The incredible inventions of intuitive AI | Maurice Conti

5,584,143 views ・ 2017-02-28

TED


請雙擊下方英文字幕播放視頻。

00:00
Translator: Leslie Gauthier Reviewer: Camille Martínez
0
0
7000
譯者: 易帆 余 審譯者: SF Huang
00:12
How many of you are creatives,
1
12555
2289
你們有多少人是創意人、
00:14
designers, engineers, entrepreneurs, artists,
2
14868
3624
設計師、工程師、企業家、藝術家?
00:18
or maybe you just have a really big imagination?
3
18516
2387
或者你只是有無遠弗屆的想像力?
00:20
Show of hands? (Cheers)
4
20927
1848
請舉一下手?(歡呼聲)
00:22
That's most of you.
5
22799
1181
現場大部分人都是。
00:25
I have some news for us creatives.
6
25154
2294
我有一些消息要給我們的創意人。
00:28
Over the course of the next 20 years,
7
28534
2573
接下來的 20 年,
00:33
more will change around the way we do our work
8
33291
2973
很多我們工作的方式,
00:37
than has happened in the last 2,000.
9
37202
2157
將會遠遠不同於過去的 2000 年。
00:40
In fact, I think we're at the dawn of a new age in human history.
10
40331
4628
實際上,我認為我們正處在 人類歷史新世代的黎明。
00:45
Now, there have been four major historical eras defined by the way we work.
11
45465
4761
人類工作的方式, 有四個主要的歷史階段。
00:51
The Hunter-Gatherer Age lasted several million years.
12
51224
3275
人類歷經了幾百萬年的 狩獵採集時代。
00:54
And then the Agricultural Age lasted several thousand years.
13
54983
3576
然後經歷了幾千年的農業時代。
00:59
The Industrial Age lasted a couple of centuries.
14
59015
3490
工業時代則延續了幾世紀。
01:02
And now the Information Age has lasted just a few decades.
15
62529
4287
而目前的資訊時代才走了幾十年。
01:06
And now today, we're on the cusp of our next great era as a species.
16
66840
5220
如今,身為人類的我們, 即將邁入下一個偉大的時代。
01:13
Welcome to the Augmented Age.
17
73116
2680
歡迎來到「擴增時代」。
01:15
In this new era, your natural human capabilities are going to be augmented
18
75820
3693
在這個新時代, 人類天生的能力將會被強化擴增,
01:19
by computational systems that help you think,
19
79537
3068
電腦計算系統將幫助你思考、
01:22
robotic systems that help you make,
20
82629
2186
機械人系統協助你製造、
01:24
and a digital nervous system
21
84839
1648
遠超過你自然感官強度的 數位神經系統,
01:26
that connects you to the world far beyond your natural senses.
22
86511
3690
能夠讓你與全世界接軌。
01:31
Let's start with cognitive augmentation.
23
91257
1942
我們先從「認知擴增」談起。
01:33
How many of you are augmented cyborgs?
24
93223
2200
現場有多少人是「強化的半機械人」?
01:35
(Laughter)
25
95953
2650
(笑聲)
01:38
I would actually argue that we're already augmented.
26
98627
2821
其實我想說的是, 我們都已經被強化、擴增了。
01:42
Imagine you're at a party,
27
102108
1504
想像你正在參加一場派對,
01:43
and somebody asks you a question that you don't know the answer to.
28
103636
3520
有人問了你一個 你不知道如何回答的問題。
01:47
If you have one of these, in a few seconds, you can know the answer.
29
107180
3760
如果你有這個,只要幾秒鐘, 你就會得到答案。
01:51
But this is just a primitive beginning.
30
111689
2299
但這也只是剛開始而已。
01:54
Even Siri is just a passive tool.
31
114683
3331
甚至 Siri 也只是個被動工具。
01:58
In fact, for the last three-and-a-half million years,
32
118480
3381
實際上,在過去的 350 萬年,
02:01
the tools that we've had have been completely passive.
33
121885
3109
我們所有的工具都是被動的。
02:06
They do exactly what we tell them and nothing more.
34
126023
3655
它們只會照我們的指令去做, 僅此而已。
02:09
Our very first tool only cut where we struck it.
35
129702
3101
我們最早使用的工具, 遵循一個口令一個動作的指示。
02:13
The chisel only carves where the artist points it.
36
133642
3040
藝術家指哪裡,雕刻刀就雕刻哪裡。
02:17
And even our most advanced tools do nothing without our explicit direction.
37
137163
5641
即使最先進的工具,如果沒有 我們明確的指令也不會工作。
02:22
In fact, to date, and this is something that frustrates me,
38
142828
3181
說真的,時到今日, 有件事仍讓我感覺很挫敗,
02:26
we've always been limited
39
146033
1448
我們一直以來都被限制在
02:27
by this need to manually push our wills into our tools --
40
147505
3501
「需要動手將我們的意念 傳達給工具」的這種迷思框框中——
02:31
like, manual, literally using our hands,
41
151030
2297
就是得動手去做,即使有了電腦 還是得靠雙手。
02:33
even with computers.
42
153351
1428
02:35
But I'm more like Scotty in "Star Trek."
43
155892
2463
但我還是比較喜歡當 <<星際迷航>>裡的史考迪。
02:38
(Laughter)
44
158379
1850
(笑聲)
02:40
I want to have a conversation with a computer.
45
160253
2146
我也想跟電腦對話。
02:42
I want to say, "Computer, let's design a car,"
46
162423
2970
當我說,「電腦, 我們來設計一輛車吧!」
02:45
and the computer shows me a car.
47
165417
1539
然後電腦就會顯示一輛車給我看。
02:46
And I say, "No, more fast-looking, and less German,"
48
166980
2608
然後我說:「不,要拉風一點, 德國味兒少一點。」
02:49
and bang, the computer shows me an option.
49
169612
2163
接著「蹦」, 電腦給了我一個新選擇。
02:51
(Laughter)
50
171799
1865
(笑聲)
02:54
That conversation might be a little ways off,
51
174028
2306
這樣的對話可能有點不切實際,
02:56
probably less than many of us think,
52
176358
2665
也許沒有我們認為的那麼不切實際,
02:59
but right now,
53
179047
1763
但現在,
03:00
we're working on it.
54
180834
1151
我們正在做這件事。
這些工具將帶領我們大躍進, 從被動轉為衍生。
03:02
Tools are making this leap from being passive to being generative.
55
182009
4033
03:06
Generative design tools use a computer and algorithms
56
186651
3308
「衍生設計工具 」 是利用電腦及演算法,
03:09
to synthesize geometry
57
189983
2608
合成出幾何結構,
03:12
to come up with new designs all by themselves.
58
192615
2754
產製出新的設計圖, 全部都是它們自己構思出來的。
03:15
All it needs are your goals and your constraints.
59
195816
2748
你只需要設定目標及限制條件。
03:18
I'll give you an example.
60
198588
1408
我給各位舉個例子。
03:20
In the case of this aerial drone chassis,
61
200020
2788
就拿這個無人機底盤為例,
03:22
all you would need to do is tell it something like,
62
202832
2626
你唯一要做的, 就是告訴它你的需求,
03:25
it has four propellers,
63
205482
1273
像是,你要四個螺旋槳的,
03:26
you want it to be as lightweight as possible,
64
206779
2131
它越輕越好,
03:28
and you need it to be aerodynamically efficient.
65
208934
2270
空氣動力學表現效率佳的。
03:31
Then what the computer does is it explores the entire solution space:
66
211228
4914
電腦做的,就是探索 所有可能的解決方案:
03:36
every single possibility that solves and meets your criteria --
67
216166
3927
每一個能解決且符合你標準的 可能方案——
03:40
millions of them.
68
220117
1442
有上百萬個。
03:41
It takes big computers to do this.
69
221583
1975
這需要大型電腦才能做到。
03:43
But it comes back to us with designs
70
223582
1955
但它回饋給我們的設計方案,
03:45
that we, by ourselves, never could've imagined.
71
225561
3143
是我們單憑自己無法想像出來的 設計方案。
03:49
And the computer's coming up with this stuff all by itself --
72
229146
2912
電腦憑藉著自己的能力 做出這些東西——
03:52
no one ever drew anything,
73
232082
1678
我們人類沒有動筆畫任何東西,
03:53
and it started completely from scratch.
74
233784
2086
完全是它自己從頭、從零畫起的。
03:56
And by the way, it's no accident
75
236858
2387
順便一提,這可不是偶然......
03:59
that the drone body looks just like the pelvis of a flying squirrel.
76
239269
3481
無人機的機體長的像飛鼠的骨盆,
04:03
(Laughter)
77
243107
2007
(笑聲)
04:05
It's because the algorithms are designed to work
78
245860
2302
那是因為演算法的計算模式,
04:08
the same way evolution does.
79
248186
1637
是遵循生物演化模式而設計的。
04:10
What's exciting is we're starting to see this technology
80
250535
2660
令人興奮的是, 我們開始見證這樣的科技
04:13
out in the real world.
81
253219
1159
在現實世界中實現。
04:14
We've been working with Airbus for a couple of years
82
254402
2452
我們與空中巴士 (歐洲最大飛機製造商)
04:16
on this concept plane for the future.
83
256878
1909
合作開發未來的概念機 已經好幾年了,
04:18
It's a ways out still.
84
258811
2070
這計畫目前還在進行。
04:20
But just recently we used a generative-design AI
85
260905
3780
但最近,我們用了 衍生設計的人工智慧
04:24
to come up with this.
86
264709
1807
做出了這一個。
04:27
This is a 3D-printed cabin partition that's been designed by a computer.
87
267429
5153
這是一個 3D 列印的客艙隔間板, 由一台電腦所設計。
04:32
It's stronger than the original yet half the weight,
88
272606
2824
它比原款式還要堅固, 但重量只有原本的一半,
04:35
and it will be flying in the Airbus A320 later this year.
89
275454
3146
今年稍晚,它將跟 A320 空中巴士一起飛上天。
04:39
So computers can now generate;
90
279225
1559
所以現在電腦會主動生成、衍生了;
04:40
they can come up with their own solutions to our well-defined problems.
91
280808
4595
它們可以對界定明確的問題, 給出自己的答案。
04:46
But they're not intuitive.
92
286497
1310
但它們並不是靠直覺做事。
04:47
They still have to start from scratch every single time,
93
287831
3086
它們還是每次都得從頭開始,
04:50
and that's because they never learn.
94
290941
2565
因為它們不會學習。
04:54
Unlike Maggie.
95
294188
1766
不像瑪姬。
04:55
(Laughter)
96
295978
1581
(笑聲)
04:57
Maggie's actually smarter than our most advanced design tools.
97
297583
3297
瑪姬其實比我們最先進的 設計工具都還要聰明。
05:01
What do I mean by that?
98
301287
1440
這是什麼意思?
05:02
If her owner picks up that leash,
99
302751
1590
如果狗主人拿起狗鍊,
05:04
Maggie knows with a fair degree of certainty
100
304365
2068
瑪姬就知道有相當的確定性,
05:06
it's time to go for a walk.
101
306457
1404
主人要帶她去散步了。
05:07
And how did she learn?
102
307885
1185
她是怎麼知道的?
05:09
Well, every time the owner picked up the leash, they went for a walk.
103
309094
3324
因為,每當主人拿起狗鍊, 他們就會一起去散步。
05:12
And Maggie did three things:
104
312442
1878
瑪姬會做三件事:
05:14
she had to pay attention,
105
314344
1869
她必須專注、
05:16
she had to remember what happened
106
316237
2082
必須記得發生過什麼事、
05:18
and she had to retain and create a pattern in her mind.
107
318343
4017
必須在腦中記憶並產生一個模式。
05:23
Interestingly, that's exactly what
108
323249
2095
有趣的是,這正是電腦科學家
05:25
computer scientists have been trying to get AIs to do
109
325368
2523
過去 60 年來,一直嘗試 要讓人工智慧做的事。
05:27
for the last 60 or so years.
110
327915
1859
05:30
Back in 1952,
111
330503
1349
回想一下 1952 年,
05:31
they built this computer that could play Tic-Tac-Toe.
112
331876
3801
科學家建立了這一台電腦, 它會玩井字遊戲。
05:36
Big deal.
113
336901
1160
真了不起。
05:38
Then 45 years later, in 1997,
114
338849
3000
45 年後,1997 年,
05:41
Deep Blue beats Kasparov at chess.
115
341873
2472
深藍擊敗了當時的西洋棋世界冠軍 卡司帕洛夫,
05:45
2011, Watson beats these two humans at Jeopardy,
116
345866
4968
2011年,華生 (IBM電腦) 在<<危機邊緣>>擊敗這兩個人,
05:50
which is much harder for a computer to play than chess is.
117
350858
2928
對電腦來說,這比下棋難多了。
05:53
In fact, rather than working from predefined recipes,
118
353810
3812
事實上,華生並不是從 預先定義的題庫中來找答案,
05:57
Watson had to use reasoning to overcome his human opponents.
119
357646
3323
它必須使用推理 來擊敗它的人類對手。
06:02
And then a couple of weeks ago,
120
362213
2439
就在幾個禮拜前,
06:04
DeepMind's AlphaGo beats the world's best human at Go,
121
364676
4262
DeepMind 的阿爾法圍棋 擊敗了世界圍棋冠軍,
06:08
which is the most difficult game that we have.
122
368962
2212
而圍棋是我們人類最複雜的遊戲。
06:11
In fact, in Go, there are more possible moves
123
371198
2896
事實上,圍棋走法的可能性
06:14
than there are atoms in the universe.
124
374118
2024
超過全宇宙的原子數量。
06:18
So in order to win,
125
378030
1826
所以為了取得勝利,
06:19
what AlphaGo had to do was develop intuition.
126
379880
2618
阿爾法圍棋必須學會使用直覺。
06:22
And in fact, at some points, AlphaGo's programmers didn't understand
127
382918
4110
實際上,有些下法, 阿爾法圍棋的程式人員也不懂
06:27
why AlphaGo was doing what it was doing.
128
387052
2286
為什麼阿爾法圍棋要那樣下。
06:31
And things are moving really fast.
129
391271
1660
世界變化真快。
06:32
I mean, consider -- in the space of a human lifetime,
130
392955
3227
我的意思是,想像一下—— 在人類壽命這麼長的時間裡,
06:36
computers have gone from a child's game
131
396206
2233
電腦已經從小孩子的遊戲
06:39
to what's recognized as the pinnacle of strategic thought.
132
399740
3048
發展到策略思考的頂尖水平。
06:43
What's basically happening
133
403819
2417
電腦基本上的發展,
06:46
is computers are going from being like Spock
134
406260
3310
已經從史巴克大副進化到
06:49
to being a lot more like Kirk.
135
409594
1949
寇克艦長。
06:51
(Laughter)
136
411567
3618
(笑聲)
06:55
Right? From pure logic to intuition.
137
415209
3424
對吧?從純粹的邏輯運算 到直覺判斷。
07:00
Would you cross this bridge?
138
420004
1743
你們會跨過這座橋嗎?
07:02
Most of you are saying, "Oh, hell no!"
139
422429
2323
大部分人應該都說, 「喔,打死我也不要!」
07:04
(Laughter)
140
424776
1308
(笑聲)
07:06
And you arrived at that decision in a split second.
141
426108
2657
你瞬間就可以做出這個決定。
07:08
You just sort of knew that bridge was unsafe.
142
428789
2428
你就是隱約知道那座橋並不安全。
07:11
And that's exactly the kind of intuition
143
431241
1989
這種直覺判斷,
07:13
that our deep-learning systems are starting to develop right now.
144
433254
3568
就是目前我們深度學習系統 正在發展的能力。
07:17
Very soon, you'll literally be able
145
437542
1707
很快的,各位就可以
07:19
to show something you've made, you've designed,
146
439273
2206
把你製作、設計出來的東西
07:21
to a computer,
147
441503
1153
拿給電腦評判,
07:22
and it will look at it and say,
148
442680
1489
然後它看完後會說,
07:24
"Sorry, homie, that'll never work. You have to try again."
149
444193
2823
「抱歉,兄弟,這東西行不通, 你再試試別的吧!」
07:27
Or you could ask it if people are going to like your next song,
150
447674
3070
或者你可以問它, 人們會不會喜歡你的新歌?
07:31
or your next flavor of ice cream.
151
451593
2063
或者你冰淇淋的新口味?
07:35
Or, much more importantly,
152
455369
2579
再或者,更重要的,
07:37
you could work with a computer to solve a problem
153
457972
2364
你可以跟電腦一起解決
我們從未面臨過的問題。
07:40
that we've never faced before.
154
460360
1637
07:42
For instance, climate change.
155
462021
1401
例如,氣候變遷問題。
07:43
We're not doing a very good job on our own,
156
463446
2020
我們自己沒有做得很好的事,
07:45
we could certainly use all the help we can get.
157
465490
2245
我們當然可以利用身邊 各種資源來幫忙解決。
07:47
That's what I'm talking about,
158
467759
1458
這就是我接下來要談的,
07:49
technology amplifying our cognitive abilities
159
469241
2555
科技強化了我們的認知能力,
07:51
so we can imagine and design things that were simply out of our reach
160
471820
3552
所以我們可以想像並設計出, 當我們還未具有強化擴增能力時
07:55
as plain old un-augmented humans.
161
475396
2559
所未能創造出來的東西。
07:59
So what about making all of this crazy new stuff
162
479804
2941
那麼,製造這些我們即將發明設計的
08:02
that we're going to invent and design?
163
482769
2441
瘋狂新產品會如何呢?
08:05
I think the era of human augmentation is as much about the physical world
164
485772
4093
我認為在人類擴增的時代, 現實世界
及虛擬智慧領域 與其皆有不分軒輊的重要相關性。
08:09
as it is about the virtual, intellectual realm.
165
489889
3065
08:13
How will technology augment us?
166
493653
1921
科技將會如何強化我們?
08:16
In the physical world, robotic systems.
167
496081
2473
在現實世界,就是機械人系統。
08:19
OK, there's certainly a fear
168
499440
1736
沒錯,很多人擔心,
08:21
that robots are going to take jobs away from humans,
169
501200
2488
機械人會搶走人類的工作,
08:23
and that is true in certain sectors.
170
503712
1830
在某些領域,確實是如此。
08:25
But I'm much more interested in this idea
171
505994
2878
但,我對以下的想法比較有興趣,
08:28
that humans and robots working together are going to augment each other,
172
508896
5010
就是,人類與機械人 將會一起工作並互相強化,
08:33
and start to inhabit a new space.
173
513930
2058
並開創出一種新的共生空間。
08:36
This is our applied research lab in San Francisco,
174
516012
2362
這是我們在舊金山的 應用研究實驗室,
08:38
where one of our areas of focus is advanced robotics,
175
518398
3142
我們專研的領域之一就是 高階機械人,
08:41
specifically, human-robot collaboration.
176
521564
2511
特別是人機合作的領域。
08:44
And this is Bishop, one of our robots.
177
524854
2759
這是畢夏普, 我們其中的一個機器人。
08:47
As an experiment, we set it up
178
527637
1789
在實驗裡,我將它設定為
08:49
to help a person working in construction doing repetitive tasks --
179
529450
3460
在建築領域中, 幫助人類做重複性的工作——
08:53
tasks like cutting out holes for outlets or light switches in drywall.
180
533804
4194
比如說,在石牆上打出一個 插座孔或電燈開關孔。
08:58
(Laughter)
181
538022
2466
(笑聲)
09:01
So, Bishop's human partner can tell what to do in plain English
182
541697
3111
所以,畢夏普的人類夥伴 就可以用簡單的英語和手勢
09:04
and with simple gestures,
183
544832
1305
告訴它該做什麼,
09:06
kind of like talking to a dog,
184
546161
1447
有點像是在跟狗狗說話。
09:07
and then Bishop executes on those instructions
185
547632
2143
然後畢夏普會以完美的準確度
09:09
with perfect precision.
186
549799
1892
執行人類所下達的指令。
09:11
We're using the human for what the human is good at:
187
551715
2989
我們讓人類做人類擅長的事,像是:
09:14
awareness, perception and decision making.
188
554728
2333
需要意識力、洞察力、做決策的工作。
09:17
And we're using the robot for what it's good at:
189
557085
2240
我們讓機械人做機械人擅長的事, 像是:
09:19
precision and repetitiveness.
190
559349
1748
準確度及重複性的工作。
09:22
Here's another cool project that Bishop worked on.
191
562072
2367
畢夏普還有另一個很酷的專案。
09:24
The goal of this project, which we called the HIVE,
192
564463
3075
這個專案的目標, 我們稱它為<<蜂巢>>,
09:27
was to prototype the experience of humans, computers and robots
193
567562
3851
主要目標是把人類、電腦、 機械人的經驗結合起來,
09:31
all working together to solve a highly complex design problem.
194
571437
3220
一起工作解決極複雜的設計問題。
09:35
The humans acted as labor.
195
575613
1451
人類的工作是
09:37
They cruised around the construction site, they manipulated the bamboo --
196
577088
3473
在建築基地巡邏監工 並熟練地操作竹子——
09:40
which, by the way, because it's a non-isomorphic material,
197
580585
2756
順便一提,因為每一根竹子的 材料性質都不一樣,
09:43
is super hard for robots to deal with.
198
583365
1874
所以機械人操作起來非常困難。
09:45
But then the robots did this fiber winding,
199
585263
2022
但機械人做的是彎曲竹子的纖維,
09:47
which was almost impossible for a human to do.
200
587309
2451
這種事人類幾乎做不來。
09:49
And then we had an AI that was controlling everything.
201
589784
3621
然後我們讓一台人工智慧 來控制所有的東西。
09:53
It was telling the humans what to do, telling the robots what to do
202
593429
3290
它會告訴人類要做什麼, 告訴機械人要做什麼,
09:56
and keeping track of thousands of individual components.
203
596743
2915
並且對成千上萬個部件 進行持續的追蹤。
09:59
What's interesting is,
204
599682
1180
有趣的是,
10:00
building this pavilion was simply not possible
205
600886
3141
要建造出這樣的亭狀建築物,
10:04
without human, robot and AI augmenting each other.
206
604051
4524
如果沒有人類、機械、人工智慧的 互補強化,根本不可能做得出來。
10:09
OK, I'll share one more project. This one's a little bit crazy.
207
609710
3320
好,我再分享一個專案, 這個有點瘋狂。
10:13
We're working with Amsterdam-based artist Joris Laarman and his team at MX3D
208
613054
4468
我們與阿姆斯特丹的藝術家 尤爾斯‧拉曼和他的 MX3D 團隊,
10:17
to generatively design and robotically print
209
617546
2878
正使用衍生性設計 與機械列印的方式,
10:20
the world's first autonomously manufactured bridge.
210
620448
2995
打造世界第一座機械人自造的橋梁。
10:24
So, Joris and an AI are designing this thing right now, as we speak,
211
624135
3685
所以,就在我們談話的這一刻,
尤爾斯正和人工智慧一起 在阿姆斯特丹設計這座橋梁。
10:27
in Amsterdam.
212
627844
1172
10:29
And when they're done, we're going to hit "Go,"
213
629040
2321
等他們設計完成後, 我們就會按下「啟動」開關,
10:31
and robots will start 3D printing in stainless steel,
214
631385
3311
讓機械人開始 用不鏽鋼 3D 列印出橋梁,
10:34
and then they're going to keep printing, without human intervention,
215
634720
3283
在沒有人類的介入幫忙下, 它們會持續地列印
10:38
until the bridge is finished.
216
638027
1558
直到橋樑完工為止。
10:40
So, as computers are going to augment our ability
217
640919
2928
所以,電腦將強化
10:43
to imagine and design new stuff,
218
643871
2150
我們的想像及設計新事物的能力,
10:46
robotic systems are going to help us build and make things
219
646045
2895
機械人系統將協助我們製造
10:48
that we've never been able to make before.
220
648964
2084
我們以前無法製造的東西。
10:52
But what about our ability to sense and control these things?
221
652167
4160
但是我們感知和控制 這些東西的能力呢?
10:56
What about a nervous system for the things that we make?
222
656351
4031
我們製成東西的神經系統 又如何呢?
11:00
Our nervous system, the human nervous system,
223
660406
2512
我們的神經系統,人類的神經系統,
11:02
tells us everything that's going on around us.
224
662942
2311
可以告訴我們周遭發生的每一件事。
11:06
But the nervous system of the things we make is rudimentary at best.
225
666006
3684
但這些東西的神經系統, 最多只能算「尚未成熟」。
11:09
For instance, a car doesn't tell the city's public works department
226
669714
3563
比如說,車輛本身 不會主動通告市政府的工部門,
11:13
that it just hit a pothole at the corner of Broadway and Morrison.
227
673301
3130
說它在經過百老匯和 莫里森轉角口時撞到水坑。
11:16
A building doesn't tell its designers
228
676455
2032
建築物本身不會告知它的設計師,
11:18
whether or not the people inside like being there,
229
678511
2684
裡面的居民是否喜歡住在那裏,
11:21
and the toy manufacturer doesn't know
230
681219
3010
玩具製造商也不知道
他們的玩具 現在是跟誰在玩、在哪玩、
11:24
if a toy is actually being played with --
231
684253
2007
11:26
how and where and whether or not it's any fun.
232
686284
2539
是不是玩的很開心。
11:29
Look, I'm sure that the designers imagined this lifestyle for Barbie
233
689440
3814
我確定設計師在設計芭比時,
一定想像過芭比的生活方式。
11:33
when they designed her.
234
693278
1224
11:34
(Laughter)
235
694526
1447
(笑聲)
11:35
But what if it turns out that Barbie's actually really lonely?
236
695997
2906
但要是芭比變的很孤單怎麼辦?
11:38
(Laughter)
237
698927
3147
(笑聲)
11:43
If the designers had known
238
703086
1288
如果設計師知道
11:44
what was really happening in the real world
239
704398
2107
他們設計的東西, 在真實世界裡發生了什麼事,
11:46
with their designs -- the road, the building, Barbie --
240
706529
2583
像是道路、建築物、芭比——
11:49
they could've used that knowledge to create an experience
241
709136
2694
那他們就可以運用所獲得的訊息,
11:51
that was better for the user.
242
711854
1400
為使用者創造出更好的使用體驗。
11:53
What's missing is a nervous system
243
713278
1791
我們欠缺的就是一個
11:55
connecting us to all of the things that we design, make and use.
244
715093
3709
可以連結所有我們設計、製造、 使用事物的神經系統。
11:59
What if all of you had that kind of information flowing to you
245
719735
3555
如果大家在真實世界,能收到 自己創造的東西所回饋的資訊,
12:03
from the things you create in the real world?
246
723314
2183
那會如何呢?
12:07
With all of the stuff we make,
247
727252
1451
所有我們製造的東西,
12:08
we spend a tremendous amount of money and energy --
248
728727
2435
我們花了很多錢跟精力 ──
實際上光是去年, 大約就有兩兆美金 ──
12:11
in fact, last year, about two trillion dollars --
249
731186
2376
12:13
convincing people to buy the things we've made.
250
733586
2854
去說服人們購買我們製造的東西。
12:16
But if you had this connection to the things that you design and create
251
736464
3388
但如果你所設計製造出來的東西 能連結傳送給你回饋的訊息,
12:19
after they're out in the real world,
252
739876
1727
不管是在它們上市以後,
12:21
after they've been sold or launched or whatever,
253
741627
3614
或是在賣出或發表以後,
12:25
we could actually change that,
254
745265
1620
我們就可以改變既有的銷售模式,
12:26
and go from making people want our stuff,
255
746909
3047
從說服人們來購買我們的產品,
12:29
to just making stuff that people want in the first place.
256
749980
3434
轉變成我們第一時間就做出 人們真正需要的東西。
12:33
The good news is, we're working on digital nervous systems
257
753438
2787
好消息是,我們正在研發的 這套數位神經系統
12:36
that connect us to the things we design.
258
756249
2801
能連結我們與我們所設計的產品。
12:40
We're working on one project
259
760185
1627
我們與在洛杉磯的
12:41
with a couple of guys down in Los Angeles called the Bandito Brothers
260
761836
3712
邦帝圖兄弟公司和他們的團隊
12:45
and their team.
261
765572
1407
正合作進行一個專案。
12:47
And one of the things these guys do is build insane cars
262
767003
3433
這幾個人做的其中一件事 就是製造「瘋狂賽車」,
12:50
that do absolutely insane things.
263
770460
2873
他們做的東西真的很瘋狂。
12:54
These guys are crazy --
264
774725
1450
這些人真的是瘋了──
12:56
(Laughter)
265
776199
1036
(笑聲)
12:57
in the best way.
266
777259
1403
不過是用最厲害的方式。
13:00
And what we're doing with them
267
780813
1763
我們跟他們一起合作的模式,
13:02
is taking a traditional race-car chassis
268
782600
2440
就是將傳統的賽車底盤
13:05
and giving it a nervous system.
269
785064
1585
安裝神經系統。
13:06
So we instrumented it with dozens of sensors,
270
786673
3058
所以,我們在底盤 安裝了好幾組感應器,
13:09
put a world-class driver behind the wheel,
271
789755
2635
然後請一位世界級車手來駕駛,
13:12
took it out to the desert and drove the hell out of it for a week.
272
792414
3357
把車送到沙漠連續開它個一禮拜。
13:15
And the car's nervous system captured everything
273
795795
2491
之後車子的神經系統
就能紀錄到車子發生的所有反應。
13:18
that was happening to the car.
274
798310
1482
13:19
We captured four billion data points;
275
799816
2621
我們抓到了 40 億個資料點;
13:22
all of the forces that it was subjected to.
276
802461
2310
所有底盤所承受的壓力數據。
13:24
And then we did something crazy.
277
804795
1659
然後我們做了一些瘋狂的事。
13:27
We took all of that data,
278
807088
1500
我們把所有的資料
13:28
and plugged it into a generative-design AI we call "Dreamcatcher."
279
808612
3736
連接到一個叫做「捕夢者」的 衍生設計人工智慧上 。
13:33
So what do get when you give a design tool a nervous system,
280
813090
3964
所以當你把神經系統 安裝到設計工具上,
13:37
and you ask it to build you the ultimate car chassis?
281
817078
2882
並請它幫你建造一個 終極汽車底盤時,你會得到什麼?
13:40
You get this.
282
820543
1973
你會得到這個。
13:44
This is something that a human could never have designed.
283
824113
3713
這是人類永遠無法設計出的東西。
13:48
Except a human did design this,
284
828527
1888
如果真有人這樣設計過,
13:50
but it was a human that was augmented by a generative-design AI,
285
830439
4309
那個人一定也是透過 衍生設計的人工智慧強化、
13:54
a digital nervous system
286
834772
1231
數位神經系統的強化、
13:56
and robots that can actually fabricate something like this.
287
836027
3005
和機械人一起合作, 才做得出來的東西。
13:59
So if this is the future, the Augmented Age,
288
839500
3595
所以,如果擴增時代 就是我們的未來,
14:03
and we're going to be augmented cognitively, physically and perceptually,
289
843119
4261
而我們的認知、體格、知覺 都將被強化、擴增,
14:07
what will that look like?
290
847404
1408
那會是怎樣的世界?
14:09
What is this wonderland going to be like?
291
849396
3321
那會是個什麼樣的美麗新世界?
14:12
I think we're going to see a world
292
852741
1709
我認為我們即將見證這麼一個世界,
14:14
where we're moving from things that are fabricated
293
854474
3068
一個東西從製造出來的變成
14:17
to things that are farmed.
294
857566
1445
「種 」出來的世界。
14:19
Where we're moving from things that are constructed
295
859979
3453
一個東西從建造出來的
14:23
to that which is grown.
296
863456
1704
變成自己「長 」出來的世界。
14:25
We're going to move from being isolated
297
865954
2188
我們將從自我隔離
14:28
to being connected.
298
868166
1610
轉變成相互交流。
14:30
And we'll move away from extraction
299
870454
2411
我們也將從奪取者
14:32
to embrace aggregation.
300
872889
1873
變成相互擁抱的給予者。
14:35
I also think we'll shift from craving obedience from our things
301
875787
3767
我也認為,我們將會從冀望產品 順從我們的指令,
14:39
to valuing autonomy.
302
879578
1641
轉變成重視其自主性。
14:42
Thanks to our augmented capabilities,
303
882330
1905
由於我們的擴增強化能力,
14:44
our world is going to change dramatically.
304
884259
2377
我們的世界將會有劇烈的變化。
14:47
We're going to have a world with more variety, more connectedness,
305
887396
3246
我們的世界會變得更多元、 更加連通、
14:50
more dynamism, more complexity,
306
890666
2287
更有活力、更多複雜的變化、
14:52
more adaptability and, of course,
307
892977
2318
更有適應力、當然
14:55
more beauty.
308
895319
1217
也會更美麗。
14:57
The shape of things to come
309
897051
1564
未來世界的雛型
14:58
will be unlike anything we've ever seen before.
310
898639
2290
是我們前所未見的。
15:00
Why?
311
900953
1159
為什麼?
15:02
Because what will be shaping those things is this new partnership
312
902136
3755
因為形塑這個世界的
15:05
between technology, nature and humanity.
313
905915
3670
將會是科技、自然與人類的 新結盟關係。
15:11
That, to me, is a future well worth looking forward to.
314
911099
3804
對我而言,那樣的未來 是值得我們期待的。
15:14
Thank you all so much.
315
914927
1271
非常感謝各位。
15:16
(Applause)
316
916222
5669
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7