The incredible inventions of intuitive AI | Maurice Conti

5,584,143 views ใƒป 2017-02-28

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

00:00
Translator: Leslie Gauthier Reviewer: Camille Martรญnez
0
0
7000
๋ฒˆ์—ญ: Joo Young Moon ๊ฒ€ํ† : yongkyu lee
00:12
How many of you are creatives,
1
12555
2289
์ด ์ž๋ฆฌ์— ํฌ๋ฆฌ์—์ดํ„ฐ๋‚˜
00:14
designers, engineers, entrepreneurs, artists,
2
14868
3624
๋””์ž์ด๋„ˆ, ์—”์ง€๋‹ˆ์–ด,๊ธฐ์—…๊ฐ€, ์˜ˆ์ˆ ๊ฐ€
00:18
or maybe you just have a really big imagination?
3
18516
2387
ํ’๋ถ€ํ•œ ์ƒ์ƒ๋ ฅ์„ ๊ฐ€์ง„ ๋ถ„์ด ์žˆ๋‹ค๋ฉด
00:20
Show of hands? (Cheers)
4
20927
1848
์†์„ ๋“ค์–ด ๋ณด์„ธ์š”.
00:22
That's most of you.
5
22799
1181
๊ฑฐ์˜ ๋‹ค๊ตฐ์š”.
00:25
I have some news for us creatives.
6
25154
2294
๊ทธ๋Ÿฌํ•œ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ์ „ํ•ด๋“œ๋ฆด ์†Œ์‹์ด ์žˆ์Šต๋‹ˆ๋‹ค.
00:28
Over the course of the next 20 years,
7
28534
2573
์ง€๊ธˆ์œผ๋กœ๋ถ€ํ„ฐ 20๋…„ ๋™์•ˆ
00:33
more will change around the way we do our work
8
33291
2973
์ง€๋‚œ 2000๋…„๊ฐ„ ์ธ๊ฐ„์ด ์ผํ–ˆ๋˜ ๋ฐฉ์‹์˜ ๋ณ€ํ™”๋ณด๋‹ค
00:37
than has happened in the last 2,000.
9
37202
2157
๋” ๋งŽ์€ ๋ณ€ํ™”๊ฐ€ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:40
In fact, I think we're at the dawn of a new age in human history.
10
40331
4628
์ €๋Š” ์ธ๋ฅ˜์‚ฌ์— ์ƒˆ๋กœ์šด ์‹œ๋Œ€์˜ ์ƒˆ๋ฒฝ์ด ์™”๋‹ค๊ณ  ๋ด…๋‹ˆ๋‹ค.
00:45
Now, there have been four major historical eras defined by the way we work.
11
45465
4761
์ธ๊ฐ„์ด ์ผํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํฌ๊ฒŒ ๋„ค ์‹œ๋Œ€๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
00:51
The Hunter-Gatherer Age lasted several million years.
12
51224
3275
์ˆ˜๋ ต๊ณผ ์ฑ„์ง‘์˜ ์‹œ๋Œ€๋Š” ์ˆ˜๋ฐฑ๋งŒ ๋…„๊ฐ„ ์ง€์†๋์ฃ .
00:54
And then the Agricultural Age lasted several thousand years.
13
54983
3576
๊ทธ ๋‹ค์Œ์—” ๋†๊ฒฝ ์‹œ๋Œ€๊ฐ€ ์ˆ˜์ฒœ ๋…„๊ฐ„ ์ง€์†๋์œผ๋ฉฐ
00:59
The Industrial Age lasted a couple of centuries.
14
59015
3490
์‚ฐ์—… ์‹œ๋Œ€๋Š” ์ˆ˜ ์„ธ๊ธฐ๊ฐ„ ์ด์–ด์กŒ์Šต๋‹ˆ๋‹ค.
01:02
And now the Information Age has lasted just a few decades.
15
62529
4287
๊ทธ๋ฆฌ๊ณ  ์ •๋ณด ์‹œ๋Œ€๋Š” ๋ช‡์‹ญ ๋…„๊ฐ„ ์ง€์†๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
01:06
And now today, we're on the cusp of our next great era as a species.
16
66840
5220
์˜ค๋Š˜๋‚  ์šฐ๋ฆฌ๋Š” ํ•œ ์ข…์œผ๋กœ์„œ ๊ทธ ๋‹ค์Œ ์œ„๋Œ€ํ•œ ์‹œ๋Œ€์˜ ์‹œ์ž‘์— ์žˆ์–ด์š”.
01:13
Welcome to the Augmented Age.
17
73116
2680
์ฆ๊ฐ•์˜ ์‹œ๋Œ€์— ์˜ค์‹  ๊ฒƒ์„ ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค.
01:15
In this new era, your natural human capabilities are going to be augmented
18
75820
3693
์ด ์ƒˆ๋กœ์šด ์‹œ๋Œ€์—์„œ๋Š” ์ธ๊ฐ„์˜ ์‚ฌ๊ณ ๋ฅผ ๋•๋Š”
01:19
by computational systems that help you think,
19
79537
3068
์ปดํ“จํ„ฐ ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ์ธ๊ฐ„์˜ ์ž์—ฐ ๋Šฅ๋ ฅ์ด ์ฆ๊ฐ•๋  ๊ฒ๋‹ˆ๋‹ค.
01:22
robotic systems that help you make,
20
82629
2186
๋กœ๋ด‡ ์‹œ์Šคํ…œ์€ ์ œ์ž‘์„ ๋„์šฐ๋ฉฐ
01:24
and a digital nervous system
21
84839
1648
๋””์ง€ํ„ธ ์‹ ๊ฒฝ๊ณ„๋Š”
01:26
that connects you to the world far beyond your natural senses.
22
86511
3690
ํƒ€๊ณ ๋‚œ ์ž์—ฐ์ ์ธ ๊ฐ๊ฐ๋„ˆ๋จธ์˜ ์„ธ๊ณ„์™€ ์—ฌ๋Ÿฌ๋ถ„์„ ์—ฐ๊ฒฐํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:31
Let's start with cognitive augmentation.
23
91257
1942
์ธ์‹์˜ ์ฆ๊ฐ•๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜์ฃ .
01:33
How many of you are augmented cyborgs?
24
93223
2200
์—ฌ๋Ÿฌ๋ถ„ ์ค‘ ๋ช‡ ๋ถ„์ด ์ฆ๊ฐ•๋œ ์‚ฌ์ด๋ณด๊ทธ์ผ๊นŒ์š”?
01:35
(Laughter)
25
95953
2650
(์›ƒ์Œ ์†Œ๋ฆฌ)
01:38
I would actually argue that we're already augmented.
26
98627
2821
์ „ ์ธ๊ฐ„์ด ์ด๋ฏธ ์ฆ๊ฐ•๋๋‹ค๊ณ  ์ฃผ์žฅํ•  ํ…Œ๋‹ˆ๊นŒ์š”.
01:42
Imagine you're at a party,
27
102108
1504
ํŒŒํ‹ฐ์— ๊ฐ”๋‹ค๊ณ  ์ƒ์ƒํ•˜๋ฉด
01:43
and somebody asks you a question that you don't know the answer to.
28
103636
3520
๋ˆ„๊ตฐ๊ฐ€ ๋‹น์‹ ์ด ๋‹ต์„ ์•Œ์ง€ ๋ชปํ•˜๋Š” ์งˆ๋ฌธ์„ ํ–ˆ์„๋•Œ
01:47
If you have one of these, in a few seconds, you can know the answer.
29
107180
3760
์ด๊ฒƒ๋งŒ ์žˆ๋‹ค๋ฉด ๋ช‡ ์ดˆ ๋งŒ์— ๋‹ต์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:51
But this is just a primitive beginning.
30
111689
2299
ํ•˜์ง€๋งŒ ์ด๋Š” ๊ฒจ์šฐ ์‹œ์ž‘์ผ ๋ฟ์ž…๋‹ˆ๋‹ค.
01:54
Even Siri is just a passive tool.
31
114683
3331
์‹ฌ์ง€์–ด 'Siri'์กฐ์ฐจ๋„ ์ˆ˜๋™์ ์ธ ๋„๊ตฌ์— ์ง€๋‚˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
01:58
In fact, for the last three-and-a-half million years,
32
118480
3381
์‚ฌ์‹ค ์ง€๋‚œ 350๋งŒ ๋…„ ๋™์•ˆ
02:01
the tools that we've had have been completely passive.
33
121885
3109
์ธ๋ฅ˜๊ฐ€ ์‚ฌ์šฉํ–ˆ๋˜ ๋„๊ตฌ๋Š” ์™„๋ฒฝํ•˜๊ฒŒ ์ˆ˜๋™์  ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
02:06
They do exactly what we tell them and nothing more.
34
126023
3655
๊ทธ๊ฒƒ์€ ์ธ๊ฐ„์˜ ๋ช…ํ™•ํ•œ ์ง€์‹œ ์—†์ด๋Š” ์•„๋ฌด๊ฒƒ๋„ ํ•˜์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.
02:09
Our very first tool only cut where we struck it.
35
129702
3101
์ตœ์ดˆ์˜ ๋„๊ตฌ๋Š” ์ธ๊ฐ„์ด ์ •ํ•œ ์ง€์ ๋งŒ ์ž˜๋ผ๋ƒˆ์ฃ .
02:13
The chisel only carves where the artist points it.
36
133642
3040
์˜ˆ์ˆ ๊ฐ€์˜ ์˜๋„ ์—†์ด ๋Œ์€ ์กฐ๊ฐ๋„ ๋ชป ํ•˜์ฃ .
02:17
And even our most advanced tools do nothing without our explicit direction.
37
137163
5641
๊ฐ€์žฅ ์ง„๋ณดํ•œ ๋„๊ตฌ์กฐ์ฐจ๋„ ์ธ๊ฐ„์˜ ์ง€์‹œ ์—†์ด๋Š” ์•„๋ฌด๊ฒƒ๋„ ๋ชป ํ•ฉ๋‹ˆ๋‹ค.
02:22
In fact, to date, and this is something that frustrates me,
38
142828
3181
์‚ฌ์‹ค ์˜ค๋Š˜๋‚ ๊นŒ์ง€ ๋ฌธ์ž ๊ทธ๋Œ€๋กœ ์ธ๊ฐ„์ด ํ•ญ์ƒ ์†์œผ๋กœ
02:26
we've always been limited
39
146033
1448
์‹ฌ์ง€์–ด ์ปดํ“จํ„ฐ๋„ ์˜๋„๋ฅผ ๊ฐ€์ง€๊ณ 
02:27
by this need to manually push our wills into our tools --
40
147505
3501
์ผ์ผํžˆ ๋ˆ„๋ฅด๊ฑฐ๋‚˜ ํ•ด์•ผ ํ•œ๋‹ค๋Š”
02:31
like, manual, literally using our hands,
41
151030
2297
ํ•œ๊ณ„๋ฅผ ํ•ญ์ƒ ๊ฐ€์ง„๋‹ค๋Š” ๊ฒƒ์€
02:33
even with computers.
42
153351
1428
์ €์—๊ฒŒ ์‹ค๋ง๊ฐ์„ ์ค๋‹ˆ๋‹ค
02:35
But I'm more like Scotty in "Star Trek."
43
155892
2463
์ „ ์Šคํƒ€ ํŠธ๋ ‰์˜ Scotty์ฒ˜๋Ÿผ
02:38
(Laughter)
44
158379
1850
(์›ƒ์Œ ์†Œ๋ฆฌ)
02:40
I want to have a conversation with a computer.
45
160253
2146
์ปดํ“จํ„ฐ์™€ ๋Œ€ํ™”ํ•˜๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
02:42
I want to say, "Computer, let's design a car,"
46
162423
2970
"์ž๋™์ฐจ๋ฅผ ๋””์ž์ธํ•ด ๋ณด์ž"๋ผ๊ณ  ์ปดํ“จํ„ฐ์— ๋งํ•˜๋ฉด
02:45
and the computer shows me a car.
47
165417
1539
์ปดํ“จํ„ฐ๊ฐ€ ์ž๋™์ฐจ๋ฅผ ๋ณด์—ฌ ์ฃผ๊ณ 
02:46
And I say, "No, more fast-looking, and less German,"
48
166980
2608
"๋” ๋น ๋ฅด๊ฒŒ ์ข€ ๋œ ๋…์ผ์ œ์ฒ˜๋Ÿผ"์ด๋ผ๊ณ  ํ•˜๋ฉด
02:49
and bang, the computer shows me an option.
49
169612
2163
์ปดํ“จํ„ฐ๊ฐ€ ์ œ๊ฒŒ ์„ ํƒ์ง€๋ฅผ ์ œ์‹œํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ์š”.
02:51
(Laughter)
50
171799
1865
(์›ƒ์Œ ์†Œ๋ฆฌ)
02:54
That conversation might be a little ways off,
51
174028
2306
์œ„์—์„œ ์–ธ๊ธ‰ํ•œ ๋Œ€ํ™”๋Š”
02:56
probably less than many of us think,
52
176358
2665
๋งŽ์€ ๋ถ„๋“ค์˜ ์ƒ๊ฐ๊ณผ๋Š” ๊ฑฐ๋ฆฌ๊ฐ€ ์žˆ์ง€๋งŒ
02:59
but right now,
53
179047
1763
์ง€๊ธˆ ์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ ๊ฒƒ์„
03:00
we're working on it.
54
180834
1151
์—ฐ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
03:02
Tools are making this leap from being passive to being generative.
55
182009
4033
์‹œํ‚ค๋Š” ๊ฒƒ๋งŒ ๊ฐ€๋Šฅํ–ˆ๋˜ ๋„๊ตฌ์—์„œ ์ƒ์‚ฐ์ ์ธ ๊ฒƒ์œผ๋กœ ๋ณ€ํ™” ์ค‘์ž…๋‹ˆ๋‹ค.
03:06
Generative design tools use a computer and algorithms
56
186651
3308
์ƒ์‚ฐ์ ์ธ ๋””์ž์ธ ๋„๊ตฌ๋Š” ๊ธฐํ•˜ํ•™์  ๊ตฌ์กฐ๋ฅผ ๋‹ค๋ฃจ๋Š”
03:09
to synthesize geometry
57
189983
2608
์ปดํ“จํ„ฐ์™€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ
03:12
to come up with new designs all by themselves.
58
192615
2754
์Šค์Šค๋กœ ์ƒˆ๋กœ์šด ๋””์ž์ธ์„ ๋งŒ๋“ญ๋‹ˆ๋‹ค.
03:15
All it needs are your goals and your constraints.
59
195816
2748
์—ฌ๋Ÿฌ๋ถ„์ด ๊ฐ€์ง„ ๋ชฉํ‘œ์™€ ์ œ์•ฝ๋งŒ ์•Œ๋ ค์ฃผ๋ฉด ๋ฉ๋‹ˆ๋‹ค.
03:18
I'll give you an example.
60
198588
1408
์˜ˆ๋“ค ๋“ค์–ด๋ณด๋ฉด
03:20
In the case of this aerial drone chassis,
61
200020
2788
'๋ฌด์ธ ํ•ญ๊ณต๊ธฐ ์ฐจ๋Œ€'๋ฅผ ์›ํ•˜๋Š” ๊ฒฝ์šฐ
03:22
all you would need to do is tell it something like,
62
202832
2626
์ด๋ ‡๊ฒŒ ๋งํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.
03:25
it has four propellers,
63
205482
1273
4๊ฐœ์˜ ํ”„๋กœํŽ ๋Ÿฌ๋ฅผ ๊ฐ€์ง€๋ฉด์„œ
03:26
you want it to be as lightweight as possible,
64
206779
2131
๊ฐ€๋Šฅํ•œ ๊ฐ€๋ณ๊ณ 
03:28
and you need it to be aerodynamically efficient.
65
208934
2270
๊ณต๊ธฐ์—ญํ•™์ ์œผ๋กœ ํšจ์œจ์ ์ธ ๊ฒƒ์„ ์›ํ•œ๋‹ค.
03:31
Then what the computer does is it explores the entire solution space:
66
211228
4914
์ปดํ“จํ„ฐ๋Š” ๋ชจ๋“  ํ•ด๊ฒฐ ๊ฐ€๋Šฅํ•œ ๋ฐฉ๋ฒ•๋“ค์„ ํƒ์ƒ‰ํ•˜๊ณ 
03:36
every single possibility that solves and meets your criteria --
67
216166
3927
์ˆ˜๋ฐฑ๋งŒ๊ฐœ์˜ ํ•ด๋ฒ•๋“ค์ด ์—ฌ๋Ÿฌ๋ถ„์˜ ๊ธฐ์ค€์— ๋งž๋Š”์ง€
03:40
millions of them.
68
220117
1442
๋งž์ถฐ ๋ณผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:41
It takes big computers to do this.
69
221583
1975
์ด๋Ÿฌํ•œ ์ž‘์—…์„ ์ปค๋‹ค๋ž€ ์ปดํ“จํ„ฐ๊ฐ€ ๋‹ด๋‹นํ•ฉ๋‹ˆ๋‹ค.
03:43
But it comes back to us with designs
70
223582
1955
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ์—๊ฒŒ ๋Œ์•„์˜ค๋Š” ๊ฒฐ๊ณผ๋Š”
03:45
that we, by ourselves, never could've imagined.
71
225561
3143
์šฐ๋ฆฌ๋Š” ์ƒ์ƒ๋„ ๋ชป ํ–ˆ๋˜ ๋””์ž์ธ์ด์ฃ .
03:49
And the computer's coming up with this stuff all by itself --
72
229146
2912
๊ทธ๋ฆฌ๊ณ  ์ปดํ“จํ„ฐ๊ฐ€ ์ œ์•ˆํ•œ ๊ฒƒ์€
03:52
no one ever drew anything,
73
232082
1678
์•„๋ฌด๋„ ๊ทธ๋ ค๋ณธ ์  ์—†๊ณ 
03:53
and it started completely from scratch.
74
233784
2086
์™„์ „ํžˆ ๋ฌด์—์„œ๋ถ€ํ„ฐ ์‹œ์ž‘๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:56
And by the way, it's no accident
75
236858
2387
๊ทธ๋ฆฌ๊ณ  ๋ฌด์ธ ํ•ญ๊ณต๊ธฐ ๋ชธ์ฒด๊ฐ€
03:59
that the drone body looks just like the pelvis of a flying squirrel.
76
239269
3481
๋‚ ๋‹ค๋žŒ์ฅ์˜ ๊ณจ๋ฐ˜์ฒ˜๋Ÿผ ์ƒ๊ธด ๊ฒƒ์€ ์šฐ์—ฐ์ด ์•„๋‹™๋‹ˆ๋‹ค.
04:03
(Laughter)
77
243107
2007
(์›ƒ์Œ ์†Œ๋ฆฌ)
04:05
It's because the algorithms are designed to work
78
245860
2302
์ง„ํ™”์™€ ๋™์ผํ•œ ๋ฐฉ์‹์œผ๋กœ ์ž‘๋™ํ•˜๋„๋ก
04:08
the same way evolution does.
79
248186
1637
์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ค๊ณ„ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
04:10
What's exciting is we're starting to see this technology
80
250535
2660
ํ˜„์‹ค์—์„œ ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ ์˜ ์‹œ์ž‘์„ ๋ณด๋Š” ๊ฒƒ์€
04:13
out in the real world.
81
253219
1159
๋งค์šฐ ์„ค๋ ˆ๋Š” ์ผ์ž…๋‹ˆ๋‹ค.
04:14
We've been working with Airbus for a couple of years
82
254402
2452
์ง€๋‚œ ๋ช‡๋…„๊ฐ„ ์ €ํฌ๋Š” 'Airbus`์™€ ํ˜‘๋ ฅํ•˜์—ฌ
04:16
on this concept plane for the future.
83
256878
1909
๋ฏธ๋ž˜ ์ง€ํ–ฅ์ ์ธ ๋น„ํ–‰๊ธฐ๋ฅผ ์—ฐ๊ตฌ์ค‘์ด์ง€๋งŒ
04:18
It's a ways out still.
84
258811
2070
์—ฌ์ „ํžˆ ์ œ์ž๋ฆฌ๊ฑธ์Œ์ž…๋‹ˆ๋‹ค.
04:20
But just recently we used a generative-design AI
85
260905
3780
ํ•˜์ง€๋งŒ ์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ์„ ์ด์šฉํ•˜์—ฌ
04:24
to come up with this.
86
264709
1807
๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค.
04:27
This is a 3D-printed cabin partition that's been designed by a computer.
87
267429
5153
์ด๊ฒƒ์€ ์ปดํ“จํ„ฐ๊ฐ€ ๋””์ž์ธํ•œ ๊ฒƒ์„ 3D ํ”„๋ฆฐํ„ฐ๋กœ ์ถœ๋ ฅํ•œ ์นธ๋ง‰์ด์ž…๋‹ˆ๋‹ค.
04:32
It's stronger than the original yet half the weight,
88
272606
2824
๊ธฐ์กด์˜ ๊ฒƒ๋ณด๋‹ค ๋” ํŠผํŠผํ•˜๋‚˜ ๋ฌด๊ฒŒ๋Š” ์ ˆ๋ฐ˜์ž…๋‹ˆ๋‹ค.
04:35
and it will be flying in the Airbus A320 later this year.
89
275454
3146
๊ทธ๋ฆฌ๊ณ  ์˜ฌํ•ด ๋ง์ฏค Airbus A320์— ํƒ‘์žฌ๋  ์˜ˆ์ •์ž…๋‹ˆ๋‹ค.
04:39
So computers can now generate;
90
279225
1559
์ปดํ“จํ„ฐ๋Š” ์ด์ œ ์ž˜ ์ •์˜๋œ ๋ฌธ์ œ์—
04:40
they can come up with their own solutions to our well-defined problems.
91
280808
4595
์Šค์Šค๋กœ ํ•ด๋ฒ•์„ ์ฐพ์•„๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:46
But they're not intuitive.
92
286497
1310
ํ•˜์ง€๋งŒ ์ง๊ด€์ ์ด์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค.
04:47
They still have to start from scratch every single time,
93
287831
3086
์ปดํ“จํ„ฐ๋“ค์€ ํ•™์Šตํ•œ ์ ์ด ์—†๊ธฐ์—
04:50
and that's because they never learn.
94
290941
2565
๋งค๋ฒˆ ์™„์ „ํžˆ ๋ฌด๋กœ๋ถ€ํ„ฐ ์ž‘์—…ํ•ฉ๋‹ˆ๋‹ค.
04:54
Unlike Maggie.
95
294188
1766
Maggie๋Š” ๋‹ค๋ฆ…๋‹ˆ๋‹ค.
04:55
(Laughter)
96
295978
1581
(์›ƒ์Œ ์†Œ๋ฆฌ)
04:57
Maggie's actually smarter than our most advanced design tools.
97
297583
3297
Maggie๋Š” ํ˜„์žฌ ์ œ์ผ ์ง„๋ณดํ•œ ๋„๊ตฌ๋“ค๋ณด๋‹ค ๋˜‘๋˜‘ํ•ฉ๋‹ˆ๋‹ค.
05:01
What do I mean by that?
98
301287
1440
๋ฌด์Šจ ์˜๋ฏธ์ผ๊นŒ์š”?
05:02
If her owner picks up that leash,
99
302751
1590
Maggie๋Š” ์ฃผ์ธ์ด ๋ชฉ์ค„์„ ๋“ค๋ฉด
05:04
Maggie knows with a fair degree of certainty
100
304365
2068
์ด์ œ ์‚ฐ์ฑ…์„ ํ•  ์‹œ๊ฐ„์ด๋ผ๋Š” ๊ฒƒ์„
05:06
it's time to go for a walk.
101
306457
1404
์ •ํ™•ํ•˜๊ฒŒ ์•Œ๊ฑฐ๋“ ์š”.
05:07
And how did she learn?
102
307885
1185
์–ด๋–ป๊ฒŒ ์•„๋Š” ๊ฒƒ์ผ๊นŒ์š”?
05:09
Well, every time the owner picked up the leash, they went for a walk.
103
309094
3324
์•„๋งˆ ๋ชฉ์ค„์„ ๋“ค์—ˆ์„ ๋•Œ๋งˆ๋‹ค ํ•จ๊ป˜ ์‚ฐ์ฑ…ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:12
And Maggie did three things:
104
312442
1878
Maggie๋Š” ์„ธ ๊ฐ€์ง€๋ฅผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
05:14
she had to pay attention,
105
314344
1869
๊ทธ๋…€๋Š” ์ง‘์ค‘ํ–ˆ๊ณ 
05:16
she had to remember what happened
106
316237
2082
๋ฌด์Šจ์ผ์ด ์ผ์–ด๋‚ฌ๋Š”์ง€ ๊ธฐ์–ตํ–ˆ๊ณ 
05:18
and she had to retain and create a pattern in her mind.
107
318343
4017
๊ธฐ์–ต์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋จธ๋ฆฟ์†์— ๊ทธ ํŒจํ„ด์„ ๋งŒ๋“ค์—ˆ์ฃ .
05:23
Interestingly, that's exactly what
108
323249
2095
ํฅ๋ฏธ๋กญ๊ฒŒ๋„ ๊ทธ ๊ณผ์ •์€ ์ปดํ“จํ„ฐ ๊ณผํ•™์ž๋“ค์ด
05:25
computer scientists have been trying to get AIs to do
109
325368
2523
60๋…„ ํ˜น์€ ๊ทธ๋ณด๋‹ค ๋” ์˜ค๋žซ๋™์•ˆ ์ธ๊ณต ์ง€๋Šฅ์—
05:27
for the last 60 or so years.
110
327915
1859
์ ์šฉํ•˜๋ ค ํ•œ ๊ฒƒ๊ณผ ์ •ํ™•ํžˆ ์ผ์น˜ํ•ฉ๋‹ˆ๋‹ค.
05:30
Back in 1952,
111
330503
1349
1952๋…„์— ๊ณผํ•™์ž๋“ค์€
05:31
they built this computer that could play Tic-Tac-Toe.
112
331876
3801
'ํ‹ฑํƒํ† ' ๊ฒŒ์ž„์„ ํ•  ์ˆ˜ ์žˆ๋Š” ์ปดํ“จํ„ฐ๋ฅผ ์„ค๊ณ„ํ–ˆ๋Š”๋ฐ์š”.
05:36
Big deal.
113
336901
1160
๋Œ€๋‹จํ•˜๋„ค์š”.
05:38
Then 45 years later, in 1997,
114
338849
3000
๊ทธ ํ›„ 45๋…„์ด ์ง€๋‚œ 1997๋…„์—”
05:41
Deep Blue beats Kasparov at chess.
115
341873
2472
Deep Blue๋Š” ์ฒด์Šค์—์„œ Kasparov๋ฅผ ์ด๊ฒผ์ฃ .
05:45
2011, Watson beats these two humans at Jeopardy,
116
345866
4968
2011๋…„ Watson์€ ์ปดํ“จํ„ฐ๋กœ์„  ์ฒด์Šค๋ณด๋‹ค ๋” ๋งŽ์ด ์–ด๋ ค์šด
05:50
which is much harder for a computer to play than chess is.
117
350858
2928
Jeopardy์—์„œ ๋‘ ์‚ฌ๋žŒ์„ ์ด๊ฒผ์Šต๋‹ˆ๋‹ค.
05:53
In fact, rather than working from predefined recipes,
118
353810
3812
์‚ฌ์‹ค ๋ฏธ๋ฆฌ ์„ค์ •๋œ ๋ฐฉ์•ˆ์„ ์‚ฌ์šฉํ•˜๊ธฐ๋ณด๋‹ค๋Š”
05:57
Watson had to use reasoning to overcome his human opponents.
119
357646
3323
Watson์ด ์ธ๊ฐ„์„ ๋›ฐ์–ด๋„˜์œผ๋ ค๋ฉด ์ถ”๋ก ์„ ํ•ด์•ผ ํ–ˆ์ฃ .
06:02
And then a couple of weeks ago,
120
362213
2439
๊ทธ๋ฆฌ๊ณ  ๋ช‡ ์ฃผ ์ „์—
06:04
DeepMind's AlphaGo beats the world's best human at Go,
121
364676
4262
DeepMind์˜ AlphaGo๋Š” ์„ธ๊ณ„์—์„œ ์ œ์ผ ์–ด๋ ค์šด ๊ฒŒ์ž„์ค‘ ํ•˜๋‚˜์ธ
06:08
which is the most difficult game that we have.
122
368962
2212
๋ฐ”๋‘‘์—์„œ ์„ธ๊ณ„ ์ตœ๊ณ ์ˆ˜๋ฅผ ์ด๊ฒผ์Šต๋‹ˆ๋‹ค.
06:11
In fact, in Go, there are more possible moves
123
371198
2896
์‚ฌ์‹ค ๋ฐ”๋‘‘์€ ์šฐ์ฃผ์— ์žˆ๋Š” ์›์ž๋“ค๋ณด๋‹ค
06:14
than there are atoms in the universe.
124
374118
2024
๋” ๋งŽ์€ ๊ฒฝ์šฐ์˜ ์ˆ˜๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
06:18
So in order to win,
125
378030
1826
๊ทธ๋ž˜์„œ ์ด๊ธฐ๊ธฐ ์œ„ํ•ด์„œ๋Š”
06:19
what AlphaGo had to do was develop intuition.
126
379880
2618
AlphaGo๊ฐ€ ์ง๊ด€์„ ๊ฐ€์ง€๋„๋ก ๊ฐœ๋ฐœํ•ด์•ผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:22
And in fact, at some points, AlphaGo's programmers didn't understand
127
382918
4110
์‚ฌ์‹ค์€ ์ผ๋ถ€ ์ˆ˜๋Š” AlphaGo์˜ ํ”„๋กœ๊ทธ๋ž˜๋จธ๋“ค์กฐ์ฐจ๋„
06:27
why AlphaGo was doing what it was doing.
128
387052
2286
AlphaGo๊ฐ€ ์™œ ๊ทธ๋ ‡๊ฒŒ ํ–ˆ๋Š”์ง€ ์ดํ•ด ๋ชป ํ–ˆ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
06:31
And things are moving really fast.
129
391271
1660
๋ชจ๋“ ๊ฒƒ์ด ๋น ๋ฅด๊ฒŒ ๋ณ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
06:32
I mean, consider -- in the space of a human lifetime,
130
392955
3227
์‚ฌ๋žŒ์˜ ์ƒ์• ์™€ ๊ฐ™์€ ์‹œ๊ฐ„์•ˆ์—
06:36
computers have gone from a child's game
131
396206
2233
์ปดํ“จํ„ฐ๊ฐ€ ์•„์ด๋“ค์˜ ๊ฒŒ์ž„๊ธฐ์—์„œ
06:39
to what's recognized as the pinnacle of strategic thought.
132
399740
3048
์ „๋žต์  ์‚ฌ๊ณ ์˜ ์ •์ ์œผ๋กœ ์ธ์‹๋˜๋Š” ์ƒํ™ฉ๊นŒ์ง€ ์™”์Šต๋‹ˆ๋‹ค.
06:43
What's basically happening
133
403819
2417
๋ฌด์Šจ ์ผ์ด ์ผ์–ด๋‚œ ๊ฒƒ์ด๋ƒ๋ฉด
06:46
is computers are going from being like Spock
134
406260
3310
Spock ๊ฐ™์€ ์ƒํƒœ์˜ ์ปดํ“จํ„ฐ๊ฐ€ ์ ์  ๋” Kirk์ฒ˜๋Ÿผ ๋˜์–ด๊ฐ€๋Š”
06:49
to being a lot more like Kirk.
135
409594
1949
์ƒํ™ฉ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:51
(Laughter)
136
411567
3618
(์›ƒ์Œ ์†Œ๋ฆฌ)
06:55
Right? From pure logic to intuition.
137
415209
3424
์ˆœ์ˆ˜ํ•œ ๋…ผ๋ฆฌ๋กœ๋ถ€ํ„ฐ ์ง๊ด€์œผ๋กœ ์ด์–ด์ง€๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:00
Would you cross this bridge?
138
420004
1743
์ด ๋‹ค๋ฆฌ๋ฅผ ๊ฑด๋„ˆ์‹œ๊ฒ ์Šต๋‹ˆ๊นŒ?
07:02
Most of you are saying, "Oh, hell no!"
139
422429
2323
๋Œ€๋ถ€๋ถ„์ด "์‹ซ์–ด์š”"๋ผ๊ณ  ํ•˜์‹œ๊ฒ ์ฃ .
07:04
(Laughter)
140
424776
1308
(์›ƒ์Œ ์†Œ๋ฆฌ)
07:06
And you arrived at that decision in a split second.
141
426108
2657
๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๊ฒƒ์€ ์ˆœ๊ฐ„์ด์—ˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:08
You just sort of knew that bridge was unsafe.
142
428789
2428
์—ฌ๋Ÿฌ๋ถ„์€ ๋‹ค๋ฆฌ๊ฐ€ ์œ„ํ—˜ํ•œ ๊ฒƒ์„ ์•„๋‹ˆ๊นŒ์š”.
07:11
And that's exactly the kind of intuition
143
431241
1989
๊ทธ๊ฒƒ์ด ๋ฐ”๋กœ ์šฐ๋ฆฌ๊ฐ€ ๊ฐœ๋ฐœ์„ ์‹œ์ž‘ํ•œ
07:13
that our deep-learning systems are starting to develop right now.
144
433254
3568
๋”ฅ๋Ÿฌ๋‹ ์‹œ์Šคํ…œ์ด ๊ฐ€์ง„ ์ง๊ด€์˜ ์ผ์ข…์ž…๋‹ˆ๋‹ค.
07:17
Very soon, you'll literally be able
145
437542
1707
๊ฐ€๊นŒ์šด ์‹œ์ผ๋‚ด์—
07:19
to show something you've made, you've designed,
146
439273
2206
์—ฌ๋Ÿฌ๋ถ„์ด ๋งŒ๋“ค๊ฑฐ๋‚˜ ๋””์ž์ธํ•œ ๊ฒƒ์„
07:21
to a computer,
147
441503
1153
์ปดํ“จํ„ฐ์—๊ฒŒ ๋ณด์—ฌ์ฃผ๋ฉด
07:22
and it will look at it and say,
148
442680
1489
์ด๋ ‡๊ฒŒ ๋งํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:24
"Sorry, homie, that'll never work. You have to try again."
149
444193
2823
'๋ฏธ์•ˆํ•œ๋ฐ ์ž‘๋™์„ ํ•˜์ง€ ์•Š์•„ ๋‹ค์‹œ ํ•ด ๋ด'
07:27
Or you could ask it if people are going to like your next song,
150
447674
3070
๋‚ด๊ฐ€ ๋งŒ๋“  ๋…ธ๋ž˜๋ฅผ ์‚ฌ๋žŒ๋“ค์ด ์ข‹์•„ํ• ์ง€๋ฅผ ๋ฌป๊ฑฐ๋‚˜
07:31
or your next flavor of ice cream.
151
451593
2063
์•„์ด์Šคํฌ๋ฆผ์˜ ํ–ฅ๋„ ์š”์ฒญํ•  ์ˆ˜ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
07:35
Or, much more importantly,
152
455369
2579
๋˜๋Š” ๋งค์šฐ ์ค‘์š”ํ•œ ์ผ๋กœ
07:37
you could work with a computer to solve a problem
153
457972
2364
์ด์ „์— ๋งŒ๋‚˜์ง€ ๋ชปํ–ˆ๋˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด
07:40
that we've never faced before.
154
460360
1637
์ปดํ“จํ„ฐ๋กœ ์ž‘์—…ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:42
For instance, climate change.
155
462021
1401
์˜ˆ๋ฅผ ๋“ค์–ด ๊ธฐํ›„ ๋ณ€ํ™” ๋ฌธ์ œ๋Š”
07:43
We're not doing a very good job on our own,
156
463446
2020
์ธ๊ฐ„์˜ ํž˜๋งŒ์œผ๋ก  ํ’€์ง€ ๋ชปํ•˜๋‹ˆ๊นŒ
07:45
we could certainly use all the help we can get.
157
465490
2245
๋„์›€๋ฐ›์„ ์ˆ˜ ์žˆ๋Š” ๋ชจ๋“  ๊ฒƒ์„ ์ด๋™์›ํ•  ์ˆ˜ ์žˆ์ฃ .
07:47
That's what I'm talking about,
158
467759
1458
์ œ๊ฐ€ ๋งํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์€
07:49
technology amplifying our cognitive abilities
159
469241
2555
๊ธฐ์ˆ ์€ ์šฐ๋ฆฌ์˜ ์ธ์ง€๋ ฅ์„ ์ฆํญ์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ณ 
07:51
so we can imagine and design things that were simply out of our reach
160
471820
3552
๊ทธ๋Ÿฐ ๊ธฐ์ˆ ์ด ์—†๋˜ ์‹œ๋Œ€์˜ ์‚ฌ๋žŒ๋“ค์ด ํ•˜์ง€ ๋ชปํ–ˆ๋˜ ๊ฒƒ์„
07:55
as plain old un-augmented humans.
161
475396
2559
์ƒ์ƒํ•˜๊ณ  ๋””์ž์ธํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค.
07:59
So what about making all of this crazy new stuff
162
479804
2941
๊ทธ๋Ÿผ ์ธ๊ฐ„์ด ๊ณ ์•ˆํ•˜๊ณ  ๋””์ž์ธํ•œ ์ƒˆ๋กœ์šด ๊ฒƒ๋“ค์„
08:02
that we're going to invent and design?
163
482769
2441
๋ชจ์กฐ๋ฆฌ ๋งŒ๋“ค๋ฉด ์–ด๋–จ๊นŒ์š”?
08:05
I think the era of human augmentation is as much about the physical world
164
485772
4093
์ €๋Š” ์ธ๊ฐ„ ์ฆ๊ฐ• ์‹œ๋Œ€๊ฐ€ ๊ฐ€์ƒ์ ์ด๊ณ  ์ง€์ ์ธ ์˜์—ญ๋งŒํผ์ด๋‚˜
08:09
as it is about the virtual, intellectual realm.
165
489889
3065
ํ˜„์‹ค ์„ธ๊ณ„์™€๋„ ๊ด€๋ จ์ด ๊นŠ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
08:13
How will technology augment us?
166
493653
1921
์–ด๋–ป๊ฒŒ ๊ธฐ์ˆ ์ด ์ธ๊ฐ„์„ ์ฆ๊ฐ•์‹œํ‚ฌ๊นŒ์š”?
08:16
In the physical world, robotic systems.
167
496081
2473
ํ˜„์‹ค ์„ธ๊ณ„์—์„œ๋Š” ๋กœ๋ด‡ ์‹œ์Šคํ…œ์ด ์žˆ์ฃ .
08:19
OK, there's certainly a fear
168
499440
1736
์šฐ๋ฆฌ๋Š” ๋กœ๋ด‡๋“ค์ด
08:21
that robots are going to take jobs away from humans,
169
501200
2488
์ผ์ž๋ฆฌ๋ฅผ ๋บ์„ ๊ฒƒ์„ ๋‘๋ ค์›Œ ํ•˜๊ณ  ์žˆ๋Š”๋ฐ
08:23
and that is true in certain sectors.
170
503712
1830
๋ช‡๋ช‡ ๋ถ„์•ผ์—์„œ๋Š” ๊ทธ๋Ÿด ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:25
But I'm much more interested in this idea
171
505994
2878
ํ•˜์ง€๋งŒ ํฅ๋ฏธ๋กœ์šด ์ ๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
08:28
that humans and robots working together are going to augment each other,
172
508896
5010
์ธ๊ฐ„๊ณผ ๋กœ๋ด‡์ด ํ•จ๊ป˜ ์ž‘์—…ํ•˜๋Š” ๊ฒƒ์ด ์„œ๋กœ๋ฅผ ์ฆ๊ฐ•์‹œํ‚ค๋ฉฐ
08:33
and start to inhabit a new space.
173
513930
2058
์ƒˆ๋กœ์šด ์„ธ์ƒ์—์„œ ์‚ด๊ธฐ ์‹œ์ž‘ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:36
This is our applied research lab in San Francisco,
174
516012
2362
์ด๊ณณ์€ ์ƒŒํ”„๋ž€์‹œ์Šค์ฝ”์— ์žˆ๋Š” ์‘์šฉ ์—ฐ๊ตฌ์†Œ๋กœ์„œ
08:38
where one of our areas of focus is advanced robotics,
175
518398
3142
๊ทธ๊ณณ์—์„œ ์šฐ๋ฆฌ ๊ด€์‹ฌ๋ถ„์•ผ ์ค‘์˜ ํ•˜๋‚˜๋Š” ์ฐจ์„ธ๋Œ€ ๋กœ๋ด‡์ธ๋ฐ
08:41
specifically, human-robot collaboration.
176
521564
2511
ํŠน๋ณ„ํžˆ ์ธ๊ฐ„๊ณผ ๋กœ๋ด‡์˜ ํ˜‘์—…์ž…๋‹ˆ๋‹ค.
08:44
And this is Bishop, one of our robots.
177
524854
2759
์ด๊ฑด ์šฐ๋ฆฌ์˜ ๋กœ๋ด‡ ์ค‘ ํ•˜๋‚˜์ธ 'Bishop'์ด์ฃ .
08:47
As an experiment, we set it up
178
527637
1789
์‹คํ—˜์ ์œผ๋กœ ๊ณต์‚ฌ์žฅ์—์„œ
08:49
to help a person working in construction doing repetitive tasks --
179
529450
3460
๋ฒฝ์— ์ฝ˜์„ผํŠธ๋‚˜ ์ „๋“ฑ ์Šค์œ„์น˜์˜ ๊ตฌ๋ฉ์„ ๋‚ด๋Š” ๊ฒƒ ๊ฐ™์ด
08:53
tasks like cutting out holes for outlets or light switches in drywall.
180
533804
4194
๋ฐ˜๋ณต์ ์ธ ์ผ์„ ํ•˜๋Š” ์‚ฌ๋žŒ์„ ๋•๊ธฐ ์œ„ํ•ด Bishop์„ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
08:58
(Laughter)
181
538022
2466
(์›ƒ์Œ ์†Œ๋ฆฌ)
09:01
So, Bishop's human partner can tell what to do in plain English
182
541697
3111
Bishop์˜ ์ธ๊ฐ„ ํŒŒํŠธ๋„ˆ๊ฐ€ ๊ฐœํ•œํ…Œ ํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ
09:04
and with simple gestures,
183
544832
1305
๊ฐ„๋‹จํ•œ ์˜์–ด๋‚˜ ๋ชธ์ง“์œผ๋กœ
09:06
kind of like talking to a dog,
184
546161
1447
๋ฌด์—‡์„ ํ•ด์•ผ ํ• ์ง€ ์ง€์‹œํ•˜๋ฉด
09:07
and then Bishop executes on those instructions
185
547632
2143
Bishop์€ ๊ทธ ์ง€์‹œ๋ฅผ
09:09
with perfect precision.
186
549799
1892
์™„๋ฒฝํ•˜๊ฒŒ ์ˆ˜ํ–‰ํ•˜์ฃ .
09:11
We're using the human for what the human is good at:
187
551715
2989
์šฐ๋ฆฌ๋Š” ์ธ๊ฐ„์„ ์ด์šฉํ•˜์—ฌ ์ธ๊ฐ„์˜ ์žฅ์ ์ธ
09:14
awareness, perception and decision making.
188
554728
2333
์ธ์‹๊ณผ ์ง€๊ฐ ๊ทธ๋ฆฌ๊ณ  ์˜์‚ฌ๊ฒฐ์ •์„ ํ•ฉ๋‹ˆ๋‹ค.
09:17
And we're using the robot for what it's good at:
189
557085
2240
๋กœ๋ด‡์„ ์ด์šฉํ•˜์—ฌ ๋กœ๋ด‡์˜ ์žฅ์ ์ธ
09:19
precision and repetitiveness.
190
559349
1748
์ •๋ฐ€๋„์™€ ๋ฐ˜๋ณต์€ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
09:22
Here's another cool project that Bishop worked on.
191
562072
2367
์—ฌ๊ธฐ ๋˜ ๋‹ค๋ฅธ ๋ฉ‹์ง„ ํ”„๋กœ์ ํŠธ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
09:24
The goal of this project, which we called the HIVE,
192
564463
3075
HIVE๋ผ๋Š” ์ด ํ”„๋กœ์ ํŠธ์˜ ๋ชฉํ‘œ๋Š”
09:27
was to prototype the experience of humans, computers and robots
193
567562
3851
์ธ๊ฐ„๊ณผ ์ปดํ“จํ„ฐ ๊ทธ๋ฆฌ๊ณ  ๋กœ๋ด‡์ด ํ•จ๊ป˜
09:31
all working together to solve a highly complex design problem.
194
571437
3220
๋งค์šฐ ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ’€๊ธฐ ์œ„ํ•œ ์‹œ๋ฒ” ๊ฒฝํ—˜์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:35
The humans acted as labor.
195
575613
1451
์ธ๊ฐ„์€ ๋…ธ๋™์ž์˜ ์—ญํ• ์ž…๋‹ˆ๋‹ค.
09:37
They cruised around the construction site, they manipulated the bamboo --
196
577088
3473
๊ทธ๋“ค์€ ๊ณต์‚ฌ ํ˜„์žฅ์„ ๋Œ์•„๋‹ค๋‹ˆ๋ฉด์„œ ๋Œ€๋‚˜๋ฌด๋ฅผ ๋‹ค๋ค˜์Šต๋‹ˆ๋‹ค.
09:40
which, by the way, because it's a non-isomorphic material,
197
580585
2756
๋Œ€๋‚˜๋ฌด๋Š” ๋™์ผํ•œ ํ˜•ํƒœ๊ฐ€ ์•„๋‹ˆ์–ด์„œ
09:43
is super hard for robots to deal with.
198
583365
1874
๋กœ๋ด‡์ด ๋‹ค๋ฃจ๊ธฐ์—๋Š” ๋งค์šฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค.
09:45
But then the robots did this fiber winding,
199
585263
2022
๋กœ๋ด‡๋“ค์€ ์„ฌ์œ ๋ฅผ ๊ฐ๋Š” ์ž‘์—…์„ ํ–ˆ๋Š”๋ฐ
09:47
which was almost impossible for a human to do.
200
587309
2451
์ธ๊ฐ„์—๊ฒŒ ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ•œ ์ผ์ด์ฃ .
09:49
And then we had an AI that was controlling everything.
201
589784
3621
๊ทธ๋ฆฌ๊ณ  ๋ชจ๋“  ๊ฒƒ์„ ํ†ต์ œํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ธ๊ณต์ง€๋Šฅ์„ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค.
09:53
It was telling the humans what to do, telling the robots what to do
202
593429
3290
์ธ๊ณต์ง€๋Šฅ์€ ์ธ๊ฐ„๊ณผ ๋กœ๋ด‡์ด ๋ฌด์—‡์„ ํ•ด์•ผ ํ• ์ง€ ์•Œ๋ ค ์ฃผ๊ณ 
09:56
and keeping track of thousands of individual components.
203
596743
2915
๊ณ„์†ํ•˜์—ฌ ์ˆ˜์ฒœ ๊ฐœ์˜ ๊ฐœ๋ณ„ ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ์ถ”์ ํ–ˆ์ฃ .
09:59
What's interesting is,
204
599682
1180
ํฅ๋ฏธ๋กœ์šด ์ ์€
10:00
building this pavilion was simply not possible
205
600886
3141
์ด ์ž„์‹œ ๊ตฌ์กฐ๋ฌผ์„ ์„ธ์šฐ๋Š” ์ผ์€ ์ธ๊ฐ„๊ณผ ๋กœ๋ด‡ ๊ทธ๋ฆฌ๊ณ  ์ธ๊ณต์ง€๋Šฅ์ด
10:04
without human, robot and AI augmenting each other.
206
604051
4524
์„œ๋กœ๋ฅผ ์ฆ๊ฐ•์‹œํ‚ค์ง€ ์•Š๊ณ ์„œ๋Š” ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:09
OK, I'll share one more project. This one's a little bit crazy.
207
609710
3320
์•ฝ๊ฐ„ ๋ฏธ์นœ ์ง“ ๊ฐ™์ง€๋งŒ ๋˜ ๋‹ค๋ฅธ ํ”„๋กœ์ ํŠธ๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
10:13
We're working with Amsterdam-based artist Joris Laarman and his team at MX3D
208
613054
4468
์šฐ๋ฆฌ๋Š” Amsterdam์—์„œ ํ™œ๋™ํ•˜๋Š” ์˜ˆ์ˆ ๊ฐ€์ธ Joris Laarman ๋ฐ ๊ทธ์˜ ํŒ€๊ณผ
10:17
to generatively design and robotically print
209
617546
2878
ํ•จ๊ป˜ MX3D์—์„œ ๋””์ž์ธ์„ ๋งŒ๋“ค๊ณ  ๋กœ๋ด‡์œผ๋กœ ์ถœ๋ ฅํ•˜์—ฌ
10:20
the world's first autonomously manufactured bridge.
210
620448
2995
์„ธ๊ณ„ ์ตœ์ดˆ๋กœ ๋‹ค๋ฆฌ๋ฅผ ์Šค์Šค๋กœ ๋งŒ๋“œ๋Š” ์ž‘์—…์„ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
10:24
So, Joris and an AI are designing this thing right now, as we speak,
211
624135
3685
๋ง์”€๋“œ๋ฆฐ ๋Œ€๋กœ ์ง€๊ธˆ Amsterdam์—์„œ Joris์™€ ์ธ๊ณต ์ง€๋Šฅ์ด
10:27
in Amsterdam.
212
627844
1172
๋””์ž์ธํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
10:29
And when they're done, we're going to hit "Go,"
213
629040
2321
๊ทธ๋“ค์ด ์ž‘์—…์„ ์™„๋ฃŒํ•ด์„œ ์šฐ๋ฆฌ๊ฐ€ Go๋ฒ„ํŠผ์„ ๋ˆ„๋ฅด๋ฉด
10:31
and robots will start 3D printing in stainless steel,
214
631385
3311
๋กœ๋ด‡์€ ์Šคํ…Œ์ธ๋ฆฌ์Šค ์Šคํ‹ธ๋กœ 3D ํ”„๋ฆฐํŒ…์„ ์‹œ์ž‘ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:34
and then they're going to keep printing, without human intervention,
215
634720
3283
๊ทธ๋“ค์€ ์ธ๊ฐ„์˜ ๊ฐœ์ž… ์—†์ด ๋‹ค๋ฆฌ๊ฐ€ ์™„์„ฑ๋  ๋•Œ๊นŒ์ง€
10:38
until the bridge is finished.
216
638027
1558
์ถœ๋ ฅ์„ ๊ณ„์†ํ•  ๊ฒ๋‹ˆ๋‹ค.
10:40
So, as computers are going to augment our ability
217
640919
2928
์ด๋ ‡๊ฒŒ ์ปดํ“จํ„ฐ๋Š” ์ƒˆ๋กœ์šด ๊ฒƒ์„ ์ƒ์ƒํ•˜๊ณ  ๋””์ž์ธ ํ•˜๋„๋ก
10:43
to imagine and design new stuff,
218
643871
2150
์šฐ๋ฆฌ์˜ ๋Šฅ๋ ฅ์„ ์ฆ๊ฐ•์‹œํ‚ฌ ๊ฒƒ์ด๊ณ 
10:46
robotic systems are going to help us build and make things
219
646045
2895
๋กœ๋ด‡ ์‹œ์Šคํ…œ์€ ์ „์—๋Š” ์ธ๊ฐ„์ด ๋งŒ๋“ค ์ˆ˜ ์—†์—ˆ๋˜ ๊ฒƒ์„
10:48
that we've never been able to make before.
220
648964
2084
๋งŒ๋“ค๊ณ  ์ง“๋„๋ก ๋„์šธ ํ…๋ฐ์š”.
10:52
But what about our ability to sense and control these things?
221
652167
4160
ํ•˜์ง€๋งŒ ์ธ๊ฐ„์ด ์ด๋Ÿฌํ•œ ๊ฒƒ์„ ํŒ๋‹จํ•˜๊ณ  ์ œ์–ดํ•˜๋Š” ๋Šฅ๋ ฅ์€ ์–ด๋–ค๊ฐ€์š”?
10:56
What about a nervous system for the things that we make?
222
656351
4031
์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“  ๊ฒƒ๋“ค์„ ์œ„ํ•œ ์‹ ๊ฒฝ๊ณ„์€ ์–ด๋–จ๊นŒ์š”?
11:00
Our nervous system, the human nervous system,
223
660406
2512
์šฐ๋ฆฌ์˜ ์‹ ๊ฒฝ๊ณ„, ์ธ๊ฐ„์˜ ์‹ ๊ฒฝ๊ณ„์€
11:02
tells us everything that's going on around us.
224
662942
2311
์šฐ๋ฆฌ ์ฃผ๋ณ€์—์„œ ์ผ์–ด๋‚œ ๋ชจ๋“  ๊ฒƒ์„ ํŒŒ์•…ํ•ฉ๋‹ˆ๋‹ค.
11:06
But the nervous system of the things we make is rudimentary at best.
225
666006
3684
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“  ๊ฒƒ๋“ค์˜ ์‹ ๊ฒฝ๊ณ„์€ ์ด์ œ ์‹œ์ž‘์ž…๋‹ˆ๋‹ค.
11:09
For instance, a car doesn't tell the city's public works department
226
669714
3563
์˜ˆ๋ฅผ ๋“ค์–ด ์ž๋™์ฐจ๊ฐ€ ๋„์‹œ์˜ ๊ณต๊ณต ์‚ฌ์—…๊ตญ์—๋‹ค
11:13
that it just hit a pothole at the corner of Broadway and Morrison.
227
673301
3130
์–ด๋””์˜ ๊ธธ๋ชจํ‰์ด ๋„๋กœ์— ์›€ํ‘น ํŒฌ ๊ณณ์ด ์žˆ๋‹จ ๋ง์„ ๋ชป ํ•˜๊ณ 
11:16
A building doesn't tell its designers
228
676455
2032
๊ฑด๋ฌผ์€ ๋””์ž์ด๋„ˆ์—๊ฒŒ ๊ทธ ์•ˆ์— ์žˆ๋Š” ์‚ฌ๋žŒ๋“ค์ด
11:18
whether or not the people inside like being there,
229
678511
2684
์ข‹์•„ํ•˜๋Š”์ง€ ์•„๋‹Œ์ง€ ๋งํ•˜์ง„ ์•Š๊ฑฐ๋“ ์š”.
11:21
and the toy manufacturer doesn't know
230
681219
3010
๊ทธ๋ฆฌ๊ณ  ์žฅ๋‚œ๊ฐ ์ œ์กฐ ์—…์ฒด๋Š”
11:24
if a toy is actually being played with --
231
684253
2007
์žฅ๋‚œ๊ฐ์„ ์‹ค์ œ๋กœ ๊ฐ–๊ณ  ๋…ธ๋Š” ๋Œ€์ƒ์ด
11:26
how and where and whether or not it's any fun.
232
686284
2539
์–ธ์ œ ์–ด๋””์„œ ์ฆ๊ฒ๊ฒŒ ํ˜น์€ ์žฌ๋ฏธ์—†๊ฒŒ ๋…ธ๋Š”์ง€ ์•Œ์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
11:29
Look, I'm sure that the designers imagined this lifestyle for Barbie
233
689440
3814
๋ณด์„ธ์š”, ๋ถ„๋ช…ํžˆ ๋””์ž์ด๋„ˆ๋Š” ๋ฐ”๋น„ ์ธํ˜•์„ ๋””์ž์ธํ•  ๋•Œ
11:33
when they designed her.
234
693278
1224
์ด๋Ÿฐ ์‚ถ์„ ์ƒ์ƒํ–ˆ๊ฒ ์ฃ .
11:34
(Laughter)
235
694526
1447
(์›ƒ์Œ ์†Œ๋ฆฌ)
11:35
But what if it turns out that Barbie's actually really lonely?
236
695997
2906
ํ•˜์ง€๋งŒ ๋ฐ”๋น„ ์ธํ˜•์ด ํ˜„์‹ค์—์„  ์ด๋ ‡๊ฒŒ ์™ธ๋กญ๊ฒŒ ์žˆ๋‹ค๋ฉด์„œ์š”?
11:38
(Laughter)
237
698927
3147
(์›ƒ์Œ ์†Œ๋ฆฌ)
11:43
If the designers had known
238
703086
1288
๋””์ž์ด๋„ˆ๋“ค์ด ํ˜„์‹ค์—์„œ
11:44
what was really happening in the real world
239
704398
2107
๊ทธ๋“ค์ด ๋””์ž์ธํ•œ ๋„๋กœ์™€ ๊ฑด๋ฌผ๊ณผ ๋ฐ”๋น„์—๊ฒŒ
11:46
with their designs -- the road, the building, Barbie --
240
706529
2583
๋ฌด์Šจ ์ผ์ด ์ผ์–ด๋‚ฌ๋Š”์ง€ ์•Œ๋ฉด
11:49
they could've used that knowledge to create an experience
241
709136
2694
๊ทธ ์ •๋ณด๋ฅผ ์‚ฌ์šฉ์ž์—๊ฒŒ ๋” ๋‚˜์€ ๊ฒƒ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ
11:51
that was better for the user.
242
711854
1400
์‚ฌ์šฉํ•  ์ˆ˜๋„ ์žˆ๊ฒ ์ฃ .
11:53
What's missing is a nervous system
243
713278
1791
๋ถ€์กฑํ•œ ๋ถ€๋ถ„์€ ์‹ ๊ฒฝ๊ณ„๋กœ์„œ
11:55
connecting us to all of the things that we design, make and use.
244
715093
3709
์šฐ๋ฆฌ๊ฐ€ ๋””์ž์ธํ•˜๊ณ  ๋งŒ๋“ค๊ณ  ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์„ ๋ชจ๋‘ ์—ฐ๊ฒฐํ•˜๋Š” ์‹ ๊ฒฝ๊ณ„์ž…๋‹ˆ๋‹ค.
11:59
What if all of you had that kind of information flowing to you
245
719735
3555
๋งŒ์ผ ์—ฌ๋Ÿฌ๋ถ„ ๋ชจ๋‘๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์ด ๋งŒ๋“  ๊ฒƒ์— ๋Œ€ํ•œ ์ถฉ๋ถ„ํ•œ ์ •๋ณด๋ฅผ
12:03
from the things you create in the real world?
246
723314
2183
๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋ฉด ์–ด๋–จ๊นŒ์š”?
12:07
With all of the stuff we make,
247
727252
1451
์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“œ๋Š” ๋ชจ๋“  ๊ฒƒ๋“ค์—์„œ
12:08
we spend a tremendous amount of money and energy --
248
728727
2435
์ˆ˜๋งŽ์€ ์‹œ๊ฐ„๊ณผ ์—๋„ˆ์ง€๊ฐ€ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.
12:11
in fact, last year, about two trillion dollars --
249
731186
2376
์ž‘๋…„์— ์•ฝ 2์กฐ ๋‹ฌ๋Ÿฌ๊ฐ€
12:13
convincing people to buy the things we've made.
250
733586
2854
์ œํ’ˆ์„ ์‚ฌ๋„๋ก ์†Œ๋น„์ž๋ฅผ ์„ค๋“ํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
12:16
But if you had this connection to the things that you design and create
251
736464
3388
ํ•˜์ง€๋งŒ ๋งŒ์ผ ๋‹น์‹ ์ด ๋””์ž์ธํ•˜๊ณ  ๋งŒ๋“  ๊ฒƒ์ด ํ˜„์‹ค ์„ธ๊ณ„์— ์ถœ์‹œ๋œ ํ›„๋ผ๋„
12:19
after they're out in the real world,
252
739876
1727
์‹ ๊ฒฝ ์‹œ์Šคํ…œ๊ณผ ์—ฐ๊ฒฐ๋œ๋‹ค๋ฉด
12:21
after they've been sold or launched or whatever,
253
741627
3614
๊ทธ๊ฒƒ๋“ค์ด ํŒ”๋ฆฐ ํ›„๋‚˜ ์ถœ์‹œํ•˜๋Š” ์‹œ์ ์ด๋‚˜ ์–ธ์ œ๋ผ๋„.
12:25
we could actually change that,
254
745265
1620
์šฐ๋ฆฌ๋Š” ๊ทธ๊ฒƒ์„ ๋ฐ”๊ฟ€ ์ˆ˜๋„ ์žˆ๊ณ 
12:26
and go from making people want our stuff,
255
746909
3047
์ œํ’ˆ์„ ์†Œ๋น„์ž๊ฐ€ ์›ํ•˜๋„๋ก ๋งŒ๋“œ๋Š” ๊ฒƒ์—์„œ
12:29
to just making stuff that people want in the first place.
256
749980
3434
์ฒ˜์Œ๋ถ€ํ„ฐ ์†Œ๋น„์ž๊ฐ€ ์›ํ•˜๋Š” ๊ฒƒ์„ ๋งŒ๋“ค๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
12:33
The good news is, we're working on digital nervous systems
257
753438
2787
ํฌ์†Œ์‹์€ ์ง€๊ธˆ ๊ฐœ๋ฐœ ์ค‘์ธ ๋””์ง€ํ„ธ ์‹ ๊ฒฝ๊ณ„๊ฐ€
12:36
that connect us to the things we design.
258
756249
2801
์šฐ๋ฆฌ๋ฅผ ๋””์ž์ธํ•œ ๊ฒƒ๋“ค๊ณผ ์—ฐ๊ฒฐํ•ด ์ค€๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
12:40
We're working on one project
259
760185
1627
์ €ํฌ๋Š” ํ˜„์žฌ LA์—์„œ
12:41
with a couple of guys down in Los Angeles called the Bandito Brothers
260
761836
3712
Banditoํ˜•์ œ ๋ฐ ๊ทธ์˜ ํŒ€๊ณผ ํ•จ๊ป˜ ํ”„๋กœ์ ํŠธ๋ฅผ ํ•˜๋‚˜
12:45
and their team.
261
765572
1407
์ง„ํ–‰์ค‘์ž…๋‹ˆ๋‹ค.
12:47
And one of the things these guys do is build insane cars
262
767003
3433
๊ทธ๋“ค์ด ๋งŒ๋“  ๊ฒƒ ์ค‘ ํ•˜๋‚˜๋กœ ๊ด‘๋ž€์˜ ์งˆ์ฃผ๋ฅผ ํ•˜๋Š” ์ฐจ๊ฐ€ ์žˆ๋Š”๋ฐ
12:50
that do absolutely insane things.
263
770460
2873
์ œ์ •์‹ ์ด ์•„๋‹ˆ์—์š”.
12:54
These guys are crazy --
264
774725
1450
๊ทธ๋“ค์€ ๋ฏธ์ณค์ฃ .
12:56
(Laughter)
265
776199
1036
(์›ƒ์Œ ์†Œ๋ฆฌ)
12:57
in the best way.
266
777259
1403
๊ทธ๊ฒŒ ์ตœ์„ ์ด๊ฒ ์ง€๋งŒ์š”.
13:00
And what we're doing with them
267
780813
1763
์ €ํฌ๊ฐ€ ์ง„ํ–‰ํ•œ ์ผ์€
13:02
is taking a traditional race-car chassis
268
782600
2440
์ „ํ†ต์ ์ธ ๊ฒฝ์ฃผ์ฐจ์˜ ์ฐจ๋Œ€์—
13:05
and giving it a nervous system.
269
785064
1585
์‹ ๊ฒฝ๊ณ„๋ฅผ ์ œ๊ณตํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:06
So we instrumented it with dozens of sensors,
270
786673
3058
๊ทธ๋ž˜์„œ ์ˆ˜์‹ญ ๊ฐœ์˜ ์„ผ์„œ๋ฅผ ๋‹ฌ๊ณ 
13:09
put a world-class driver behind the wheel,
271
789755
2635
์„ธ๊ณ„์ ์ธ ์ˆ˜์ค€์˜ ์šด์ „์ž๋ฅผ ํƒœ์›Œ
13:12
took it out to the desert and drove the hell out of it for a week.
272
792414
3357
์‚ฌ๋ง‰์œผ๋กœ ๊ฐ€์„œ ์ผ์ฃผ์ผ๊ฐ„ ์‚ฌ์ •์—†์ด ๋‹ฌ๋ ธ์Šต๋‹ˆ๋‹ค.
13:15
And the car's nervous system captured everything
273
795795
2491
์ž๋™์ฐจ์˜ ์‹ ๊ฒฝ๊ณ„๋Š” ์ž๋™์ฐจ์—์„œ ์ผ์–ด๋‚˜๋Š” ๋ชจ๋“  ์ผ์„
13:18
that was happening to the car.
274
798310
1482
์ €์žฅํ–ˆ์Šต๋‹ˆ๋‹ค.
13:19
We captured four billion data points;
275
799816
2621
์šฐ๋ฆฌ๋Š” ์ฐจ์— ๊ฐ€ํ•ด์ง„ ๋ชจ๋“  ํž˜๋“ค์„ ํฌํ•จํ•œ
13:22
all of the forces that it was subjected to.
276
802461
2310
40์–ต๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค.
13:24
And then we did something crazy.
277
804795
1659
๊ทธ ํ›„ ์ •์‹  ๋‚˜๊ฐ„ ์ง“ ๊ฐ™์ง€๋งŒ
13:27
We took all of that data,
278
807088
1500
์šฐ๋ฆฌ๋Š” ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์•„์„œ
13:28
and plugged it into a generative-design AI we call "Dreamcatcher."
279
808612
3736
๋””์ž์ธ์„ ํ•˜๋Š” ์ธ๊ณต ์ง€๋Šฅ์ธ 'Dreamcatcher'์— ๋„ฃ์—ˆ์Šต๋‹ˆ๋‹ค.
13:33
So what do get when you give a design tool a nervous system,
280
813090
3964
๊ทธ๋ ‡๊ฒŒ ์šฐ๋ฆฌ๋Š” ์‹ ๊ฒฝ๊ณ„๋ฅผ ๋””์ž์ธ ๋„๊ตฌ์—๊ฒŒ ์ฃผ์—ˆ๊ณ 
13:37
and you ask it to build you the ultimate car chassis?
281
817078
2882
์ตœ๊ณ ๋กœ ์ข‹์€ ์ฐจ๋Œ€๋ฅผ ๋งŒ๋“ค๋ผ๊ณ  ์š”์ฒญํ–ˆ๋‹ค๋ฉด ์–ด๋–ป๊ฒŒ ๋ ๊นŒ์š”?
13:40
You get this.
282
820543
1973
์ด๊ฒƒ์„ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
13:44
This is something that a human could never have designed.
283
824113
3713
์ด๋Š” ์ด์ „์— ์ธ๊ฐ„์ด ํ•œ ๋ฒˆ๋„ ๋””์ž์ธํ•˜์ง€ ์•Š์•˜๋˜ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:48
Except a human did design this,
284
828527
1888
์ธ๊ฐ„์ด ํ•œ ๋””์ž์ธ์„ ์ œ์™ธํ•˜๊ณ 
13:50
but it was a human that was augmented by a generative-design AI,
285
830439
4309
๋””์ž์ธ์„ ๋งŒ๋“œ๋Š” ์ธ๊ณต ์ง€๋Šฅ์œผ๋กœ ์ฆ๊ฐ•๋œ ์ธ๊ฐ„์ด ํ•œ ๊ฒ๋‹ˆ๋‹ค.
13:54
a digital nervous system
286
834772
1231
๋””์ง€ํ„ธ ์‹ ๊ฒฝ๊ณ„์™€
13:56
and robots that can actually fabricate something like this.
287
836027
3005
๋กœ๋ด‡์€ ์‹ค์ œ๋กœ ์ด๋Ÿฐ ๊ฒƒ์„ ์ œ์ž‘ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
13:59
So if this is the future, the Augmented Age,
288
839500
3595
๋งŒ์ผ ์ด๊ฒƒ์ด ๋ฏธ๋ž˜์ด๊ณ , ์ฆ๊ฐ• ์‹œ๋Œ€๋ผ๋ฉด,
14:03
and we're going to be augmented cognitively, physically and perceptually,
289
843119
4261
์šฐ๋ฆฌ๋Š” ์ธ์ง€์ , ์œก์ฒด์ , ์ง€๊ฐ์ ์œผ๋กœ ์ฆ๊ฐ•๋  ๊ฒƒ์ด๊ณ 
14:07
what will that look like?
290
847404
1408
๊ทธ๋Ÿฌ๋ฉด ๋ฌด์—‡์ฒ˜๋Ÿผ ๋ณด์ผ๊นŒ์š”?
14:09
What is this wonderland going to be like?
291
849396
3321
๊ทธ๋Ÿฐ ์„ธ์ƒ์€ ์ด๋ ‡์ง€ ์•Š์„๊นŒ์š”?
14:12
I think we're going to see a world
292
852741
1709
์ œ ์ƒ๊ฐ์—๋Š” ์šฐ๋ฆฌ๋Š” ์ด์ œ
14:14
where we're moving from things that are fabricated
293
854474
3068
๋ฌผ๊ฑด์„ ์ œ์ž‘ํ•˜๋Š” ๊ฒƒ์—์„œ ๋ฌผ๊ฑด์„ ํ‚ค์šฐ๋Š” ๊ฒƒ์œผ๋กœ ์˜ฎ๊ฒจ๊ฐ€๋Š”
14:17
to things that are farmed.
294
857566
1445
์„ธ์ƒ์„ ๋ณผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:19
Where we're moving from things that are constructed
295
859979
3453
๊ฑด์„คํ•˜๋Š” ๊ฒƒ์—์„œ ์„ฑ์žฅํ•˜๋Š” ๊ฒƒ์œผ๋กœ
14:23
to that which is grown.
296
863456
1704
์˜ฎ๊ฒจ๊ฐˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:25
We're going to move from being isolated
297
865954
2188
๊ณ ๋ฆฝ๋œ ๊ฒƒ์—์„œ ์—ฐ๊ฒฐ๋˜๋Š” ๊ฒƒ์œผ๋กœ
14:28
to being connected.
298
868166
1610
์ด๋™ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:30
And we'll move away from extraction
299
870454
2411
๊ทธ๋ฆฌ๊ณ  ๋˜ํ•œ ์ถ”์ถœํ•˜๋Š” ๊ฒƒ์—์„œ
14:32
to embrace aggregation.
300
872889
1873
์ถ•์ ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋‚˜์•„๊ฐˆ ๊ฒ๋‹ˆ๋‹ค.
14:35
I also think we'll shift from craving obedience from our things
301
875787
3767
๋˜ํ•œ ์ฃผ๋ณ€์˜ ์‚ฌ๋ฌผ์— ์ง€์‹œํ•˜๊ธฐ๋ณด๋‹ค๋Š” ์ž์œจ์„ฑ์— ๊ฐ€์น˜๋ฅผ ๋‘๋Š” ์ชฝ์œผ๋กœ
14:39
to valuing autonomy.
302
879578
1641
๋ณ€ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:42
Thanks to our augmented capabilities,
303
882330
1905
์ธ๊ฐ„์˜ ๋Šฅ๋ ฅ์ด ์ฆ๊ฐ•ํ•˜๋Š” ๊ฒƒ์— ๊ฐ์‚ฌํ•˜๊ณ 
14:44
our world is going to change dramatically.
304
884259
2377
์šฐ๋ฆฌ์˜ ์„ธ์ƒ์€ ๊ทน์ ์ธ ๋ณ€ํ™”๋ฅผ ๋งž์ดํ•  ๊ฒ๋‹ˆ๋‹ค.
14:47
We're going to have a world with more variety, more connectedness,
305
887396
3246
์„ธ์ƒ์€ ๋”์šฑ ๋‹ค์–‘ํ•ด์ง€๊ณ  ๋”์šฑ ์—ฐ๊ฒฐ๋˜๋ฉฐ
14:50
more dynamism, more complexity,
306
890666
2287
๋”์šฑ ์—ญ๋™์ ์ด๋ฉด์„œ ๋”์šฑ ๋ณต์žกํ•ด์งˆ ๊ฒƒ์ด๊ณ 
14:52
more adaptability and, of course,
307
892977
2318
๋”์šฑ ์ˆ˜์šฉ์ ์ผ ๊ฒƒ์ด๋ฉด์„œ ๋‹น์—ฐ์Šค๋Ÿฝ๊ฒŒ
14:55
more beauty.
308
895319
1217
๋” ์•„๋ฆ„๋‹ค์šธ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:57
The shape of things to come
309
897051
1564
์•ž์œผ๋กœ ๋‹ค๊ฐ€์˜ฌ ๋ชจ์Šต์€
14:58
will be unlike anything we've ever seen before.
310
898639
2290
์ด์ „์˜ ์–ด๋–ค ๊ฒƒ๊ณผ๋„ ๋‹ค๋ฅผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:00
Why?
311
900953
1159
์™œ ๊ทธ๋Ÿด๊นŒ์š”?
15:02
Because what will be shaping those things is this new partnership
312
902136
3755
์ƒˆ๋กœ์šด ์„ธ์ƒ์˜ ๋ชจ์Šต์€ ๊ธฐ์ˆ ๊ณผ ์ž์—ฐ์™€ ์ธ๊ฐ„ ์‚ฌ์ด์˜
15:05
between technology, nature and humanity.
313
905915
3670
์ƒˆ๋กœ์šด ํ˜‘๋ ฅ ๊ด€๊ณ„ ๋•๋ถ„์ž…๋‹ˆ๋‹ค.
15:11
That, to me, is a future well worth looking forward to.
314
911099
3804
์ €์—๊ฒ ๊ธฐ๋Œ€ํ•  ๋งŒํ•œ ๊ฐ€์น˜๊ฐ€ ์ถฉ๋ถ„ํ•œ ๋ฏธ๋ž˜์ž…๋‹ˆ๋‹ค.
15:14
Thank you all so much.
315
914927
1271
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
15:16
(Applause)
316
916222
5669
(๋ฐ•์ˆ˜ ์†Œ๋ฆฌ)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7