The incredible inventions of intuitive AI | Maurice Conti

5,588,021 views ใƒป 2017-02-28

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Leslie Gauthier Reviewer: Camille Martรญnez
0
0
7000
ืžืชืจื’ื: Michael Coslovsky ืžื‘ืงืจ: Ido Dekkers
00:12
How many of you are creatives,
1
12555
2289
ื›ืžื” ืžื›ื ื”ื ื™ืฆื™ืจืชื™ื™ื,
00:14
designers, engineers, entrepreneurs, artists,
2
14868
3624
ืžืขืฆื‘ื™ื, ืžื”ื ื“ืกื™ื, ื™ื–ืžื™ื, ืืžื ื™ื,
00:18
or maybe you just have a really big imagination?
3
18516
2387
ืื• ืฉืื•ืœื™ ืคืฉื•ื˜ ื™ืฉ ืœื›ื ื“ืžื™ื•ืŸ ืžืžืฉ ืžืคื•ืชื—?
00:20
Show of hands? (Cheers)
4
20927
1848
ืชืจื™ืžื• ื™ื“ื™ื™ื? (ืชืฉื•ืื•ืช)
00:22
That's most of you.
5
22799
1181
ืืœื” ืจื•ื‘ื›ื.
00:25
I have some news for us creatives.
6
25154
2294
ื™ืฉ ืœื™ ื—ื“ืฉื•ืช ืขื‘ื•ืจ ื”ื™ืฆื™ืจืชื™ื™ื ืฉื‘ื ื•.
00:28
Over the course of the next 20 years,
7
28534
2573
ื‘ืžื”ืœืš 20 ื”ืฉื ื™ื ื”ืงืจื•ื‘ื•ืช,
00:33
more will change around the way we do our work
8
33291
2973
ื™ื•ืชืจ ื”ื•ืœืš ืœื”ืฉืชื ื•ืช ื‘ื“ืจืš ื‘ื” ืื ื—ื ื• ืขื•ื‘ื“ื™ื
00:37
than has happened in the last 2,000.
9
37202
2157
ืžืืฉืจ ื”ืฉืชื ื” ื‘-2000 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช.
00:40
In fact, I think we're at the dawn of a new age in human history.
10
40331
4628
ื‘ืขืฆื, ืื ื™ ื—ื•ืฉื‘ ืฉืื ื—ื ื• ื‘ืฉื—ืจ ืฉืœ ืขื™ื“ืŸ ื—ื“ืฉ ื‘ื”ื™ืกื˜ื•ืจื™ื” ื”ืื ื•ืฉื™ืช.
00:45
Now, there have been four major historical eras defined by the way we work.
11
45465
4761
ื”ื™ื• ืืจื‘ืข ืชืงื•ืคื•ืช ื”ื™ืกื˜ื•ืจื™ื•ืช ืžืจื›ื–ื™ื•ืช ืฉืžื•ื’ื“ืจื•ืช ืœืคื™ ื“ืจืš ื”ืขื‘ื•ื“ื” ืฉืœื ื•.
00:51
The Hunter-Gatherer Age lasted several million years.
12
51224
3275
ืชืงื•ืคืช ื”ืฆื™ื™ื“ื™ื-ืœืงื˜ื™ื ืืจื›ื” ื›ืžื” ืžื™ืœื™ื•ื ื™ ืฉื ื™ื.
00:54
And then the Agricultural Age lasted several thousand years.
13
54983
3576
ื•ืื–, ื”ืชืงื•ืคื” ื”ื—ืงืœืื™ืช ืืจื›ื” ื›ืžื” ืืœืคื™ ืฉื ื™ื.
00:59
The Industrial Age lasted a couple of centuries.
14
59015
3490
ื”ืชืงื•ืคื” ื”ืชืขืฉื™ื™ืชื™ืช ืืจื›ื” ื›ืžื” ืžืื•ืช ืฉื ื™ื.
01:02
And now the Information Age has lasted just a few decades.
15
62529
4287
ื•ืขื›ืฉื™ื• ืชืงื•ืคืช ื”ืžื™ื“ืข ืืจื›ื” ืจืง ื›ืžื” ืขืฉืจื•ืช ืฉื ื™ื.
01:06
And now today, we're on the cusp of our next great era as a species.
16
66840
5220
ื•ืขื›ืฉื™ื• ื”ื™ื•ื, ืื ื—ื ื• ื‘ืกื™ืคื• ืฉืœ ื”ืขื™ื“ืŸ ื”ื’ื“ื•ืœ ื”ื‘ื ืฉืœื ื• ื›ืžื™ืŸ.
01:13
Welcome to the Augmented Age.
17
73116
2680
ื‘ืจื•ื›ื™ื ื”ื‘ืื™ื ืœืขื™ื“ืŸ ื”ืจื‘ื•ื“.
01:15
In this new era, your natural human capabilities are going to be augmented
18
75820
3693
ื‘ืขื™ื“ืŸ ื”ื—ื“ืฉ ื”ื–ื”, ื”ื™ื›ื•ืœื•ืช ื”ืื ื•ืฉื™ื•ืช ื”ื˜ื‘ืขื™ื•ืช ืฉืœื›ื ื™ืจื•ื‘ื“ื•, ื™ืชื•ื’ื‘ืจื•
01:19
by computational systems that help you think,
19
79537
3068
ืขืœ ื™ื“ื™ ืžืขืจื›ื•ืช ืžื—ืฉื•ื‘ ืฉืขื•ื–ืจื•ืช ืœื›ื ืœื—ืฉื•ื‘,
01:22
robotic systems that help you make,
20
82629
2186
ืžืขืจื›ื•ืช ืจื•ื‘ื•ื˜ื™ื•ืช ืฉืขื•ื–ืจื•ืช ืœื›ื ืœื™ืฆื•ืจ,
01:24
and a digital nervous system
21
84839
1648
ื•ืžืขืจื›ืช ืขืฆื‘ื™ืช ื“ื™ื’ื™ื˜ืœื™ืช
01:26
that connects you to the world far beyond your natural senses.
22
86511
3690
ืฉืžื—ื‘ืจืช ืืชื›ื ืœืขื•ืœื ืฉื”ื•ื ื”ืจื‘ื” ืžืขื‘ืจ ืœื—ื•ืฉื™ื ื”ื˜ื‘ืขื™ื™ื ืฉืœื›ื.
01:31
Let's start with cognitive augmentation.
23
91257
1942
ื ืคืชื— ืขื ืชื’ื‘ื•ืจ ืงื•ื’ื ื™ื˜ื™ื‘ื™.
ื›ืžื” ืžื›ื ื”ื ืกื™ื™ื‘ื•ืจื’ื™ื ืžืชื•ื’ื‘ืจื™ื?
01:33
How many of you are augmented cyborgs?
24
93223
2200
01:35
(Laughter)
25
95953
2650
(ืฆื—ื•ืง)
01:38
I would actually argue that we're already augmented.
26
98627
2821
ืœืžืขืฉื”, ื”ื™ื™ืชื™ ื˜ื•ืขืŸ ืฉืื ื—ื ื• ื›ื‘ืจ ืžืชื•ื’ื‘ืจื™ื.
01:42
Imagine you're at a party,
27
102108
1504
ื“ืžื™ื™ื ื• ืฉืืชื ื‘ืžืกื™ื‘ื”,
01:43
and somebody asks you a question that you don't know the answer to.
28
103636
3520
ื•ืžื™ืฉื”ื• ืฉื•ืืœ ืืชื›ื ืฉืืœื” ืฉืืชื ืœื ื™ื•ื“ืขื™ื ืืช ื”ืชืฉื•ื‘ื” ืขืœื™ื”.
01:47
If you have one of these, in a few seconds, you can know the answer.
29
107180
3760
ืื ื™ืฉ ืœื›ื ืื—ื“ ืžืืœื”, ื‘ืชื•ืš ื›ืžื” ืฉื ื™ื•ืช ืืชื ื™ื›ื•ืœื™ื ืœื“ืขืช ืืช ื”ืชืฉื•ื‘ื”.
01:51
But this is just a primitive beginning.
30
111689
2299
ืื‘ืœ ื–ื• ืจืง ื”ืชื—ืœื” ืคืจื™ืžื™ื˜ื™ื‘ื™ืช.
01:54
Even Siri is just a passive tool.
31
114683
3331
ืืคื™ืœื• ืกื™ืจื™ ื”ื™ื ืจืง ื›ืœื™ ืขื‘ื•ื“ื” ืคืกื™ื‘ื™.
01:58
In fact, for the last three-and-a-half million years,
32
118480
3381
ืœืžืขืฉื”, ื‘ืžื”ืœืš ืฉืœื•ืฉื” ื•ื—ืฆื™ ืžื™ืœื™ื•ื ื™ ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช,
02:01
the tools that we've had have been completely passive.
33
121885
3109
ื›ืœื™ ื”ืขื‘ื•ื“ื” ืฉื”ื™ื• ืœื ื• ื”ื™ื• ืคืืกื™ื‘ื™ื™ื ืœื—ืœื•ื˜ื™ืŸ.
02:06
They do exactly what we tell them and nothing more.
34
126023
3655
ื”ื ืขื•ืฉื™ื ื‘ื“ื™ื•ืง ืžื” ืฉืื ื—ื ื• ืื•ืžืจื™ื ืœื”ื ืœืขืฉื•ืช, ื•ืฉื•ื ื“ื‘ืจ ืžืขื‘ืจ ืœื›ืš.
02:09
Our very first tool only cut where we struck it.
35
129702
3101
ื›ืœื™ ื”ืขื‘ื•ื“ื” ื”ืจืืฉื•ืŸ ื”ืจืืฉื•ืŸ ืฉืœื ื•, ืจืง ื—ืชืš ืื™ืคื” ืฉื”ื™ื›ื™ื ื• ืื™ืชื•.
02:13
The chisel only carves where the artist points it.
36
133642
3040
ื”ืื–ืžืœ ื—ื•ืจื˜ ืจืง ื‘ืžืงื•ื ืฉื‘ื• ื”ืืžืŸ ืžืคื ื” ืื•ืชื•.
02:17
And even our most advanced tools do nothing without our explicit direction.
37
137163
5641
ื•ืืคื™ืœื• ื”ื›ืœื™ื ื”ืžืชืงื“ืžื™ื ื‘ื™ื•ืชืจ ืฉืœื ื• ืœื ืขื•ืฉื™ื ื“ื‘ืจ ื‘ืœื™ ื”ื”ื›ื•ื•ื ื” ื”ื™ืฉื™ืจื” ืฉืœื ื•.
02:22
In fact, to date, and this is something that frustrates me,
38
142828
3181
ื‘ืขืฆื, ื ื›ื•ืŸ ืœื”ื™ื•ื, ื•ื–ื” ืžืฉื”ื• ืฉืžืชืกื›ืœ ืื•ืชื™,
02:26
we've always been limited
39
146033
1448
ืชืžื™ื“ ื”ื™ื™ื ื• ืžื•ื’ื‘ืœื™ื
02:27
by this need to manually push our wills into our tools --
40
147505
3501
ื‘ืฉืœ ื”ืฆื•ืจืš ื”ื–ื” ืœื“ื—ื•ืฃ ื‘ืื•ืคืŸ ื™ื“ื ื™ ืืช ื”ืจืฆื•ื ื•ืช ืฉืœื ื• ืœืชื•ืš ื›ืœื™ ื”ืขื‘ื•ื“ื” ืฉืœื ื• --
02:31
like, manual, literally using our hands,
41
151030
2297
ื›ืื™ืœื•, ื‘ืื•ืคืŸ ื™ื“ื ื™, ืžืžืฉ ืžืฉืชืžืฉื™ื ื‘ื™ื“ื™ื™ื ืฉืœื ื•,
02:33
even with computers.
42
153351
1428
ืืคื™ืœื• ืขื ืžื—ืฉื‘ื™ื.
02:35
But I'm more like Scotty in "Star Trek."
43
155892
2463
ืื‘ืœ ืื ื™ ื™ื•ืชืจ ื›ืžื• ืกืงื•ื˜ื™ ืž'ืžืกืข ื‘ื™ืŸ ื›ื•ื›ื‘ื™ื'.
02:38
(Laughter)
44
158379
1850
(ืฆื—ื•ืง)
02:40
I want to have a conversation with a computer.
45
160253
2146
ืื ื™ ืจื•ืฆื” ืœื ื”ืœ ืฉื™ื—ื” ืขื ืžื—ืฉื‘.
02:42
I want to say, "Computer, let's design a car,"
46
162423
2970
ืื ื™ ืจื•ืฆื” ืœื”ื’ื™ื“, "ืžื—ืฉื‘, ื‘ื•ื ื ืชื›ื ืŸ ืžื›ื•ื ื™ืช,"
02:45
and the computer shows me a car.
47
165417
1539
ื•ื”ืžื—ืฉื‘ ื™ืจืื” ืœื™ ืžื›ื•ื ื™ืช.
02:46
And I say, "No, more fast-looking, and less German,"
48
166980
2608
ื•ืื ื™ ืื•ืžืจ, "ืœื, ืื—ืช ืฉื ืจืื™ืช ืžื”ื™ืจื” ื™ื•ืชืจ, ื•ืคื—ื•ืช ื’ืจืžื ื™ืช,"
02:49
and bang, the computer shows me an option.
49
169612
2163
ื•ื‘ื•ื, ื”ืžื—ืฉื‘ ืžืจืื” ืœื™ ืืคืฉืจื•ืช.
02:51
(Laughter)
50
171799
1865
(ืฆื—ื•ืง)
02:54
That conversation might be a little ways off,
51
174028
2306
ืขื›ืฉื™ื•, ื–ื” ืื•ืœื™ ืงืฆืช ืžื•ืงื“ื ืœืฉื™ื—ื” ื›ื–ื•,
02:56
probably less than many of us think,
52
176358
2665
ื›ื ืจืื” ืคื—ื•ืช ืžืžื” ืฉืจื‘ื™ื ืžืืชื ื• ื—ื•ืฉื‘ื™ื,
02:59
but right now,
53
179047
1763
ืื‘ืœ ืžืžืฉ ืขื›ืฉื™ื•,
03:00
we're working on it.
54
180834
1151
ืื ื—ื ื• ืขื•ื‘ื“ื™ื ืขืœ ื–ื”.
03:02
Tools are making this leap from being passive to being generative.
55
182009
4033
ื›ืœื™ ื”ืขื‘ื•ื“ื” ืขื•ืฉื™ื ืืช ื”ืงืคื™ืฆื” ื”ื–ื• ืžืœื”ื™ื•ืช ืคืืกื™ื‘ื™ื™ื, ืœืœื”ื™ื•ืช ื™ืฆืจื ื™ื™ื.
03:06
Generative design tools use a computer and algorithms
56
186651
3308
ื›ืœื™ ืชื›ื ื•ืŸ ื™ืฆืจื ื™ื™ื ืžืฉืชืžืฉื™ื ื‘ืžื—ืฉื‘ ื•ื‘ืืœื’ื•ืจื™ืชืžื™ื
03:09
to synthesize geometry
57
189983
2608
ื›ื“ื™ ืœืกื ืชื– ื’ื™ืื•ืžื˜ืจื™ื”
03:12
to come up with new designs all by themselves.
58
192615
2754
ื›ื“ื™ ืœื”ืขืœื•ืช ืขื™ืฆื•ื‘ื™ื ื—ื“ืฉื™ื ืœื’ืžืจื™ ื‘ืขืฆืžื.
03:15
All it needs are your goals and your constraints.
59
195816
2748
ื›ืœ ืžื” ืฉืฆืจื™ืš ื–ื” ื”ืžื˜ืจื•ืช ื•ื”ืžื’ื‘ืœื•ืช ืฉืœื›ื.
03:18
I'll give you an example.
60
198588
1408
ืื ื™ ืืชืŸ ืœื›ื ื“ื•ื’ืžื”.
03:20
In the case of this aerial drone chassis,
61
200020
2788
ื‘ืžืงืจื” ืฉืœ ื”ืฉืœื“ื” ืฉืœ ื”ืžื–ืœ"ื˜ ื”ื–ื”,
03:22
all you would need to do is tell it something like,
62
202832
2626
ื›ืœ ืžื” ืฉืืชื ืชืฆื˜ืจื›ื• ืœืขืฉื•ืช ื–ื” ืœื”ื’ื™ื“ ืœื• ืžืฉื”ื• ื›ืžื•,
03:25
it has four propellers,
63
205482
1273
ื™ืฉ ืœื–ื” ืืจื‘ืข ืžื“ื—ืคื™ื,
03:26
you want it to be as lightweight as possible,
64
206779
2131
ืืชื ืจื•ืฆื™ื ืฉื–ื” ื™ื”ื™ื” ืขื ืžืฉืงืœ ื›ืžื” ืฉื™ื•ืชืจ ืงื˜ืŸ,
03:28
and you need it to be aerodynamically efficient.
65
208934
2270
ื•ืืชื ืฆืจื™ื›ื™ื ืฉื–ื” ื™ื”ื™ื” ื™ืขื™ืœ ืžื‘ื—ื™ื ื” ืื•ื•ื™ืจื•ื“ื™ื ืžื™ืช.
03:31
Then what the computer does is it explores the entire solution space:
66
211228
4914
ื•ืื–, ืžื” ืฉื”ืžื—ืฉื‘ ืขื•ืฉื”, ื–ื” ืฉื”ื•ื ื‘ื•ื—ืŸ ืืช ื›ืœ ืžืจื—ื‘ ื”ืคืชืจื•ื ื•ืช:
03:36
every single possibility that solves and meets your criteria --
67
216166
3927
ื›ืœ ืื—ืช ืžื”ืืคืฉืจื•ื™ื•ืช ืฉืคื•ืชืจื•ืช ื•ืขื•ื ื•ืช ืœืงืจื™ื˜ืจื™ื•ื ื™ื ืฉืœื›ื --
03:40
millions of them.
68
220117
1442
ืžื™ืœื™ื•ื ื™ื ืžื”ืŸ.
03:41
It takes big computers to do this.
69
221583
1975
ืฆืจื™ืš ืžื—ืฉื‘ื™ื ื’ื“ื•ืœื™ื ื‘ืฉื‘ื™ืœ ืœืขืฉื•ืช ืืช ื–ื”.
03:43
But it comes back to us with designs
70
223582
1955
ืื‘ืœ ื”ื•ื ื—ื•ื–ืจ ืืœื™ื ื• ืขื ืขื™ืฆื•ื‘ื™ื
03:45
that we, by ourselves, never could've imagined.
71
225561
3143
ืฉืื ื—ื ื•, ื‘ืขืฆืžื ื•, ืœืขื•ืœื ืœื ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื”ืขืœื•ืช ื‘ื“ืžื™ื•ื ื ื•.
03:49
And the computer's coming up with this stuff all by itself --
72
229146
2912
ื•ื”ืžื—ืฉื‘ ืžืขืœื” ืืช ื”ืจืขื™ื•ื ื•ืช ื”ืืœื• ืœื’ืžืจื™ ื‘ืขืฆืžื• --
ืืฃ ืื—ื“ ืžืขื•ืœื ืœื ืฆื™ื™ืจ ืฉื•ื ื“ื‘ืจ,
03:52
no one ever drew anything,
73
232082
1678
03:53
and it started completely from scratch.
74
233784
2086
ื•ื”ื•ื ื”ืชื—ื™ืœ ืœื’ืžืจื™ ืžื›ืœื•ื.
03:56
And by the way, it's no accident
75
236858
2387
ื•ื–ื”, ื“ืจืš ืื’ื‘, ื‘ื›ืœืœ ืœื ืžืงืจื™
03:59
that the drone body looks just like the pelvis of a flying squirrel.
76
239269
3481
ืฉื’ื•ืฃ ื”ืžื–ืœ"ื˜ ื ืจืื” ื‘ื“ื™ื•ืง ื›ืžื• ื”ืื’ืŸ ืฉืœ ืกื ืื™ ืžืขื•ืคืฃ.
04:03
(Laughter)
77
243107
2007
(ืฆื—ื•ืง)
04:05
It's because the algorithms are designed to work
78
245860
2302
ื–ื” ื‘ื’ืœืœ ืฉื”ืืœื’ื•ืจื™ืชืžื™ื ืžืชื•ื›ื ืชื™ื ืœืขื‘ื•ื“
ื‘ืื•ืชื” ื”ืฆื•ืจื” ืฉื”ืื‘ื•ืœื•ืฆื™ื” ืขื•ื‘ื“ืช.
04:08
the same way evolution does.
79
248186
1637
04:10
What's exciting is we're starting to see this technology
80
250535
2660
ืžื” ืฉืžืจืชืง ื–ื” ืฉืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœืจืื•ืช ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื•
04:13
out in the real world.
81
253219
1159
ื‘ื—ื•ืฅ, ื‘ืขื•ืœื ื”ืืžื™ืชื™.
04:14
We've been working with Airbus for a couple of years
82
254402
2452
ืžื–ื” ื›ืžื” ืฉื ื™ื ืื ื—ื ื• ืขื•ื‘ื“ื™ื ืขื ืื™ื™ืจื‘ื•ืก
04:16
on this concept plane for the future.
83
256878
1909
ืขืœ ื”ืจืขื™ื•ืŸ ืœืžื˜ื•ืก ื”ืขืชื™ื“ื™ ื”ื–ื”.
04:18
It's a ways out still.
84
258811
2070
ื–ื” ืขื•ื“ ืจื—ื•ืง ืขื“ื™ื™ืŸ.
04:20
But just recently we used a generative-design AI
85
260905
3780
ืื‘ืœ ืžืžืฉ ืœื ืžื–ืžืŸ ื”ืฉืชืžืฉื ื• ื‘ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ื™ื™ืฆืจื ื™ืช-ืชื›ื ื•ื ื™ืช
04:24
to come up with this.
86
264709
1807
ื›ื“ื™ ืœื—ืฉื•ื‘ ืขืœ ื–ื”.
04:27
This is a 3D-printed cabin partition that's been designed by a computer.
87
267429
5153
ื–ื” ื—ื•ืฆืฅ ืชื ื ื•ืกืขื™ื ืžื•ื“ืคืก ื‘ืชืœืช-ืžื™ืžื“ ืฉืชื•ื›ื ืŸ ืขืœ ื™ื“ื™ ืžื—ืฉื‘.
04:32
It's stronger than the original yet half the weight,
88
272606
2824
ื–ื” ื—ื–ืง ื™ื•ืชืจ ืžื”ืžืงื•ืจื™ ืื‘ืœ ืฉื•ืงืœ ืจืง ื—ืฆื™ ืžืžื ื•,
04:35
and it will be flying in the Airbus A320 later this year.
89
275454
3146
ื•ื”ื•ื ื™ื˜ื•ืก ื‘ืื™ื™ืจื‘ื•ืก A320 ื‘ื”ืžืฉืš ื”ืฉื ื”.
04:39
So computers can now generate;
90
279225
1559
ื›ืš ืฉืžื—ืฉื‘ื™ื ื™ื›ื•ืœื™ื ืขืชื” ืœื™ืฆื•ืจ;
04:40
they can come up with their own solutions to our well-defined problems.
91
280808
4595
ื”ื ื™ื›ื•ืœื™ื ืœืžืฆื•ื ืคืชืจื•ื ื•ืช ืžืฉืœ ืขืฆืžื ืœื‘ืขื™ื•ืช ื”ืžื•ื’ื“ืจื•ืช ื”ื™ื˜ื‘ ืฉืœื ื•.
04:46
But they're not intuitive.
92
286497
1310
ืื‘ืœ ื”ื ืœื ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™ื™ื.
04:47
They still have to start from scratch every single time,
93
287831
3086
ื”ื ืขื“ื™ื™ืŸ ืฆืจื™ื›ื™ื ืœื”ืชื—ื™ืœ ื›ืœ ืคืขื ืžื—ื“ืฉ,
04:50
and that's because they never learn.
94
290941
2565
ื•ื–ื” ื‘ื’ืœืœ ืฉื”ื ืืฃ ืคืขื ืœื ืœื•ืžื“ื™ื.
04:54
Unlike Maggie.
95
294188
1766
ืฉืœื ื›ืžื• ืžื’ื™.
04:55
(Laughter)
96
295978
1581
(ืฆื—ื•ืง)
04:57
Maggie's actually smarter than our most advanced design tools.
97
297583
3297
ืžื’ื™ ื‘ืขืฆื ื—ื›ืžื” ื™ื•ืชืจ ืžื›ืœื™ ื”ืชื›ื ื•ืŸ ื”ืžืชืงื“ืžื™ื ื‘ื™ื•ืชืจ ืฉืœื ื•.
05:01
What do I mean by that?
98
301287
1440
ืœืžื” ืื ื™ ืžืชื›ื•ื•ืŸ?
05:02
If her owner picks up that leash,
99
302751
1590
ืื ื”ื‘ืขืœื™ื ืฉืœื” ืœื•ืงื— ืืช ื”ืจืฆื•ืขื” ื”ื–ื•,
05:04
Maggie knows with a fair degree of certainty
100
304365
2068
ืžื’ื™ ื™ื•ื“ืขืช ื‘ืจืžื” ื’ื‘ื•ื”ื” ืฉืœ ื•ื“ืื•ืช
05:06
it's time to go for a walk.
101
306457
1404
ืฉื–ื” ื”ื–ืžืŸ ืœืฆืืช ืœื˜ื™ื•ืœ.
05:07
And how did she learn?
102
307885
1185
ื•ืื™ืš ื”ื™ื ืœืžื“ื”?
05:09
Well, every time the owner picked up the leash, they went for a walk.
103
309094
3324
ื•ื‘ื›ืŸ, ื‘ื›ืœ ืคืขื ืฉื”ื‘ืขืœื™ื ืœืงื— ืืช ื”ืจืฆื•ืขื”, ื”ื ื™ืฆืื• ืœื˜ื™ื•ืœ.
05:12
And Maggie did three things:
104
312442
1878
ื•ืžื’ื™ ืขืฉืชื” ืฉืœื•ืฉื” ื“ื‘ืจื™ื:
05:14
she had to pay attention,
105
314344
1869
ื”ื™ื ื”ื™ืชื” ืฆืจื™ื›ื” ืœืฉื™ื ืœื‘,
05:16
she had to remember what happened
106
316237
2082
ื”ื™ื ื”ื™ืชื” ืฆืจื™ื›ื” ืœื–ื›ื•ืจ ืžื” ืงืจื”
05:18
and she had to retain and create a pattern in her mind.
107
318343
4017
ื•ื”ื™ื ื”ื™ืชื” ืฆืจื™ื›ื” ืœืฉืžืจ ื•ืœื™ืฆื•ืจ ืชื‘ื ื™ืช ื‘ืžื•ื— ืฉืœื”.
05:23
Interestingly, that's exactly what
108
323249
2095
ืžืขื ื™ื™ืŸ, ืฉื–ื” ื‘ื“ื™ื•ืง ืžื”
05:25
computer scientists have been trying to get AIs to do
109
325368
2523
ืฉืžื“ืขื ื™ ืžื—ืฉื‘ ื ื™ืกื• ืœื’ืจื•ื ืœื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืœืขืฉื•ืช
05:27
for the last 60 or so years.
110
327915
1859
ื‘ืžื”ืœืš 60 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช ื‘ืขืจืš.
05:30
Back in 1952,
111
330503
1349
ื‘ื–ืžื ื•, ื‘-1952,
05:31
they built this computer that could play Tic-Tac-Toe.
112
331876
3801
ื”ื ื‘ื ื• ืืช ื”ืžื—ืฉื‘ ื”ื–ื” ืฉื™ื›ืœ ืœืฉื—ืง ืื™ืงืก-ืžื™ืงืก-ื“ืจื™ืงืก.
05:36
Big deal.
113
336901
1160
ืืคืฉืจ ืœื—ืฉื•ื‘.
05:38
Then 45 years later, in 1997,
114
338849
3000
ื•ืื–, 45 ืฉื ื” ืื—ืจ ื›ืš, ื‘-1997,
05:41
Deep Blue beats Kasparov at chess.
115
341873
2472
ื›ื—ื•ืœ-ืขืžื•ืง ืžื ืฆื— ืืช ื’ืืจื™ ืงืกืคืืจื•ื‘ ื‘ืฉื—-ืžื˜.
05:45
2011, Watson beats these two humans at Jeopardy,
116
345866
4968
2011, ื•ื•ื˜ืกื•ืŸ ืžื ืฆื— ืืช ืฉื ื™ ื‘ื ื™-ื”ืื ื•ืฉ ื”ืืœื” ื‘ืชื•ื›ื ื™ืช ื˜ืจื™ื•ื•ื™ื”,
05:50
which is much harder for a computer to play than chess is.
117
350858
2928
ืฉื–ื” ื”ืจื‘ื” ื™ื•ืชืจ ืงืฉื” ืœืžื—ืฉื‘ ืœืฉื—ืง ืžืืฉืจ ืฉื—-ืžื˜.
05:53
In fact, rather than working from predefined recipes,
118
353810
3812
ืœืžืขืฉื”, ื‘ืžืงื•ื ืœืขื‘ื•ื“ ืขืœ ื‘ืกื™ืก ืžืชื›ื•ื ื™ื ืžื•ื’ื“ืจื™ื ืžืจืืฉ,
05:57
Watson had to use reasoning to overcome his human opponents.
119
357646
3323
ื•ื•ื˜ืกื•ืŸ ื”ื™ื” ืฆืจื™ืš ืœื”ืฉืชืžืฉ ื‘ื”ื’ื™ื•ืŸ ื‘ื›ื“ื™ ืœื ืฆื— ืืช ื”ืžืชื—ืจื™ื ื”ืื ื•ืฉื™ื™ื ืฉืœื•.
06:02
And then a couple of weeks ago,
120
362213
2439
ื•ืื–, ืœืคื ื™ ื›ืžื” ืฉื‘ื•ืขื•ืช,
06:04
DeepMind's AlphaGo beats the world's best human at Go,
121
364676
4262
ื”ืชื•ื›ื ื” ืฉืœ ื—ื‘ืจืช ื“ื™ืค-ืžื™ื™ื ื“, ืืœืคื-ื’ื•, ื ื™ืฆื—ื” ืืช ื‘ืŸ-ื”ืื ื•ืฉ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ื‘-ื’ื•,
06:08
which is the most difficult game that we have.
122
368962
2212
ืฉื”ื•ื ื”ืžืฉื—ืง ื”ืงืฉื” ื‘ื™ื•ืชืจ ืฉื™ืฉ ืœื ื•.
ืœืžืขืฉื”, ื‘-ื’ื• ื™ืฉ ื™ื•ืชืจ ืžื”ืœื›ื™ื ืืคืฉืจื™ื™ื
06:11
In fact, in Go, there are more possible moves
123
371198
2896
06:14
than there are atoms in the universe.
124
374118
2024
ืžืืฉืจ ืื˜ื•ืžื™ื ื‘ื™ืงื•ื.
06:18
So in order to win,
125
378030
1826
ื›ื›ื” ืฉื‘ืฉื‘ื™ืœ ืœื ืฆื—,
06:19
what AlphaGo had to do was develop intuition.
126
379880
2618
ืžื” ืฉืืœืคื-ื’ื• ื”ื™ื” ืฆืจื™ืš ืœืขืฉื•ืช ื–ื” ืœืคืชื— ืื™ื ื˜ื•ืื™ืฆื™ื”.
06:22
And in fact, at some points, AlphaGo's programmers didn't understand
127
382918
4110
ื•ืœืžืขืฉื”, ื‘ื›ืžื” ืžืงืจื™ื, ื”ืžืชื›ื ืชื™ื ืฉืœ ืืœืคื-ื’ื• ืœื ื”ื‘ื™ื ื•
06:27
why AlphaGo was doing what it was doing.
128
387052
2286
ืœืžื” ืืœืคื-ื’ื• ืขื•ืฉื” ืืช ืžื” ืฉื”ื•ื ืขื•ืฉื”.
06:31
And things are moving really fast.
129
391271
1660
ื•ื”ื“ื‘ืจื™ื ืžืชืงื“ืžื™ื ืžื”ืจ ืžืื•ื“.
06:32
I mean, consider -- in the space of a human lifetime,
130
392955
3227
ื–ืืช ืื•ืžืจืช, ืชื—ืฉื‘ื• -- ืชื•ืš ื›ื“ื™ ืฉื ื•ืช ื”ื—ื™ื™ื ืฉืœ ืื“ื ืื—ื“,
06:36
computers have gone from a child's game
131
396206
2233
ืžื—ืฉื‘ื™ื ื”ืคื›ื• ืžืœื”ื™ื•ืช ืžืฉื—ืง ื™ืœื“ื™ื
06:39
to what's recognized as the pinnacle of strategic thought.
132
399740
3048
ืœืžื” ืฉื ื—ืฉื‘ ืœืคืกื’ืช ื”ืžื—ืฉื‘ื” ื”ืืกื˜ืจื˜ื’ื™ืช.
06:43
What's basically happening
133
403819
2417
ืžื” ืฉื‘ืขืฆื ืงื•ืจื” ื”ื•ื
06:46
is computers are going from being like Spock
134
406260
3310
ืฉืžื—ืฉื‘ื™ื ื”ื•ืคื›ื™ื ืžืœื”ื™ื•ืช ื›ืžื• ืกืคื•ืง
06:49
to being a lot more like Kirk.
135
409594
1949
ืœืœื”ื™ื•ืช ื”ืจื‘ื” ื™ื•ืชืจ ื“ื•ืžื™ื ืœืงื™ืจืง.
06:51
(Laughter)
136
411567
3618
(ืฆื—ื•ืง)
06:55
Right? From pure logic to intuition.
137
415209
3424
ืœื ื›ื›ื”? ืžื”ื’ื™ื•ืŸ ืงืจ ืœืื™ื ื˜ื•ืื™ืฆื™ื”.
07:00
Would you cross this bridge?
138
420004
1743
ื”ื™ื™ืชื ื—ื•ืฆื™ื ืืช ื”ื’ืฉืจ ื”ื–ื”?
07:02
Most of you are saying, "Oh, hell no!"
139
422429
2323
ืจื•ื‘ื›ื ืื•ืžืจื™ื, "ื‘ืฉื•ื ืคื ื™ื ื•ืื•ืคืŸ!"
07:04
(Laughter)
140
424776
1308
(ืฆื—ื•ืง)
07:06
And you arrived at that decision in a split second.
141
426108
2657
ื•ื”ื—ืœื˜ืชื ืืช ื–ื” ื‘ืฉื‘ืจื™ืจ ืฉื ื™ื™ื”.
07:08
You just sort of knew that bridge was unsafe.
142
428789
2428
ืืชื ืคืฉื•ื˜ ืื™ื›ืฉื”ื• ื™ื“ืขืชื ืฉื”ื’ืฉืจ ื”ื–ื” ืื™ื ื• ื‘ื˜ื•ื—.
07:11
And that's exactly the kind of intuition
143
431241
1989
ื•ื–ื” ื‘ื“ื™ื•ืง ืกื•ื’ ื”ืื™ื ื˜ื•ืื™ืฆื™ื”
07:13
that our deep-learning systems are starting to develop right now.
144
433254
3568
ืฉืžืขืจื›ื•ืช ื”ืœืžื™ื“ื” ื”ืขืžื•ืงื” ืฉืœื ื• ืžืชื—ื™ืœื•ืช ืœืคืชื— ืžืžืฉ ืขื›ืฉื™ื•.
07:17
Very soon, you'll literally be able
145
437542
1707
ื‘ืงืจื•ื‘ ืžืื•ื“, ืืชื ืžืžืฉ ืชื•ื›ืœื•
07:19
to show something you've made, you've designed,
146
439273
2206
ืœื”ืจืื•ืช ืžืฉื”ื• ืฉืืชื ื™ืฆืจืชื, ืฉืืชื ืชื›ื ื ืชื, ืœืžื—ืฉื‘,
07:21
to a computer,
147
441503
1153
ื•ื”ื•ื ื™ืขื™ืฃ ื‘ื–ื” ืžื‘ื˜ ื•ื™ื’ื™ื“,
07:22
and it will look at it and say,
148
442680
1489
"ืžืฆื˜ืขืจ, ื’ื‘ืจ, ื–ื” ื‘ื—ื™ื™ื ืœื ื™ืขื‘ื•ื“. ืืชื” ืฆืจื™ืš ืœื ืกื•ืช ืฉื•ื‘."
07:24
"Sorry, homie, that'll never work. You have to try again."
149
444193
2823
07:27
Or you could ask it if people are going to like your next song,
150
447674
3070
ืื• ืฉืชื•ื›ืœื• ืœืฉืื•ืœ ืื ืื ืฉื™ื ื™ืื”ื‘ื• ืืช ื”ืฉื™ืจ ื”ื‘ื ืฉืœื›ื
07:31
or your next flavor of ice cream.
151
451593
2063
ืื• ืืช ื”ื˜ืขื ื”ื—ื“ืฉ ืฉืœ ื”ื’ืœื™ื“ื”.
07:35
Or, much more importantly,
152
455369
2579
ืื•, ื”ืจื‘ื” ื™ื•ืชืจ ื—ืฉื•ื‘,
07:37
you could work with a computer to solve a problem
153
457972
2364
ืชื•ื›ืœื• ืœืขื‘ื•ื“ ืขื ืžื—ืฉื‘ ื‘ืฉื‘ื™ืœ ืœืคืชื•ืจ ื‘ืขื™ื”
07:40
that we've never faced before.
154
460360
1637
ื‘ื” ืžืขื•ืœื ืœื ื ืชืงืœื ื• ืœืคื ื™ ื›ืŸ.
ืœื“ื•ื’ืžื”, ืฉื™ื ื•ื™ ื”ืืงืœื™ื.
07:42
For instance, climate change.
155
462021
1401
07:43
We're not doing a very good job on our own,
156
463446
2020
ืื ื—ื ื• ืœื ืขื•ืฉื™ื ืขื‘ื•ื“ื” ื˜ื•ื‘ื” ื›ืœ-ื›ืš ื‘ืขืฆืžื ื•,
07:45
we could certainly use all the help we can get.
157
465490
2245
ืื ื—ื ื• ื‘ื”ื—ืœื˜ ื™ื›ื•ืœื™ื ืœื”ื™ืขื–ืจ ื‘ื›ืœ ืžื” ืฉื™ืขื–ื•ืจ ืœื ื•.
07:47
That's what I'm talking about,
158
467759
1458
ื•ืขืœ ื–ื” ืื ื™ ืžื“ื‘ืจ,
ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืžื’ื‘ื™ืจื” ืืช ื”ื™ื›ื•ืœื•ืช ื”ืงื•ื’ื ื™ื˜ื™ื‘ื™ื•ืช ืฉืœื ื•
07:49
technology amplifying our cognitive abilities
159
469241
2555
07:51
so we can imagine and design things that were simply out of our reach
160
471820
3552
ื›ืš ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ ื•ืœืชื›ื ืŸ ื“ื‘ืจื™ื ืฉืคืฉื•ื˜ ื”ื™ื• ืžืขื‘ืจ ืœื”ื™ืฉื’ ื™ื“ื™ื ื•
07:55
as plain old un-augmented humans.
161
475396
2559
ื‘ืชื•ืจ ื‘ื ื™-ืื ื•ืฉ ืจื’ื™ืœื™ื ื•ื‘ืœืชื™ ืžืชื•ื’ื‘ืจื™ื.
07:59
So what about making all of this crazy new stuff
162
479804
2941
ืื– ืžื” ืœื’ื‘ื™ ืœื™ื™ืฆืจ ืืช ื›ืœ ื”ื“ื‘ืจื™ื ื”ืžืฉื•ื’ืขื™ื ื”ื—ื“ืฉื™ื ื”ืืœื•
08:02
that we're going to invent and design?
163
482769
2441
ืฉืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื”ืžืฆื™ื ื•ืœืชื›ื ืŸ?
08:05
I think the era of human augmentation is as much about the physical world
164
485772
4093
ืื ื™ ื—ื•ืฉื‘ ืฉื”ืขื™ื“ืŸ ืฉืœ ืชื’ื‘ื•ืจ ืื ื•ืฉื™ ื”ื•ื ื‘ื“ื™ื•ืง ืงืฉื•ืจ ืœืขื•ืœื ื”ืคื™ืกื™ืงืœื™
08:09
as it is about the virtual, intellectual realm.
165
489889
3065
ื›ืžื• ืฉื”ื•ื ืงืฉื•ืจ ืœืชื—ื•ื ื”ื•ื•ื™ืจื˜ื•ืืœื™, ืื™ื˜ืœืงื˜ื•ืืœื™.
08:13
How will technology augment us?
166
493653
1921
ืื™ืš ื˜ื›ื ื•ืœื•ื’ื™ื” ืชืชื’ื‘ืจ ืื•ืชื ื•?
08:16
In the physical world, robotic systems.
167
496081
2473
ื‘ืขื•ืœื ื”ืคื™ืกื™ืงืœื™, ืžืขืจื›ื•ืช ืจื•ื‘ื•ื˜ื™ื•ืช.
08:19
OK, there's certainly a fear
168
499440
1736
OK, ื‘ื”ื—ืœื˜ ืงื™ื™ื ื—ืฉืฉ
08:21
that robots are going to take jobs away from humans,
169
501200
2488
ืฉืจื•ื‘ื•ื˜ื™ื ื™ืชืคืกื• ืžืงื•ืžื•ืช ืขื‘ื•ื“ื” ืฉืœ ืื ืฉื™ื,
08:23
and that is true in certain sectors.
170
503712
1830
ื•ื–ื” ื ื›ื•ืŸ ื‘ืชื—ื•ืžื™ื ืžืกื•ื™ื™ืžื™ื.
08:25
But I'm much more interested in this idea
171
505994
2878
ืื‘ืœ ืื ื™ ื”ืจื‘ื” ื™ื•ืชืจ ืžืชืขื ื™ื™ืŸ ื‘ืจืขื™ื•ืŸ ื”ื–ื”
08:28
that humans and robots working together are going to augment each other,
172
508896
5010
ืฉืื ืฉื™ื ื•ืจื•ื‘ื•ื˜ื™ื ืฉืขื•ื‘ื“ื™ื ื‘ื™ื—ื“ ื™ื™ืชื’ื‘ืจื• ื–ื” ืืช ื–ื”,
08:33
and start to inhabit a new space.
173
513930
2058
ื•ื™ืชื—ื™ืœื• ืœืžืœื ืžืจื—ื‘ ื—ื“ืฉ.
08:36
This is our applied research lab in San Francisco,
174
516012
2362
ื–ื• ื”ืžืขื‘ื“ื” ืฉืœื ื• ืœืžื—ืงืจ ื™ื™ืฉื•ืžื™ ื‘ืกืŸ-ืคืจื ืกื™ืกืงื•,
08:38
where one of our areas of focus is advanced robotics,
175
518398
3142
ื”ื™ื›ืŸ ืฉืื—ื“ ืžืชื—ื•ืžื™ ื”ืžื™ืงื•ื“ ืฉืœื ื• ื”ื•ื ืจื•ื‘ื•ื˜ื™ืงื” ืžืชืงื“ืžืช,
08:41
specifically, human-robot collaboration.
176
521564
2511
ื‘ื™ื™ื—ื•ื“, ืฉื™ืชื•ืฃ-ืคืขื•ืœื” ืื ื•ืฉื™ ืจื•ื‘ื•ื˜ื™.
08:44
And this is Bishop, one of our robots.
177
524854
2759
ื•ื–ื”ื• ื‘ื™ืฉื•ืค, ืื—ื“ ื”ืจื•ื‘ื•ื˜ื™ื ืฉืœื ื•.
08:47
As an experiment, we set it up
178
527637
1789
ื‘ืชื•ืจ ื ื™ืกื•ื™, ืชื›ื ืชื ื• ืื•ืชื• ืœืขื–ื•ืจ
08:49
to help a person working in construction doing repetitive tasks --
179
529450
3460
ืœื‘ืŸ ืื“ื ืฉืขื•ื‘ื“ ื‘ื‘ื ื™ื™ื”, ื•ืขื•ืฉื” ืžืฉื™ืžื•ืช ืฉื—ื•ื–ืจื•ืช ืขืœ ืขืฆืžืŸ --
08:53
tasks like cutting out holes for outlets or light switches in drywall.
180
533804
4194
ืžืฉื™ืžื•ืช ื›ืžื• ืœืคืขื•ืจ ื—ื•ืจื™ื ืขื‘ื•ืจ ืฉืงืขื™ ื—ืฉืžืœ ืื• ืžืชื’ื™ื ื‘ืงื™ืจื•ืช ื’ื‘ืก.
08:58
(Laughter)
181
538022
2466
(ืฆื—ื•ืง)
09:01
So, Bishop's human partner can tell what to do in plain English
182
541697
3111
ืื ื›ืš, ื”ืฉื•ืชืฃ ื”ืื ื•ืฉื™ ืฉืœ ื‘ื™ืฉื•ืค ื™ื›ื•ืœ ืœื•ืžืจ ืžื” ืœืขืฉื•ืช ื‘ืื ื’ืœื™ืช ืคืฉื•ื˜ื”
09:04
and with simple gestures,
183
544832
1305
ื•ืขื ืกื™ืžื ื™ ื™ื“ื™ื™ื ืคืฉื•ื˜ื™ื,
09:06
kind of like talking to a dog,
184
546161
1447
ืงืฆืช ื›ืžื• ืœื“ื‘ืจ ืœื›ืœื‘,
09:07
and then Bishop executes on those instructions
185
547632
2143
ื•ืื– ื‘ื™ืฉื•ืค ืžื•ืฆื™ื ืืช ื”ื”ื•ืจืื•ืช ื”ืืœื” ืœืคื•ืขืœ
09:09
with perfect precision.
186
549799
1892
ื‘ื“ื™ื•ืง ืžื•ืฉืœื.
09:11
We're using the human for what the human is good at:
187
551715
2989
ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ื‘ืŸ-ื”ืื ื•ืฉ ื‘ืฉื‘ื™ืœ ืžื” ืฉื‘ืŸ-ื”ืื ื•ืฉ ืฉื”ื•ื ื˜ื•ื‘ ื‘ื•:
09:14
awareness, perception and decision making.
188
554728
2333
ืžื•ื“ืขื•ืช, ืชืคื™ืกื” ื•ืงื‘ืœืช ื”ื—ืœื˜ื•ืช.
09:17
And we're using the robot for what it's good at:
189
557085
2240
ื•ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ืจื•ื‘ื•ื˜ ืœืžื” ืฉื”ื•ื ื˜ื•ื‘ ื‘ื•:
09:19
precision and repetitiveness.
190
559349
1748
ื“ื™ื•ืง ื•ื—ื–ืจื” ืขืœ ืคืขื•ืœื•ืช.
09:22
Here's another cool project that Bishop worked on.
191
562072
2367
ื”ื ื” ืขื•ื“ ืคืจื•ื™ืงื˜ ืžื“ืœื™ืง ื‘ื• ื‘ื™ืฉื•ืค ื”ื™ื” ืžืขื•ืจื‘.
09:24
The goal of this project, which we called the HIVE,
192
564463
3075
ื”ืžื˜ืจื” ืฉืœ ื”ืคืจื•ื™ืงื˜ ื”ื–ื”, ืœื• ืงืจืื ื• ื”ื›ื•ื•ืจืช,
09:27
was to prototype the experience of humans, computers and robots
193
567562
3851
ื”ื™ื” ืœื™ืฆื•ืจ ืื‘-ื˜ื™ืคื•ืก ืฉืœ ื”ื—ื•ื•ื™ื” ืฉืœ ื‘ื ื™-ืื“ื, ืžื—ืฉื‘ื™ื ื•ืจื•ื‘ื•ื˜ื™ื
09:31
all working together to solve a highly complex design problem.
194
571437
3220
ื›ื•ืœื ืขื•ื‘ื“ื™ื ื™ื—ื“ ื‘ื›ื“ื™ ืœืคืชื•ืจ ื‘ืขื™ื™ืช ืชื›ื ื•ืŸ ืžื•ืจื›ื‘ืช ื‘ื™ื•ืชืจ.
09:35
The humans acted as labor.
195
575613
1451
ื‘ื ื™ ื”ืื“ื ืขื‘ื“ื• ื›ืคื•ืขืœื™ื.
09:37
They cruised around the construction site, they manipulated the bamboo --
196
577088
3473
ื”ื ืฉื™ื™ื˜ื• ืžืกื‘ื™ื‘ ืœืืชืจ ื”ื‘ื ื™ื™ื” ื•ืขื™ื‘ื“ื• ืืช ื”ื‘ืžื‘ื•ืง --
09:40
which, by the way, because it's a non-isomorphic material,
197
580585
2756
ืฉื“ืจืš ืื’ื‘, ื‘ื”ื™ื•ืชื• ื—ื•ืžืจ ืœื ืื™ื–ื•ืžื•ืจืคื™,
ืงืฉื” ืœืจื•ื‘ื•ื˜ื™ื ื‘ืžื™ื•ื—ื“ ืœืขื‘ื“ ืื•ืชื•.
09:43
is super hard for robots to deal with.
198
583365
1874
ืื‘ืœ ืื– ื”ืจื•ื‘ื•ื˜ื™ื ืคื™ืชืœื• ืืช ื”ืกื™ื‘ ื”ื–ื”,
09:45
But then the robots did this fiber winding,
199
585263
2022
09:47
which was almost impossible for a human to do.
200
587309
2451
ื“ื‘ืจ ืฉื”ื™ื” ื›ืžืขื˜ ื‘ืœืชื™ ืืคืฉืจื™ ืœื‘ื ื™ ื”ืื“ื ืœืขืฉื•ืช.
09:49
And then we had an AI that was controlling everything.
201
589784
3621
ื•ืื– ื”ื™ืชื” ืœื ื• ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืฉืฉืœื˜ื” ื‘ื”ื›ืœ.
09:53
It was telling the humans what to do, telling the robots what to do
202
593429
3290
ื”ื™ื ืืžืจื” ืœื‘ื ื™ ื”ืื“ื ืžื” ืœืขืฉื•ืช, ืืžืจื” ืœืจื•ื‘ื•ื˜ื™ื ืžื” ืœืขืฉื•ืช
09:56
and keeping track of thousands of individual components.
203
596743
2915
ื•ืขืงื‘ื” ืื—ืจื™ ืืœืคื™ ืจื›ื™ื‘ื™ื ื‘ื•ื“ื“ื™ื.
09:59
What's interesting is,
204
599682
1180
ืžื” ืฉืžืขื ื™ื™ืŸ ื–ื”,
10:00
building this pavilion was simply not possible
205
600886
3141
ืฉืœื‘ื ื•ืช ืืช ื”ื‘ื™ืชืŸ ื”ื–ื” ื”ื™ื” ืคืฉื•ื˜ ื‘ืœืชื™ ืืคืฉืจื™
10:04
without human, robot and AI augmenting each other.
206
604051
4524
ืœืœื ืชื’ื‘ื•ืจ ื”ื“ื“ื™ ืฉืœ ืื“ื, ืจื•ื‘ื•ื˜ ื•ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช.
10:09
OK, I'll share one more project. This one's a little bit crazy.
207
609710
3320
OK, ืื ื™ ืื—ืœื•ืง ืื™ืชื›ื ืขื•ื“ ืคืจื•ื™ืงื˜ ืื—ื“. ื”ืคืขื ื–ื” ืงืฆืช ืžื˜ื•ืจืฃ.
10:13
We're working with Amsterdam-based artist Joris Laarman and his team at MX3D
208
613054
4468
ืื ื—ื ื• ืขื•ื‘ื“ื™ื ืขื ื”ืืžืŸ ื™ื•ืจื™ืก ืœืืืจืžืŸ ืžืืžืกื˜ืจื“ื ื•ื”ืฆื•ื•ืช ืฉืœื• ื‘-MX3D
10:17
to generatively design and robotically print
209
617546
2878
ื›ื“ื™ ืœืชื›ื ืŸ ื‘ืื•ืคืŸ ื™ื™ืฆืจื ื™ ื•ืœื”ื“ืคื™ืก ื‘ืขื–ืจืช ืจื•ื‘ื•ื˜
10:20
the world's first autonomously manufactured bridge.
210
620448
2995
ืืช ื”ื’ืฉืจ ื”ืจืืฉื•ืŸ ื‘ืขื•ืœื ืฉื™ื™ื•ืฆืจ ื‘ืื•ืคืŸ ืื•ื˜ื•ื ื•ืžื™.
10:24
So, Joris and an AI are designing this thing right now, as we speak,
211
624135
3685
ืื– ื™ื•ืจื™ืก ื•ื™ื—ื™ื“ืช ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืžืชื›ื ื ื™ื ืืช ื”ื“ื‘ืจ ื”ื–ื” ืžืžืฉ ืขื›ืฉื™ื•, ื‘ืจื’ืขื™ื ืืœื•,
10:27
in Amsterdam.
212
627844
1172
ื‘ืืžืกื˜ืจื“ื.
10:29
And when they're done, we're going to hit "Go,"
213
629040
2321
ื•ื›ืฉื”ื ื™ื”ื™ื• ืžื•ื›ื ื™ื, ืื ื—ื ื• ื ืœื—ืฅ "ืงื“ื™ืžื”",
10:31
and robots will start 3D printing in stainless steel,
214
631385
3311
ื•ืจื•ื‘ื•ื˜ื™ื ื™ืชื—ื™ืœื• ืœื”ื“ืคื™ืก ื‘ืชืœืช-ืžื™ืžื“, ื‘ืคืœื“ืช ืืœ-ื—ืœื“,
10:34
and then they're going to keep printing, without human intervention,
215
634720
3283
ื•ื”ื ื™ืžืฉื™ื›ื• ืœื”ื“ืคื™ืก ื‘ืœื ื”ืชืขืจื‘ื•ืช ืื ื•ืฉื™ืช
10:38
until the bridge is finished.
216
638027
1558
ืขื“ ืืฉืจ ื”ื’ืฉืจ ื™ื”ื™ื” ืžื•ื›ืŸ.
10:40
So, as computers are going to augment our ability
217
640919
2928
ืื ื›ืš, ืžื—ืฉื‘ื™ื ืขื•ืžื“ื™ื ืœืชื’ื‘ืจ ืืช ื”ื™ื›ื•ืœื•ืช ืฉืœื ื•
10:43
to imagine and design new stuff,
218
643871
2150
ืœื“ืžื™ื™ืŸ ื•ืœืชื›ื ืŸ ื“ื‘ืจื™ื ื—ื“ืฉื™ื,
10:46
robotic systems are going to help us build and make things
219
646045
2895
ืžืขืจื›ื•ืช ืจื•ื‘ื•ื˜ื™ื•ืช ื™ืขื–ืจื• ืœื ื• ืœื‘ื ื•ืช ื•ืœื™ื™ืฆืจ ื“ื‘ืจื™ื
10:48
that we've never been able to make before.
220
648964
2084
ืฉืžืขื•ืœื ืœื ื™ื›ื•ืœื ื• ืœื™ื™ืฆืจ ืงื•ื“ื ืœื›ืŸ.
10:52
But what about our ability to sense and control these things?
221
652167
4160
ืื‘ืœ ืžื” ืขื ื”ื™ื›ื•ืœืช ืฉืœื ื• ืœื—ื•ืฉ ื•ืœืฉืœื•ื˜ ื‘ื“ื‘ืจื™ื ื”ืœืœื•?
10:56
What about a nervous system for the things that we make?
222
656351
4031
ืžื” ืขื ืžืขืจื›ืช ืขืฆื‘ื™ื ืขื‘ื•ืจ ื”ื“ื‘ืจื™ื ืฉืื ื• ื™ื•ืฆืจื™ื?
11:00
Our nervous system, the human nervous system,
223
660406
2512
ืžืขืจื›ืช ื”ืขืฆื‘ื™ื ืฉืœื ื•, ืžืขืจื›ืช ื”ืขืฆื‘ื™ื ื”ืื ื•ืฉื™ืช,
11:02
tells us everything that's going on around us.
224
662942
2311
ืžื“ื•ื•ื—ืช ืœื ื• ืขืœ ื›ืœ ืžื” ืฉืงื•ืจื” ืกื‘ื™ื‘ื ื•.
11:06
But the nervous system of the things we make is rudimentary at best.
225
666006
3684
ืื‘ืœ ืžืขืจื›ืช ื”ืขืฆื‘ื™ื ืฉืœ ื”ื“ื‘ืจื™ื ืฉืื ื—ื ื• ื™ื•ืฆืจื™ื ื”ื™ื ืจืืฉื•ื ื™ืช ื‘ืžืงืจื” ื”ื˜ื•ื‘.
11:09
For instance, a car doesn't tell the city's public works department
226
669714
3563
ืœื“ื•ื’ืžื”, ืžื›ื•ื ื™ืช ืœื ืžื“ื•ื•ื—ืช ืœืžื—ืœืงืช ื”ืื—ื–ืงื” ืฉืœ ื”ืขื™ืจื™ื™ื”
11:13
that it just hit a pothole at the corner of Broadway and Morrison.
227
673301
3130
ืฉื”ื™ื ื‘ื“ื™ื•ืง ืคื’ืขื” ื‘ื‘ื•ืจ ื‘ื‘ืจื•ื“ื•ื•ื™ื™ ืคื™ื ืช ืžื•ืจื™ืกื•ืŸ.
11:16
A building doesn't tell its designers
228
676455
2032
ื‘ื ื™ื™ืŸ ืœื ืื•ืžืจ ืœืžืชื›ื ื ื™ื ืฉืœื•
11:18
whether or not the people inside like being there,
229
678511
2684
ืื ื”ืื ืฉื™ื ื‘ืคื ื™ื ืื•ื”ื‘ื™ื ืœื”ื™ื•ืช ืฉื ืื• ืœื,
11:21
and the toy manufacturer doesn't know
230
681219
3010
ื•ื™ื™ืฆืจืŸ ืฆืขืฆื•ืขื™ื ืœื ื™ื•ื“ืข
11:24
if a toy is actually being played with --
231
684253
2007
ืื ื‘ืืžืช ืžืฉื—ืงื™ื ื‘ืฆืขืฆื•ืข --
11:26
how and where and whether or not it's any fun.
232
686284
2539
ืื™ืš ื•ืื™ืคื” ื•ืื ื‘ื›ืœืœ ื”ื•ื ื›ื™ืคื™.
11:29
Look, I'm sure that the designers imagined this lifestyle for Barbie
233
689440
3814
ืชืจืื•, ืื ื™ ื‘ื˜ื•ื— ืฉื”ืžืชื›ื ื ื™ื ื“ื™ืžื™ื™ื ื• ื›ื–ื” ืกื’ื ื•ืŸ ื—ื™ื™ื ืœื‘ืจื‘ื™
11:33
when they designed her.
234
693278
1224
ื›ืฉื”ื ืชื›ื ื ื• ืื•ืชื”.
11:34
(Laughter)
235
694526
1447
(ืฆื—ื•ืง)
11:35
But what if it turns out that Barbie's actually really lonely?
236
695997
2906
ืื‘ืœ ืžื” ืื ื™ื™ืชื‘ืจืจ ืฉื‘ืจื‘ื™ ื‘ืขืฆื ืžืžืฉ ื‘ื•ื“ื“ื”?
11:38
(Laughter)
237
698927
3147
(ืฆื—ื•ืง)
11:43
If the designers had known
238
703086
1288
ืื ื”ืžืชื›ื ื ื™ื ื”ื™ื• ื™ื•ื“ืขื™ื
11:44
what was really happening in the real world
239
704398
2107
ืžื” ื‘ืืžืช ืงื•ืจื” ื‘ืขื•ืœื
ืœืชื›ื ื•ื ื™ื ืฉืœื”ื -- ื”ื›ื‘ื™ืฉ, ื”ื‘ื ื™ื™ืŸ, ื‘ืจื‘ื™ --
11:46
with their designs -- the road, the building, Barbie --
240
706529
2583
ื”ื ื”ื™ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ืžื™ื“ืข ื”ื–ื”
11:49
they could've used that knowledge to create an experience
241
709136
2694
ื‘ื›ื“ื™ ืœื™ืฆื•ืจ ื—ื•ื•ื™ื™ื” ื˜ื•ื‘ื” ื™ื•ืชืจ ืœืžืฉืชืžืฉ.
11:51
that was better for the user.
242
711854
1400
ืžื” ืฉื—ืกืจ, ื–ื• ืžืขืจื›ืช ืขืฆื‘ื™ื
11:53
What's missing is a nervous system
243
713278
1791
11:55
connecting us to all of the things that we design, make and use.
244
715093
3709
ืฉืžื—ื‘ืจืช ืื•ืชื ื• ืœื›ืœ ื”ื“ื‘ืจื™ื ืฉืื ื—ื ื• ืžืชื›ื ื ื™ื, ืžื™ื™ืฆืจื™ื ื•ื‘ื”ื ืื ื• ืžืฉืชืžืฉื™ื.
11:59
What if all of you had that kind of information flowing to you
245
719735
3555
ืžื” ืื ืœื›ื•ืœื›ื ื”ื™ื” ื›ื–ื” ืžื™ื“ืข ื–ื•ืจื ืืœื™ื›ื
12:03
from the things you create in the real world?
246
723314
2183
ืžื”ื“ื‘ืจื™ื ืฉืืชื ื™ื•ืฆืจื™ื ื‘ืขื•ืœื ื”ืืžื™ืชื™?
12:07
With all of the stuff we make,
247
727252
1451
ืขื ื›ืœ ื”ื“ื‘ืจื™ื ืฉืื ื—ื ื• ื™ื•ืฆืจื™ื,
12:08
we spend a tremendous amount of money and energy --
248
728727
2435
ืื ื—ื ื• ืžืฉืงื™ืขื™ื ื”ืžื•ืŸ ื›ืกืฃ ื•ืื ืจื’ื™ื” --
ืœืžืขืฉื”, ื‘ืฉื ื” ืฉืขื‘ืจื”, ืงืจื•ื‘ ืœืฉื ื™ ื˜ืจื™ืœื™ื•ืŸ ื“ื•ืœืจ --
12:11
in fact, last year, about two trillion dollars --
249
731186
2376
12:13
convincing people to buy the things we've made.
250
733586
2854
ื‘ืœืฉื›ื ืข ืื ืฉื™ื ืœืงื ื•ืช ืืช ื”ื“ื‘ืจื™ื ืฉืื ื• ื™ื•ืฆืจื™ื.
12:16
But if you had this connection to the things that you design and create
251
736464
3388
ืื‘ืœ ืื ื”ื™ื” ืœื›ื ืืช ื”ืงืฉืจ ื”ื–ื” ืœื“ื‘ืจื™ื ืฉืืชื ืžืชื›ื ื ื™ื ื•ืžื™ื™ืฆืจื™ื
12:19
after they're out in the real world,
252
739876
1727
ืื—ืจื™ ืฉื”ื ื™ื•ืฆืื™ื ืœืขื•ืœื ื”ืืžื™ืชื™,
12:21
after they've been sold or launched or whatever,
253
741627
3614
ืื—ืจื™ ืฉื”ื ื ืžื›ืจื• ืื• ื”ื•ืฉืงื• ืื• ืžื” ืฉืœื ื™ื”ื™ื”,
12:25
we could actually change that,
254
745265
1620
ื”ื™ื™ื ื• ื‘ืขืฆื ื™ื›ื•ืœื™ื ืœืฉื ื•ืช ืืช ื–ื”,
12:26
and go from making people want our stuff,
255
746909
3047
ื•ืœืขื‘ื•ืจ ืžืœื’ืจื•ื ืœืื ืฉื™ื ืœืจืฆื•ืช ืืช ื”ื“ื‘ืจื™ื ืฉืœื ื•,
12:29
to just making stuff that people want in the first place.
256
749980
3434
ืœืคืฉื•ื˜ ืœื™ื™ืฆื•ืจ ื“ื‘ืจื™ื ืฉืื ืฉื™ื ืจื•ืฆื™ื ืžืœื›ืชื—ื™ืœื”.
12:33
The good news is, we're working on digital nervous systems
257
753438
2787
ื”ื—ื“ืฉื•ืช ื”ื˜ื•ื‘ื•ืช ื”ืŸ, ืื ื—ื ื• ืขื•ื‘ื“ื™ื ืขืœ ืžืขืจื›ื•ืช ืขืฆื‘ื™ื ื“ื™ื’ื™ื˜ืœื™ื•ืช
12:36
that connect us to the things we design.
258
756249
2801
ืฉืžื—ื‘ืจื•ืช ืื•ืชื• ืœื“ื‘ืจื™ื ืฉืื ื—ื ื• ืžืชื›ื ื ื™ื.
12:40
We're working on one project
259
760185
1627
ืื ื—ื ื• ืขื•ื‘ื“ื™ื ืขืœ ืคืจื•ื™ืงื˜ ืื—ื“
12:41
with a couple of guys down in Los Angeles called the Bandito Brothers
260
761836
3712
ืขื ื›ืžื” ื—ื‘ืจ'ื” ื‘ืœื•ืก-ืื ื’'ืœืก ืฉื ืงืจืื™ื ื”ืื—ื™ื ื‘ืื ื“ื™ื˜ื•ืก
12:45
and their team.
261
765572
1407
ื•ื”ืฆื•ื•ืช ืฉืœื”ื.
12:47
And one of the things these guys do is build insane cars
262
767003
3433
ื•ืื—ื“ ื”ื“ื‘ืจื™ื ืฉื”ื—ื‘ืจ'ื” ื”ืืœื” ืขื•ืฉื™ื ื–ื” ืœื‘ื ื•ืช ืžื›ื•ื ื™ื•ืช ืžื˜ื•ืจืคื•ืช
12:50
that do absolutely insane things.
263
770460
2873
ืฉืขื•ืฉื•ืช ื“ื‘ืจื™ื ืคืฉื•ื˜ ืžื˜ื•ืจืคื™ื.
12:54
These guys are crazy --
264
774725
1450
ื”ื—ื‘ืจ'ื” ื”ืืœื” ืžืฉื•ื’ืขื™ื --
12:56
(Laughter)
265
776199
1036
(ืฆื—ื•ืง)
12:57
in the best way.
266
777259
1403
ื‘ืฆื•ืจื” ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ.
13:00
And what we're doing with them
267
780813
1763
ื•ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื ืืชื
13:02
is taking a traditional race-car chassis
268
782600
2440
ื–ื” ืœืงื—ืช ืฉืœื“ื•ืช ืžืกื•ืจืชื™ื•ืช ืฉืœ ืžื›ื•ื ื™ื•ืช ืžื™ืจื•ืฅ
13:05
and giving it a nervous system.
269
785064
1585
ื•ืœืชืช ืœื”ืŸ ืžืขืจื›ืช ืขืฆื‘ื™ื.
13:06
So we instrumented it with dozens of sensors,
270
786673
3058
ืื– ืฆื™ื™ื“ื ื• ืื•ืชื” ื‘ืขืฉืจื•ืช ื—ื™ื™ืฉื ื™ื,
13:09
put a world-class driver behind the wheel,
271
789755
2635
ืฉืžื ื• ื ื”ื’ ื‘ืจืžื” ื‘ื™ื ืœืื•ืžื™ืช ืžืื—ื•ืจื™ ื”ื”ื’ื”,
13:12
took it out to the desert and drove the hell out of it for a week.
272
792414
3357
ืœืงื—ื ื• ืื•ืชื” ืœืžื“ื‘ืจ, ื•ืงืจืขื ื• ืœื” ืืช ื”ืฆื•ืจื” ื‘ืžืฉืš ืฉื‘ื•ืข.
13:15
And the car's nervous system captured everything
273
795795
2491
ื•ืžืขืจื›ืช ื”ืขืฆื‘ื™ื ืฉืœ ื”ืžื›ื•ื ื™ืช ืจืฉืžื”
ืืช ื›ืœ ืžื” ืฉืงืจื” ืœืžื›ื•ื ื™ืช.
13:18
that was happening to the car.
274
798310
1482
13:19
We captured four billion data points;
275
799816
2621
ืืกืคื ื• ืืจื‘ืขื” ืžื™ืœื™ืืจื“ื™ ื ืงื•ื“ื•ืช ืžื™ื“ืข;
13:22
all of the forces that it was subjected to.
276
802461
2310
ื›ืœ ื”ื›ื•ื—ื•ืช ืฉืคืขืœื• ืขืœื™ื”.
13:24
And then we did something crazy.
277
804795
1659
ื•ืื– ืขืฉื™ื ื• ื“ื‘ืจ ืžืฉื•ื’ืข.
13:27
We took all of that data,
278
807088
1500
ืœืงื—ื ื• ืืช ื›ืœ ื”ืžื™ื“ืข ื”ื–ื”,
13:28
and plugged it into a generative-design AI we call "Dreamcatcher."
279
808612
3736
ื•ื”ื—ื“ืจื ื• ืื•ืชื• ืœื™ื—ื™ื“ืช ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ื™ื™ืฆืจื ื™ืช- ืชื›ื ื•ื ื™ืช ืœื” ืื ื—ื ื• ืงื•ืจืื™ื "ืœื•ื›ื“ืช ื”ื—ืœื•ืžื•ืช".
13:33
So what do get when you give a design tool a nervous system,
280
813090
3964
ืื– ืžื” ืืชื ืžืงื‘ืœื™ื ืื ืืชื ื ื•ืชื ื™ื ืœื›ืœื™ ืชื›ื ื•ื ื™ ืžืขืจื›ืช ืขืฆื‘ื™ื,
13:37
and you ask it to build you the ultimate car chassis?
281
817078
2882
ื•ืžื‘ืงืฉื™ื ืžืžื ื” ืœืชื›ื ืŸ ืขื‘ื•ืจื›ื ืืช ื”ืฉืœื“ื” ื”ืื•ืœื˜ื™ืžื˜ื™ื‘ื™ืช?
13:40
You get this.
282
820543
1973
ืืชื ืžืงื‘ืœื™ื ืืช ื–ื”.
13:44
This is something that a human could never have designed.
283
824113
3713
ื–ื” ืžืฉื”ื• ืฉื‘ืŸ ืื ื•ืฉ ืœืขื•ืœื ืœื ื™ื›ื•ืœ ื”ื™ื” ืœืชื›ื ืŸ.
13:48
Except a human did design this,
284
828527
1888
ืืœื ืฉื‘ืŸ-ืื ื•ืฉ ื›ืŸ ืชื›ื ืŸ ืืช ื–ื”,
13:50
but it was a human that was augmented by a generative-design AI,
285
830439
4309
ืื‘ืœ ื–ื” ื”ื™ื” ื‘ืŸ ืื ื•ืฉ ืฉืชื•ื’ื‘ืจ ืขืœ ื™ื“ื™ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ื™ื™ืฆื•ืจื™ืช-ืชื›ื ื•ื ื™ืช
13:54
a digital nervous system
286
834772
1231
ืžืขืจื›ืช ืขืฆื‘ื™ื ื“ื™ื’ื™ื˜ืœื™ืช
13:56
and robots that can actually fabricate something like this.
287
836027
3005
ื•ืจื•ื‘ื•ื˜ื™ื ืฉื‘ืืžืช ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ืžืฉื”ื• ื›ื–ื”.
13:59
So if this is the future, the Augmented Age,
288
839500
3595
ืื ื›ืš, ืื ื–ื” ื”ืขืชื™ื“, ืขื™ื“ืŸ ื”ืชื’ื‘ื•ืจ,
14:03
and we're going to be augmented cognitively, physically and perceptually,
289
843119
4261
ื•ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื”ื™ื•ืช ืžืชื•ื’ื‘ืจื™ื ืžื‘ื—ื™ื ื” ืงื•ื’ื ื™ื˜ื™ื‘ื™ืช, ืคื™ื–ื™ืงืœื™ืช ื•ืชืคื™ืกืชื™ืช,
14:07
what will that look like?
290
847404
1408
ืื™ืš ื–ื” ื™ื™ืจืื”?
14:09
What is this wonderland going to be like?
291
849396
3321
ืื™ืš ืชื”ื™ื” ืืจืฅ ื”ืคืœืื•ืช ื”ื–ื•?
14:12
I think we're going to see a world
292
852741
1709
ืื ื™ ื—ื•ืฉื‘ ืฉืื ื—ื ื• ืขื•ืžื“ื™ื ืœื—ื–ื•ืช ื‘ืขื•ืœื
14:14
where we're moving from things that are fabricated
293
854474
3068
ืฉื‘ื• ืื ื—ื ื• ืžืชืงื“ืžื™ื ืžื“ื‘ืจื™ื ืฉืžื™ื•ืฆืจื™ื
14:17
to things that are farmed.
294
857566
1445
ืœื“ื‘ืจื™ื ืฉืžืขื•ื‘ื“ื™ื.
14:19
Where we're moving from things that are constructed
295
859979
3453
ืื ื—ื ื• ืขื•ื‘ืจื™ื ืžื“ื‘ืจื™ื ืฉื ื‘ื ื™ื
14:23
to that which is grown.
296
863456
1704
ืœื“ื‘ืจื™ื ืฉืžื’ื•ื“ืœื™ื.
14:25
We're going to move from being isolated
297
865954
2188
ืื ื—ื ื• ืขื•ื‘ืจื™ื ืžืœื”ื™ื•ืช ืžื‘ื•ื“ื“ื™ื
14:28
to being connected.
298
868166
1610
ืœืœื”ื™ื•ืช ืžื—ื•ื‘ืจื™ื.
14:30
And we'll move away from extraction
299
870454
2411
ื•ืื ื—ื ื• ืขื•ื‘ืจื™ื ืžื”ื•ืฆืื”
14:32
to embrace aggregation.
300
872889
1873
ืœืงื‘ืœืช ื”ืื™ื’ื•ื“.
14:35
I also think we'll shift from craving obedience from our things
301
875787
3767
ืื ื™ ื’ื ื—ื•ืฉื‘ ืฉืื—ื ื• ื ืขื‘ื•ืจ ืžืœื”ืฉืชื•ืงืง ืœืฆื™ื•ืช ืžื”ื“ื‘ืจื™ื ืฉืœื ื•
14:39
to valuing autonomy.
302
879578
1641
ืœื”ืขืจื›ื” ืฉืœ ืขืฆืžืื•ืช.
14:42
Thanks to our augmented capabilities,
303
882330
1905
ืชื•ื“ื•ืช ืœื™ื›ื•ืœื•ืช ื”ืžืชื•ื’ื‘ืจื•ืช ืฉืœื ื•,
14:44
our world is going to change dramatically.
304
884259
2377
ื”ืขื•ืœื ืฉืœื ื• ื”ื•ืœืš ืœื”ืฉืชื ื•ืช ื‘ืื•ืคืŸ ื“ืจืžื˜ื™.
14:47
We're going to have a world with more variety, more connectedness,
305
887396
3246
ื”ื•ืœืš ืœื”ื™ื•ืช ืœื ื• ืขื•ืœื ืขื ื™ื•ืชืจ ื’ื™ื•ื•ืŸ, ื™ื•ืชืจ ืงื™ืฉื•ืจื™ื•ืช,
14:50
more dynamism, more complexity,
306
890666
2287
ื™ื•ืชืจ ื“ื™ื ืžื™ื•ืช, ื™ื•ืชืจ ืžื•ืจื›ื‘ื•ืช,
14:52
more adaptability and, of course,
307
892977
2318
ื™ื•ืชืจ ื™ื›ื•ืœื•ืช ื”ืชืืžื” ื•ื›ืžื•ื‘ืŸ,
14:55
more beauty.
308
895319
1217
ื™ื•ืชืจ ื™ื•ืคื™.
14:57
The shape of things to come
309
897051
1564
ื”ืฆื•ืจื” ืฉืœ ื”ื“ื‘ืจื™ื ื‘ืขืชื™ื“
14:58
will be unlike anything we've ever seen before.
310
898639
2290
ืชื”ื™ื” ืฉื•ื ื” ืžื›ืœ ืžื” ืฉืจืื™ื ื• ืขื“ ืขืชื”.
15:00
Why?
311
900953
1159
ืœืžื”?
15:02
Because what will be shaping those things is this new partnership
312
902136
3755
ื›ื™ ืžื” ืฉื™ื™ืขืฆื‘ ืืช ื”ื“ื‘ืจื™ื ื”ืœืœื• ื™ื”ื™ื” ืฉื™ืชื•ืฃ ื”ืคืขื•ืœื” ื”ื—ื“ืฉ ื”ื–ื”
15:05
between technology, nature and humanity.
313
905915
3670
ื‘ื™ืŸ ื˜ื›ื ื•ืœื•ื’ื™ื”, ื˜ื‘ืข ื•ืื ื•ืฉื™ื•ืช.
15:11
That, to me, is a future well worth looking forward to.
314
911099
3804
ื‘ืฉื‘ื™ืœื™, ื–ื”ื• ืขืชื™ื“ ืฉืœื’ืžืจื™ ืžืฆื“ื™ืง ืืช ื”ืฆื™ืคื™ื™ื” ืœื•.
15:14
Thank you all so much.
315
914927
1271
ืชื•ื“ื” ืœื›ื•ืœื›ื.
15:16
(Applause)
316
916222
5669
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7