
Welcome to the Augmented Age.
17
73116
2680
Dobro došli u prošireno doba.
01:15
In this new era, your natural human capabilities are going to be augmented
18
75820
3693
U ovoj novoj eri, vaše prirodne ljudske sposobnosti će da budu proširene
01:19
by computational systems that help you think,
19
79537
3068
uz pomoć računarskih sistema koji vam pomažu da razmišljate,
01:22
robotic systems that help you make,
20
82629
2186
robotskih sistema koji vam pomažu da stvarate
01:24
and a digital nervous system
21
84839
1648
i digitalnih nervnih sistema
01:26
that connects you to the world far beyond your natural senses.
22
86511
3690
koji vas povezuju sa svetom daleko izvan vaših prirodnih čula.
01:31
Let's start with cognitive augmentation.
23
91257
1942
Započnimo kognitivnim proširenjem.
01:33
How many of you are augmented cyborgs?
24
93223
2200
Koliko vas su prošireni kiborzi?
01:35
(Laughter)
25
95953
2650
(Smeh)
01:38
I would actually argue that we're already augmented.
26
98627
2821
Ja bih zapravo rekao da smo svi mi prošireni.
01:42
Imagine you're at a party,
27
102108
1504
Zamislite da ste na zabavi
01:43
and somebody asks you a question that you don't know the answer to.
28
103636
3520
i neko vam postavi pitanje na koje ne znate odgovor.
01:47
If you have one of these, in a few seconds, you can know the answer.
29
107180
3760
Ako imate nešto slično ovome, za nekoliko sekundi možete znati odgovor.
01:51
But this is just a primitive beginning.
30
111689
2299
Ali ovo je tek primitivni početak.
01:54
Even Siri is just a passive tool.
31
114683
3331
Čak je i Siri tek pasivno oruđe.
01:58
In fact, for the last three-and-a-half million years,
32
118480
3381
Zapravo, u poslednjih tri i po miliona godina,
02:01
the tools that we've had have been completely passive.
33
121885
3109
oruđa koja smo imali su bila potpuno pasivna.
02:06
They do exactly what we tell them and nothing more.
34
126023
3655
Ona rade tačno ono što im kažemo i ništa više.
02:09
Our very first tool only cut where we struck it.
35
129702
3101
Naše prvo oruđe je jedino seklo onde gde bismo udarili njime.
02:13
The chisel only carves where the artist points it.
36
133642
3040
Dleto rezbari samo onde gde ga umetnik usmeri.
02:17
And even our most advanced tools do nothing without our explicit direction.
37
137163
5641
Čak i naša najnaprednija oruđa ne rade bilo šta bez naših eksplicitnih naredbi.
02:22
In fact, to date, and this is something that frustrates me,
38
142828
3181
Zapravo, do danas, a to je nešto što me nervira,
02:26
we've always been limited
39
146033
1448
oduvek smo bili ograničeni
02:27
by this need to manually push our wills into our tools --
40
147505
3501
potrebom da ručno uteramo našu volju u naše alate -
02:31
like, manual, literally using our hands,
41
151030
2297
ručno, bukvalno koristeći naše ruke,
02:33
even with computers.
42
153351
1428
čak i sa kompjuterima.
02:35
But I'm more like Scotty in "Star Trek."
43
155892
2463
No ja sam više nalik Skotiju iz "Zvezdanih staza".
02:38
(Laughter)
44
158379
1850
(Smeh)
02:40
I want to have a conversation with a computer.
45
160253
2146
Želim da razgovaram s kompjuterom.
02:42
I want to say, "Computer, let's design a car,"
46
162423
2970
Želim da kažem: "Kompjuteru, hajde da dizajniramo automobil",
02:45
and the computer shows me a car.
47
165417
1539
i kompjuter mi pokaže automobil.
02:46
And I say, "No, more fast-looking, and less German,"
48
166980
2608
A ja kažem: "Ne, da izgleda brže i manje nemački",
02:49
and bang, the computer shows me an option.
49
169612
2163
i, bum, kompjuter mi pokaže opciju.
02:51
(Laughter)
50
171799
1865
(Smeh)
02:54
That conversation might be a little ways off,
51
174028
2306
Taj razgovor je možda malčice daleko,
02:56
probably less than many of us think,
52
176358
2665
verovatno manje nego što većina nas misli,
02:59
but right now,
53
179047
1763
ali trenutno
03:00
we're working on it.
54
180834
1151
radimo na tome.
03:02
Tools are making this leap from being passive to being generative.
55
182009
4033
Oruđa prave ovaj skok od pasivnih do stvaralačkih.
03:06
Generative design tools use a computer and algorithms
56
186651
3308
Stvaralačka dizajnerska oruđa koriste kompjutere i algoritme,
03:09
to synthesize geometry
57
189983
2608
da bi tim spojem stvorila geometriju
03:12
to come up with new designs all by themselves.
58
192615
2754
i potpuno sama došla do novih dizajna.
03:15
All it needs are your goals and your constraints.
59
195816
2748
Sve što im je potrebno su vaši ciljevi i vaša ograničenja.
03:18
I'll give you an example.
60
198588
1408
Daću vam jedan primer.
03:20
In the case of this aerial drone chassis,
61
200020
2788
U slučaju ove vazdušne šasije drona,
03:22
all you would need to do is tell it something like,
62
202832
2626
sve što bi trebalo da uradite je da tražite sledeće:
03:25
it has four propellers,
63
205482
1273
da ima četiri propelera,
03:26
you want it to be as lightweight as possible,
64
206779
2131
želite da bude što lakša
03:28
and you need it to be aerodynamically efficient.
65
208934
2270
i želite da ima aerodinamičnu efikasnost.
03:31
Then what the computer does is it explores the entire solution space:
66
211228
4914
Potom kompjuter istražuje celokupan prostor rešenja:
03:36
every single possibility that solves and meets your criteria --
67
216166
3927
baš svaku mogućnost koja rešava i ispunjava vaše kriterijume -
03:40
millions of them.
68
220117
1442
milione njih.
03:41
It takes big computers to do this.
69
221583
1975
Potrebni su veliki kompjuteri da to obave.
03:43
But it comes back to us with designs
70
223582
1955
Ali su nam uzvratili dizajnima
03:45
that we, by ourselves, never could've imagined.
71
225561
3143
koje mi sami ne bismo nikad mogli da zamislimo.
03:49
And the computer's coming up with this stuff all by itself --
72
229146
2912
A kompjuter je sam došao do ovoga -
03:52
no one ever drew anything,
73
232082
1678
niko nikad nije nacrtao bilo šta -
03:53
and it started completely from scratch.
74
233784
2086
i započeo je potpuno od nule.
03:56
And by the way, it's no accident
75
236858
2387
I, usput, nije slučajno
03:59
that the drone body looks just like the pelvis of a flying squirrel.
76
239269
3481
da telo drona izgleda baš kao karlica leteće veverice.
04:03
(Laughter)
77
243107
2007
(Smeh)
04:05
It's because the algorithms are designed to work
78
245860
2302
To je tako jer su algoritmi dizajnirani da deluju
04:08
the same way evolution does.
79
248186
1637
na isti način kao evolucija.
04:10
What's exciting is we're starting to see this technology
80
250535
2660
Uzbudljivo je što počinjemo da gledamo ovu tehnologiju
04:13
out in the real world.
81
253219
1159
u stvarnom svetu.
04:14
We've been working with Airbus for a couple of years
82
254402
2452
Nekoliko godina smo radili sa Erbasom
04:16
on this concept plane for the future.
83
256878
1909
na konceptu aviona iz budućnosti.
04:18
It's a ways out still.
84
258811
2070
I dalje je ispred svog vremena.
04:20
But just recently we used a generative-design AI
85
260905
3780
Ali baš nedavno smo koristili generativni dizajn veštačke inteligencije
04:24
to come up with this.
86
264709
1807
da bismo smislili ovo.
04:27
This is a 3D-printed cabin partition that's been designed by a computer.
87
267429
5153
Ovo je pregrada odštampana 3D štampačem, koju je dizajnirao kompjuter.
04:32
It's stronger than the original yet half the weight,
88
272606
2824
Jača je od prvobitne, a ipak je upola lakša
04:35
and it will be flying in the Airbus A320 later this year.
89
275454
3146
i leteće u erbasu A320 kasnije ove godine.
04:39
So computers can now generate;
90
279225
1559
Kompjuteri sad mogu da stvaraju;
04:40
they can come up with their own solutions to our well-defined problems.
91
280808
4595
mogu da osmisle sopstvena rešenja za naše dobro definisane probleme.
04:46
But they're not intuitive.
92
286497
1310
Ali nisu intuitivni.
04:47
They still have to start from scratch every single time,
93
287831
3086
I dalje moraju da počnu od nule, baš svaki put,
04:50
and that's because they never learn.
94
290941
2565
a to je zato što nikad ne nauče.
04:54
Unlike Maggie.
95
294188
1766
Za razliku od Megi.
04:55
(Laughter)
96
295978
1581
(Smeh)
04:57
Maggie's actually smarter than our most advanced design tools.
97
297583
3297
Megi je zapravo pametnija od naših najnaprednijih dizajnerskih oruđa.
05:01
What do I mean by that?
98
301287
1440
Šta podrazumevam time?
05:02
If her owner picks up that leash,
99
302751
1590
Ako njen vlasnik uzme povodac,
05:04
Maggie knows with a fair degree of certainty
100
304365
2068
Megi zna s porpiličnim stepenom izvesnosti
05:06
it's time to go for a walk.
101
306457
1404
da je vreme za šetnju.
05:07
And how did she learn?
102
307885
1185
A kako je naučila?
05:09
Well, every time the owner picked up the leash, they went for a walk.
103
309094
3324
Pa, svaki put kad je vlasnik uzeo povodac, išli su u šetnju.
05:12
And Maggie did three things:
104
312442
1878
I Megi je obavila tri stvari:
05:14
she had to pay attention,
105
314344
1869
morala je da obrati pažnju,
05:16
she had to remember what happened
106
316237
2082
morala je da se priseti šta se desilo
05:18
and she had to retain and create a pattern in her mind.
107
318343
4017
i morala je da zadrži i stvori obrazac u svom umu.
05:23
Interestingly, that's exactly what
108
323249
2095
Zanimljivo je da je upravo to ono što
05:25
computer scientists have been trying to get AIs to do
109
325368
2523
naučnici za kompjutere pokušavaju da navedu VI da uradi
05:27
for the last 60 or so years.
110
327915
1859
u poslednjih oko 60 godina.
05:30
Back in 1952,
111
330503
1349
Te 1952.
05:31
they built this computer that could play Tic-Tac-Toe.
112
331876
3801
su sagradili ovaj kompjuter koji je mogao da igra iks-oks.
05:36
Big deal.
113
336901
1160
Velika stvar.
05:38
Then 45 years later, in 1997,
114
338849
3000
Potom, 45 godina kasnije, 1997.
05:41
Deep Blue beats Kasparov at chess.
115
341873
2472
Deep Blue je pobedio Kasparova u šahu.
05:45
2011, Watson beats these two humans at Jeopardy,
116
345866
4968
Godine 2011, Watson je pobedio ova dva čoveka u kvizu,
05:50
which is much harder for a computer to play than chess is.
117
350858
2928
što je daleko teže za kompjuter da iga od šaha.
05:53
In fact, rather than working from predefined recipes,
118
353810
3812
Zapravo, umesto da radi na osnovu već definisanih recepata,
05:57
Watson had to use reasoning to overcome his human opponents.
119
357646
3323
Votson je morao da koristi rasuđivanje da bi prevazišao ljudske protivnike.
06:02
And then a couple of weeks ago,
120
362213
2439
A onda, pre nekoliko nedelja,
06:04
DeepMind's AlphaGo beats the world's best human at Go,
121
364676
4262
AlphaGo iz DeepMind-a je pobedio ljudsko biće koje je najbolje u gou,
06:08
which is the most difficult game that we have.
122
368962
2212
a to je najkomplikovanija igra koju imamo.
06:11
In fact, in Go, there are more possible moves
123
371198
2896
Zapravo, ima više mogućih poteza u gou
06:14
than there are atoms in the universe.
124
374118
2024
nego što ima atoma u univerzumu.
06:18
So in order to win,
125
378030
1826
Pa, kako bi pobedio,
06:19
what AlphaGo had to do was develop intuition.
126
379880
2618
AlphaGo je morao da razvije intuiciju.
06:22
And in fact, at some points, AlphaGo's programmers didn't understand
127
382918
4110
I zapravo, u nekim momentima programeri AlphaGo-a nisu razumeli
06:27
why AlphaGo was doing what it was doing.
128
387052
2286
zašto je AlphaGo radio to što radi.
06:31
And things are moving really fast.
129
391271
1660
A stvari se odvijaju zaista brzo.
06:32
I mean, consider -- in the space of a human lifetime,
130
392955
3227
Mislim, razmotrite - u okviru ljudskog životnog veka,
06:36
computers have gone from a child's game
131
396206
2233
kompjuteri su prešli od dečje igre
06:39
to what's recognized as the pinnacle of strategic thought.
132
399740
3048
do onoga što se smatra vrhuncem strateškog mišljenja.
06:43
What's basically happening
133
403819
2417
U suštini se dešava to
06:46
is computers are going from being like Spock
134
406260
3310
da kompjuteri prestaju da budu poput Spoka
06:49
to being a lot more like Kirk.
135
409594
1949
i postaju mnogo više nalik Kirku.
06:51
(Laughter)
136
411567
3618
(Smeh)
06:55
Right? From pure logic to intuition.
137
415209
3424
Je li tako? Od čiste logike do intuicije.
07:00
Would you cross this bridge?
138
420004
1743
Da li biste prešli ovaj most?
07:02
Most of you are saying, "Oh, hell no!"
139
422429
2323
Većina vas govori: "Uh, nema šanse!"
07:04
(Laughter)
140
424776
1308
(Smeh)
07:06
And you arrived at that decision in a split second.
141
426108
2657
A stigli ste do te odluke u deliću sekunde.
07:08
You just sort of knew that bridge was unsafe.
142
428789
2428
Prosto ste nekako znali da taj most nije bezbedan.
07:11
And that's exactly the kind of intuition
143
431241
1989
A upravo je to tip intuicije
07:13
that our deep-learning systems are starting to develop right now.
144
433254
3568
koju naši sistemi dubinskog učenja trenutno počinju da razvijaju.
07:17
Very soon, you'll literally be able
145
437542
1707
Veoma brzo ćete bukvalno moći
07:19
to show something you've made, you've designed,
146
439273
2206
da pokažete kompjuteru nešto što ste napravili,
07:21
to a computer,
147
441503
1153
što ste dizajnirali
07:22
and it will look at it and say,
148
442680
1489
i on će to da pogleda i kaže:
07:24
"Sorry, homie, that'll never work. You have to try again."
149
444193
2823
"Izvini, druže, to neće proći. Moraš opet da pokušaš."
07:27
Or you could ask it if people are going to like your next song,
150
447674
3070
Ili ćete moći da ga pitate da li će se ljudima sviđati vaša nova pesma
07:31
or your next flavor of ice cream.
151
451593
2063
ili vaš novi ukus sladoleda.
07:35
Or, much more importantly,
152
455369
2579
Ili, što je još važnije,
07:37
you could work with a computer to solve a problem
153
457972
2364
moći ćete raditi sa kompjuterom da biste rešili problem
07:40
that we've never faced before.
154
460360
1637
s kojim se pre nismo suočili.
07:42
For instance, climate change.
155
462021
1401
Na primer, klimatske promene.
07:43
We're not doing a very good job on our own,
156
463446
2020
Sami ne obavljamo posao naročito dobro,
07:45
we could certainly use all the help we can get.
157
465490
2245
svakako da bi nam koristila sva moguća pomoć.
07:47
That's what I'm talking about,
158
467759
1458
O tome govorim,
07:49
technology amplifying our cognitive abilities
159
469241
2555
o tehnologiji koja naglašava naše kognitivne sposobnosti
07:51
so we can imagine and design things that were simply out of our reach
160
471820
3552
kako bismo mogli da zamislimo i dizajniramo stvari koje nisu dostupne
07:55
as plain old un-augmented humans.
161
475396
2559
nama, prostim starim neproširenim ljudima.
07:59
So what about making all of this crazy new stuff
162
479804
2941
Pa, o čemu se radi kod stvaranja svih tih blesavih novih stvari
08:02
that we're going to invent and design?
163
482769
2441
koje ćemo izumeti i dizajnirati?
08:05
I think the era of human augmentation is as much about the physical world
164
485772
4093
Mislim da se u eri ljudskog proširivanja podjednako radi o fizičkom svetu
08:09
as it is about the virtual, intellectual realm.
165
489889
3065
kao i o virtuelnoj, intelektualnoj sferi.
08:13
How will technology augment us?
166
493653
1921
Kako će nas tehnologija proširiti?
08:16
In the physical world, robotic systems.
167
496081
2473
U fizičkom svetu, biće to robotski sistemi.
08:19
OK, there's certainly a fear
168
499440
1736
U redu, svakako da postoji strah
08:21
that robots are going to take jobs away from humans,
169
501200
2488
da će roboti da oduzmu poslove ljudima,
08:23
and that is true in certain sectors.
170
503712
1830
to je tačno za određene sektore.
08:25
But I'm much more interested in this idea
171
505994
2878
No, mene više zanima zamisao
08:28
that humans and robots working together are going to augment each other,
172
508896
5010
da će ljudi i roboti radeći zajedno proširiti jedni druge,
08:33
and start to inhabit a new space.
173
513930
2058
i počeće da naseljavaju nove prostore.
Ovo je primenjena istraživačka laboratorija u San Francisku,
08:36
This is our applied research lab in San Francisco,
174
516012
2362
08:38
where one of our areas of focus is advanced robotics,
175
518398
3142
gde je napredna robotika jedna od oblasti na koje se fokusiramo,
08:41
specifically, human-robot collaboration.
176
521564
2511
naročito saradnja između ljudi i robota.
08:44
And this is Bishop, one of our robots.
177
524854
2759
A ovo je Bišop, jedan od naših robota.
08:47
As an experiment, we set it up
178
527637
1789
Kao eksperiment, podesili smo ga
08:49
to help a person working in construction doing repetitive tasks --
179
529450
3460
da pomaže osobi koja na građevini obavlja repetitivne poslove -
08:53
tasks like cutting out holes for outlets or light switches in drywall.
180
533804
4194
poslove poput bušenja rupa u gips-kartonu za utičnice ili prekidače za svetla.
08:58
(Laughter)
181
538022
2466
(Smeh)
09:01
So, Bishop's human partner can tell what to do in plain English
182
541697
3111
Dakle, Bišopov ljudski partner može da mu objasni na engleskom
09:04
and with simple gestures,
183
544832
1305
i jednostavnom gestikulacijom,
09:06
kind of like talking to a dog,
184
546161
1447
poput razgovaranja sa psom,
09:07
and then Bishop executes on those instructions
185
547632
2143
a potom Bišop, izvodi ta uputstva
09:09
with perfect precision.
186
549799
1892
savršenom preciznošću.
09:11
We're using the human for what the human is good at:
187
551715
2989
Koristimo ljude za ono u čemu su dobri:
09:14
awareness, perception and decision making.
188
554728
2333
svesnost, percepcija i donošenje odluka.
09:17
And we're using the robot for what it's good at:
189
557085
2240
A koristimo robota za ono u čemu je dobar:
09:19
precision and repetitiveness.
190
559349
1748
preciznost i ponavljanje.
09:22
Here's another cool project that Bishop worked on.
191
562072
2367
Još jedan sjajan projekat na kom je radio Bišop.
09:24
The goal of this project, which we called the HIVE,
192
564463
3075
Cilj ovog projekta, koga smo nazvali HIVE,
09:27
was to prototype the experience of humans, computers and robots
193
567562
3851
bio je da testira iskustvo ljudi, kompjutera i robota
09:31
all working together to solve a highly complex design problem.
194
571437
3220
gde svi rade zajedno kako bi rešili veoma složene dizajnerske probleme.
09:35
The humans acted as labor.
195
575613
1451
Ljudi su služili kao radna snaga.
09:37
They cruised around the construction site, they manipulated the bamboo --
196
577088
3473
Kružili su po gradilištu, rukovali bambusom -
09:40
which, by the way, because it's a non-isomorphic material,
197
580585
2756
koji je, usput, stoga što je neizomorfan materijal,
09:43
is super hard for robots to deal with.
198
583365
1874
veoma težak robotima za rukovanje.
09:45
But then the robots did this fiber winding,
199
585263
2022
No, potom su roboti namotavali ovo vlakno,
09:47
which was almost impossible for a human to do.
200
587309
2451
a to je skoro nemoguće za ljude da urade.
09:49
And then we had an AI that was controlling everything.
201
589784
3621
A potom smo imali VI koja je sve kontrolisala.
09:53
It was telling the humans what to do, telling the robots what to do
202
593429
3290
Govorila je ljudima šta da rade, govorila je robotima šta da rade
09:56
and keeping track of thousands of individual components.
203
596743
2915
i nadgledala hiljade pojedinačnih komponenti.
09:59
What's interesting is,
204
599682
1180
Zanimljivo je
10:00
building this pavilion was simply not possible
205
600886
3141
da je izgradnja ovog paviljona prosto bila nemoguća
10:04
without human, robot and AI augmenting each other.
206
604051
4524
bez ljudi, robota i VI koji proširuju jedni druge.
10:09
OK, I'll share one more project. This one's a little bit crazy.
207
609710
3320
Podeliću sa vama još jedan projekat. Ovaj je malčice blesav.
10:13
We're working with Amsterdam-based artist Joris Laarman and his team at MX3D
208
613054
4468
Radimo sa umetnicima iz Amsterdama, Jorisom Larmanom i njegovom ekipom iz MX3D
10:17
to generatively design and robotically print
209
617546
2878
da bismo generativno dizajnirali i robotski odštampali
10:20
the world's first autonomously manufactured bridge.
210
620448
2995
prvi u svetu autonomno proizveden most.
10:24
So, Joris and an AI are designing this thing right now, as we speak,
211
624135
3685
Dakle, Joris i VI baš dok govorimo dizajniraju taj objekat
10:27
in Amsterdam.
212
627844
1172
u Amsterdamu.
10:29
And when they're done, we're going to hit "Go,"
213
629040
2321
A kad završe, pritisnućemo "Kreni"
10:31
and robots will start 3D printing in stainless steel,
214
631385
3311
i roboti će početi 3D tehnologijom da štampaju nerđajući čelik
10:34
and then they're going to keep printing, without human intervention,
215
634720
3283
i nastaviće da štampaju bez ljudskog uplitanja,
10:38
until the bridge is finished.
216
638027
1558
sve dok završe most.
10:40
So, as computers are going to augment our ability
217
640919
2928
Pa, kako će roboti da prošire našu sposobnost
10:43
to imagine and design new stuff,
218
643871
2150
zamišljanja i dizajniranja novih stvari,
robotski sistemi će da nam pomognu da gradimo i pravimo stvari
10:46
robotic systems are going to help us build and make things
219
646045
2895
10:48
that we've never been able to make before.
220
648964
2084
koje nismo mogli da pravimo pre.
10:52
But what about our ability to sense and control these things?
221
652167
4160
No, šta je s našom sposobnošću da osetimo i kontrolišemo ove stvari?
10:56
What about a nervous system for the things that we make?
222
656351
4031
Kako bi bilo da imamo nervni sistem kod stvari koje pravimo?
11:00
Our nervous system, the human nervous system,
223
660406
2512
Naš nervni sistem, ljudski nervni sistem,
11:02
tells us everything that's going on around us.
224
662942
2311
saopštava nam o svemu što se dešava oko nas.
11:06
But the nervous system of the things we make is rudimentary at best.
225
666006
3684
Međutim, nervni sitem stvari koje pravimo je u najboljem slučaju prost.
11:09
For instance, a car doesn't tell the city's public works department
226
669714
3563
Na primer, automobil ne saopštava gradskom odseku za javne delatnosti
11:13
that it just hit a pothole at the corner of Broadway and Morrison.
227
673301
3130
da je upravo udario u rupu na uglu ulice Brodvej i Morison.
11:16
A building doesn't tell its designers
228
676455
2032
Građevina ne sopštava njenim dizajnerima
11:18
whether or not the people inside like being there,
229
678511
2684
da li ljudi unutar nje vole da budu tu,
11:21
and the toy manufacturer doesn't know
230
681219
3010
a proizvođač lutaka ne zna
11:24
if a toy is actually being played with --
231
684253
2007
da li se zaista igraju njihovim igračkama -
11:26
how and where and whether or not it's any fun.
232
686284
2539
kako, gde i da li su ili nisu zabavne.
11:29
Look, I'm sure that the designers imagined this lifestyle for Barbie
233
689440
3814
Vidite, siguran sam da su dizajneri zamislili ovakav stil života za barbiku
11:33
when they designed her.
234
693278
1224
kada su je dizajnirali.
11:34
(Laughter)
235
694526
1447
(Smeh)
11:35
But what if it turns out that Barbie's actually really lonely?
236
695997
2906
Ali šta ako se ispostavi da je barbi zapravo veoma usamljena?
11:38
(Laughter)
237
698927
3147
(Smeh)
11:43
If the designers had known
238
703086
1288
Kad bi dizajneri znali
11:44
what was really happening in the real world
239
704398
2107
šta se zaista dešava u stvarnom svetu
11:46
with their designs -- the road, the building, Barbie --
240
706529
2583
njihovim dizajnima - putevima, građevinama, barbikama -
mogli bi da koriste to znanje
11:49
they could've used that knowledge to create an experience
241
709136
2694
da stvore bolja iskustva za korisnike.
11:51
that was better for the user.
242
711854
1400
Nedostaje nervni sistem
11:53
What's missing is a nervous system
243
713278
1791
11:55
connecting us to all of the things that we design, make and use.
244
715093
3709
koji bi nas povezao sa svim stvarima koje dizajniramo, pravimo i koristimo.
11:59
What if all of you had that kind of information flowing to you
245
719735
3555
Šta kad biste svi vi imali dotok takvog oblika informacija
12:03
from the things you create in the real world?
246
723314
2183
od stvari koje stvarate u stvarnom svetu?
12:07
With all of the stuff we make,
247
727252
1451
Uz sve što pravimo,
12:08
we spend a tremendous amount of money and energy --
248
728727
2435
trošimo ogromne količine novca i energije -
12:11
in fact, last year, about two trillion dollars --
249
731186
2376
zapravo, prošle godine, skoro dva biliona dolara -
12:13
convincing people to buy the things we've made.
250
733586
2854
ubeđujući ljude da kupe stvari koje pravimo.
12:16
But if you had this connection to the things that you design and create
251
736464
3388
Ali kad biste imali ovakvu vezu sa stvarima koje dizajnirate i stvarate
12:19
after they're out in the real world,
252
739876
1727
kada se one nađu u stvarnom svetu,
12:21
after they've been sold or launched or whatever,
253
741627
3614
nakon što ih prodaju ili lansiraju ili šta god,
12:25
we could actually change that,
254
745265
1620
zapravo bismo mogli to da promenimo
12:26
and go from making people want our stuff,
255
746909
3047
i da se pomerimo od ubeđivanja ljudi da vole naše stvari
12:29
to just making stuff that people want in the first place.
256
749980
3434
do prosto pravljenja stvari koje su ljudima prvenstveno potrebne.
12:33
The good news is, we're working on digital nervous systems
257
753438
2787
Dobre vesti su da radimo na digitalnom nervnom sistemu
12:36
that connect us to the things we design.
258
756249
2801
koji bi nas povezao sa stvarima koje dizajniramo.
12:40
We're working on one project
259
760185
1627
Radimo na jednom projektu
12:41
with a couple of guys down in Los Angeles called the Bandito Brothers
260
761836
3712
sa nekoliko momaka iz Los Anđelesa, koji sebe nazivaju Bandito Bradersima,
12:45
and their team.
261
765572
1407
i njihovom ekipom.
12:47
And one of the things these guys do is build insane cars
262
767003
3433
A jedna od stvari koju ovi momci rade je izgradnja ludih automobila
12:50
that do absolutely insane things.
263
770460
2873
koji rade potpuno lude stvari.
12:54
These guys are crazy --
264
774725
1450
Ovi momci su sumanuti -
12:56
(Laughter)
265
776199
1036
(Smeh)
12:57
in the best way.
266
777259
1403
na najbolji način.
13:00
And what we're doing with them
267
780813
1763
A mi s njima radimo
13:02
is taking a traditional race-car chassis
268
782600
2440
tako što uzmemo tradicionalnu šasiju za trkačka auta
13:05
and giving it a nervous system.
269
785064
1585
i ugrađujemo nervni sistem u nju.
13:06
So we instrumented it with dozens of sensors,
270
786673
3058
Dakle, opskrbili smo je desetinama senzora,
13:09
put a world-class driver behind the wheel,
271
789755
2635
stavili smo iza volana vozača svetske klase,
13:12
took it out to the desert and drove the hell out of it for a week.
272
792414
3357
odvezli auto u pustinju vozali ga do besvesti sedam dana.
13:15
And the car's nervous system captured everything
273
795795
2491
A nervni sistem automobila je zabeležio
13:18
that was happening to the car.
274
798310
1482
sve što se dešavalo automobilu.
13:19
We captured four billion data points;
275
799816
2621
Zabeležili smo četiri milijarde jedinica podataka;
13:22
all of the forces that it was subjected to.
276
802461
2310
sve sile kojima je bilo izloženo.
13:24
And then we did something crazy.
277
804795
1659
A potom smo uradili nešto ludo.
13:27
We took all of that data,
278
807088
1500
Uzeli smo sve podatke
13:28
and plugged it into a generative-design AI we call "Dreamcatcher."
279
808612
3736
i priključili ih na VI genrativnog dizajna koju nazivamo "Dreamcatcher".
13:33
So what do get when you give a design tool a nervous system,
280
813090
3964
Pa, šta dobijate kada dizajnerskom oruđu date nervni sistem
13:37
and you ask it to build you the ultimate car chassis?
281
817078
2882
i zatražite od njega da vam sagradi najbolju šasiju za auto?
13:40
You get this.
282
820543
1973
Dobijate ovo.
13:44
This is something that a human could never have designed.
283
824113
3713
Ovo je nešto što ljudi nikad ne bi mogli da dizajniraju.
13:48
Except a human did design this,
284
828527
1888
Samo što ljudi ovo jesu dizajnirali,
13:50
but it was a human that was augmented by a generative-design AI,
285
830439
4309
ali to su bili ljudi prošireni VI generativnog dizajna,
13:54
a digital nervous system
286
834772
1231
digitalnim nervnim sistemom
13:56
and robots that can actually fabricate something like this.
287
836027
3005
i robotima koji zapravo mogu da proizvedu nešto ovakvo.
13:59
So if this is the future, the Augmented Age,
288
839500
3595
Pa, ako je ovo budućnost, prošireno doba,
14:03
and we're going to be augmented cognitively, physically and perceptually,
289
843119
4261
a mi ćemo da budemo prošireni kognitivno, fizički i čulno,
14:07
what will that look like?
290
847404
1408
kako će to da izgleda?
14:09
What is this wonderland going to be like?
291
849396
3321
Kako će da izgleda ova zemlja čuda?
14:12
I think we're going to see a world
292
852741
1709
Mislim da ćemo da vidimo svet
14:14
where we're moving from things that are fabricated
293
854474
3068
u kom se udaljavamo od stvari koje se proizvode
14:17
to things that are farmed.
294
857566
1445
do stvari koje se obrađuju.
14:19
Where we're moving from things that are constructed
295
859979
3453
U kom se udaljavamo od stvari koje se konstruišu
14:23
to that which is grown.
296
863456
1704
do onih koje se gaje.
14:25
We're going to move from being isolated
297
865954
2188
Udaljićemo se od izolacije
14:28
to being connected.
298
868166
1610
ka povezanosti.
14:30
And we'll move away from extraction
299
870454
2411
I udaljićemo se od kopanja
14:32
to embrace aggregation.
300
872889
1873
ka sakupljanju.
14:35
I also think we'll shift from craving obedience from our things
301
875787
3767
Mislim i da ćemo se pomeriti od žudnje da nam stvari budu poslušne
14:39
to valuing autonomy.
302
879578
1641
ka cenjenju autonomije.
14:42
Thanks to our augmented capabilities,
303
882330
1905
Zahvaljujući našim proširenim mogućnostima,
14:44
our world is going to change dramatically.
304
884259
2377
naš svet će da se drastično izmeni.
14:47
We're going to have a world with more variety, more connectedness,
305
887396
3246
Imaćemo svet s više izbora, više povezanosti,
14:50
more dynamism, more complexity,
306
890666
2287
dinamičniji, složeniji
14:52
more adaptability and, of course,
307
892977
2318
prilagodljiviji i, naravno,
14:55
more beauty.
308
895319
1217
lepši.
14:57
The shape of things to come
309
897051
1564
Obrisi budućnosti
14:58
will be unlike anything we've ever seen before.
310
898639
2290
neće da liče na bilo šta što smo videli do sad.
15:00
Why?
311
900953
1159
Zašto?
15:02
Because what will be shaping those things is this new partnership
312
902136
3755
Jer će sve ovo da oblikuje novo partnerstvo
15:05
between technology, nature and humanity.
313
905915
3670
između tehnologije, prirode i čovečanstva.
15:11
That, to me, is a future well worth looking forward to.
314
911099
3804
Za mene, to je budućnost koju vredi iščekivati.
15:14
Thank you all so much.
315
914927
1271
Mnogo vam hvala.
15:16
(Applause)
316
916222
5669
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7