The incredible inventions of intuitive AI | Maurice Conti

5,596,134 views ・ 2017-02-28

TED


請雙擊下方英文字幕播放視頻。

00:00
Translator: Leslie Gauthier Reviewer: Camille Martínez
0
0
7000
譯者: 易帆 余 審譯者: SF Huang
00:12
How many of you are creatives,
1
12555
2289
你們有多少人是創意人、
00:14
designers, engineers, entrepreneurs, artists,
2
14868
3624
設計師、工程師、企業家、藝術家?
00:18
or maybe you just have a really big imagination?
3
18516
2387
或者你只是有無遠弗屆的想像力?
00:20
Show of hands? (Cheers)
4
20927
1848
請舉一下手?(歡呼聲)
00:22
That's most of you.
5
22799
1181
現場大部分人都是。
00:25
I have some news for us creatives.
6
25154
2294
我有一些消息要給我們的創意人。
00:28
Over the course of the next 20 years,
7
28534
2573
接下來的 20 年,
00:33
more will change around the way we do our work
8
33291
2973
很多我們工作的方式,
00:37
than has happened in the last 2,000.
9
37202
2157
將會遠遠不同於過去的 2000 年。
00:40
In fact, I think we're at the dawn of a new age in human history.
10
40331
4628
實際上,我認為我們正處在 人類歷史新世代的黎明。
00:45
Now, there have been four major historical eras defined by the way we work.
11
45465
4761
人類工作的方式, 有四個主要的歷史階段。
00:51
The Hunter-Gatherer Age lasted several million years.
12
51224
3275
人類歷經了幾百萬年的 狩獵採集時代。
00:54
And then the Agricultural Age lasted several thousand years.
13
54983
3576
然後經歷了幾千年的農業時代。
00:59
The Industrial Age lasted a couple of centuries.
14
59015
3490
工業時代則延續了幾世紀。
01:02
And now the Information Age has lasted just a few decades.
15
62529
4287
而目前的資訊時代才走了幾十年。
01:06
And now today, we're on the cusp of our next great era as a species.
16
66840
5220
如今,身為人類的我們, 即將邁入下一個偉大的時代。
01:13
Welcome to the Augmented Age.
17
73116
2680
歡迎來到「擴增時代」。
01:15
In this new era, your natural human capabilities are going to be augmented
18
75820
3693
在這個新時代, 人類天生的能力將會被強化擴增,
01:19
by computational systems that help you think,
19
79537
3068
電腦計算系統將幫助你思考、
01:22
robotic systems that help you make,
20
82629
2186
機械人系統協助你製造、
01:24
and a digital nervous system
21
84839
1648
遠超過你自然感官強度的 數位神經系統,
01:26
that connects you to the world far beyond your natural senses.
22
86511
3690
能夠讓你與全世界接軌。
01:31
Let's start with cognitive augmentation.
23
91257
1942
我們先從「認知擴增」談起。
01:33
How many of you are augmented cyborgs?
24
93223
2200
現場有多少人是「強化的半機械人」?
01:35
(Laughter)
25
95953
2650
(笑聲)
01:38
I would actually argue that we're already augmented.
26
98627
2821
其實我想說的是, 我們都已經被強化、擴增了。
01:42
Imagine you're at a party,
27
102108
1504
想像你正在參加一場派對,
01:43
and somebody asks you a question that you don't know the answer to.
28
103636
3520
有人問了你一個 你不知道如何回答的問題。
01:47
If you have one of these, in a few seconds, you can know the answer.
29
107180
3760
如果你有這個,只要幾秒鐘, 你就會得到答案。
01:51
But this is just a primitive beginning.
30
111689
2299
但這也只是剛開始而已。
01:54
Even Siri is just a passive tool.
31
114683
3331
甚至 Siri 也只是個被動工具。
01:58
In fact, for the last three-and-a-half million years,
32
118480
3381
實際上,在過去的 350 萬年,
02:01
the tools that we've had have been completely passive.
33
121885
3109
我們所有的工具都是被動的。
02:06
They do exactly what we tell them and nothing more.
34
126023
3655
它們只會照我們的指令去做, 僅此而已。
02:09
Our very first tool only cut where we struck it.
35
129702
3101
我們最早使用的工具, 遵循一個口令一個動作的指示。
02:13
The chisel only carves where the artist points it.
36
133642
3040
藝術家指哪裡,雕刻刀就雕刻哪裡。
02:17
And even our most advanced tools do nothing without our explicit direction.
37
137163
5641
即使最先進的工具,如果沒有 我們明確的指令也不會工作。
02:22
In fact, to date, and this is something that frustrates me,
38
142828
3181
說真的,時到今日, 有件事仍讓我感覺很挫敗,
02:26
we've always been limited
39
146033
1448
我們一直以來都被限制在
02:27
by this need to manually push our wills into our tools --
40
147505
3501
「需要動手將我們的意念 傳達給工具」的這種迷思框框中——
02:31
like, manual, literally using our hands,
41
151030
2297
就是得動手去做,即使有了電腦 還是得靠雙手。
02:33
even with computers.
42
153351
1428
02:35
But I'm more like Scotty in "Star Trek."
43
155892
2463
但我還是比較喜歡當 <<星際迷航>>裡的史考迪。
02:38
(Laughter)
44
158379
1850
(笑聲)
02:40
I want to have a conversation with a computer.
45
160253
2146
我也想跟電腦對話。
02:42
I want to say, "Computer, let's design a car,"
46
162423
2970
當我說,「電腦, 我們來設計一輛車吧!」
02:45
and the computer shows me a car.
47
165417
1539
然後電腦就會顯示一輛車給我看。
02:46
And I say, "No, more fast-looking, and less German,"
48
166980
2608
然後我說:「不,要拉風一點, 德國味兒少一點。」
02:49
and bang, the computer shows me an option.
49
169612
2163
接著「蹦」, 電腦給了我一個新選擇。
02:51
(Laughter)
50
171799
1865
(笑聲)
02:54
That conversation might be a little ways off,
51
174028
2306
這樣的對話可能有點不切實際,
02:56
probably less than many of us think,
52
176358
2665
也許沒有我們認為的那麼不切實際,
02:59
but right now,
53
179047
1763
但現在,
03:00
we're working on it.
54
180834
1151
我們正在做這件事。
這些工具將帶領我們大躍進, 從被動轉為衍生。
03:02
Tools are making this leap from being passive to being generative.
55
182009
4033
03:06
Generative design tools use a computer and algorithms
56
186651
3308
「衍生設計工具 」 是利用電腦及演算法,
03:09
to synthesize geometry
57
189983
2608
合成出幾何結構,
03:12
to come up with new designs all by themselves.
58
192615
2754
產製出新的設計圖, 全部都是它們自己構思出來的。
03:15
All it needs are your goals and your constraints.
59
195816
2748
你只需要設定目標及限制條件。
03:18
I'll give you an example.
60
198588
1408
我給各位舉個例子。
03:20
In the case of this aerial drone chassis,
61
200020
2788
就拿這個無人機底盤為例,
03:22
all you would need to do is tell it something like,
62
202832
2626
你唯一要做的, 就是告訴它你的需求,
03:25
it has four propellers,
63
205482
1273
像是,你要四個螺旋槳的,
03:26
you want it to be as lightweight as possible,
64
206779
2131
它越輕越好,
03:28
and you need it to be aerodynamically efficient.
65
208934
2270
空氣動力學表現效率佳的。
03:31
Then what the computer does is it explores the entire solution space:
66
211228
4914
電腦做的,就是探索 所有可能的解決方案:
03:36
every single possibility that solves and meets your criteria --
67
216166
3927
每一個能解決且符合你標準的 可能方案——
03:40
millions of them.
68
220117
1442
有上百萬個。
03:41
It takes big computers to do this.
69
221583
1975
這需要大型電腦才能做到。
03:43
But it comes back to us with designs
70
223582
1955
但它回饋給我們的設計方案,
03:45
that we, by ourselves, never could've imagined.
71
225561
3143
是我們單憑自己無法想像出來的 設計方案。
03:49
And the computer's coming up with this stuff all by itself --
72
229146
2912
電腦憑藉著自己的能力 做出這些東西——
03:52
no one ever drew anything,
73
232082
1678
我們人類沒有動筆畫任何東西,
03:53
and it started completely from scratch.
74
233784
2086
完全是它自己從頭、從零畫起的。
03:56
And by the way, it's no accident
75
236858
2387
順便一提,這可不是偶然......
03:59
that the drone body looks just like the pelvis of a flying squirrel.
76
239269
3481
無人機的機體長的像飛鼠的骨盆,
04:03
(Laughter)
77
243107
2007
(笑聲)
04:05
It's because the algorithms are designed to work
78
245860
2302
那是因為演算法的計算模式,
04:08
the same way evolution does.
79
248186
1637
是遵循生物演化模式而設計的。
04:10
What's exciting is we're starting to see this technology
80
250535
2660
令人興奮的是, 我們開始見證這樣的科技
04:13
out in the real world.
81
253219
1159
在現實世界中實現。
04:14
We've been working with Airbus for a couple of years
82
254402
2452
我們與空中巴士 (歐洲最大飛機製造商)
04:16
on this concept plane for the future.
83
256878
1909
合作開發未來的概念機 已經好幾年了,
04:18
It's a ways out still.
84
258811
2070
這計畫目前還在進行。
04:20
But just recently we used a generative-design AI
85
260905
3780
但最近,我們用了 衍生設計的人工智慧
04:24
to come up with this.
86
264709
1807
做出了這一個。
04:27
This is a 3D-printed cabin partition that's been designed by a computer.
87
267429
5153
這是一個 3D 列印的客艙隔間板, 由一台電腦所設計。
04:32
It's stronger than the original yet half the weight,
88
272606
2824
它比原款式還要堅固, 但重量只有原本的一半,
04:35
and it will be flying in the Airbus A320 later this year.
89
275454
3146
今年稍晚,它將跟 A320 空中巴士一起飛上天。
04:39
So computers can now generate;
90
279225
1559
所以現在電腦會主動生成、衍生了;
04:40
they can come up with their own solutions to our well-defined problems.
91
280808
4595
它們可以對界定明確的問題, 給出自己的答案。
04:46
But they're not intuitive.
92
286497
1310
但它們並不是靠直覺做事。
04:47
They still have to start from scratch every single time,
93
287831
3086
它們還是每次都得從頭開始,
04:50
and that's because they never learn.
94
290941
2565
因為它們不會學習。
04:54
Unlike Maggie.
95
294188
1766
不像瑪姬。
04:55
(Laughter)
96
295978
1581
(笑聲)
04:57
Maggie's actually smarter than our most advanced design tools.
97
297583
3297
瑪姬其實比我們最先進的 設計工具都還要聰明。
05:01
What do I mean by that?
98
301287
1440
這是什麼意思?
05:02
If her owner picks up that leash,
99
302751
1590
如果狗主人拿起狗鍊,
05:04
Maggie knows with a fair degree of certainty
100
304365
2068
瑪姬就知道有相當的確定性,
05:06
it's time to go for a walk.
101
306457
1404
主人要帶她去散步了。
05:07
And how did she learn?
102
307885
1185
她是怎麼知道的?
05:09
Well, every time the owner picked up the leash, they went for a walk.
103
309094
3324
因為,每當主人拿起狗鍊, 他們就會一起去散步。
05:12
And Maggie did three things:
104
312442
1878
瑪姬會做三件事:
05:14
she had to pay attention,
105
314344
1869
她必須專注、
05:16
she had to remember what happened
106
316237
2082
必須記得發生過什麼事、
05:18
and she had to retain and create a pattern in her mind.
107
318343
4017
必須在腦中記憶並產生一個模式。
05:23
Interestingly, that's exactly what
108
323249
2095
有趣的是,這正是電腦科學家
05:25
computer scientists have been trying to get AIs to do
109
325368
2523
過去 60 年來,一直嘗試 要讓人工智慧做的事。
05:27
for the last 60 or so years.
110
327915
1859
05:30
Back in 1952,
111
330503
1349
回想一下 1952 年,
05:31
they built this computer that could play Tic-Tac-Toe.
112
331876
3801
科學家建立了這一台電腦, 它會玩井字遊戲。
05:36
Big deal.
113
336901
1160
真了不起。
05:38
Then 45 years later, in 1997,
114
338849
3000
45 年後,1997 年,
05:41
Deep Blue beats Kasparov at chess.
115
341873
2472
深藍擊敗了當時的西洋棋世界冠軍 卡司帕洛夫,
05:45
2011, Watson beats these two humans at Jeopardy,
116
345866
4968
2011年,華生 (IBM電腦) 在<<危機邊緣>>擊敗這兩個人,
05:50
which is much harder for a computer to play than chess is.
117
350858
2928
對電腦來說,這比下棋難多了。
05:53
In fact, rather than working from predefined recipes,
118
353810
3812
事實上,華生並不是從 預先定義的題庫中來找答案,
05:57
Watson had to use reasoning to overcome his human opponents.
119
357646
3323
它必須使用推理 來擊敗它的人類對手。
06:02
And then a couple of weeks ago,
120
362213
2439
就在幾個禮拜前,
06:04
DeepMind's AlphaGo beats the world's best human at Go,
121
364676
4262
DeepMind 的阿爾法圍棋 擊敗了世界圍棋冠軍,
06:08
which is the most difficult game that we have.
122
368962
2212
而圍棋是我們人類最複雜的遊戲。
06:11
In fact, in Go, there are more possible moves
123
371198
2896
事實上,圍棋走法的可能性
06:14
than there are atoms in the universe.
124
374118
2024
超過全宇宙的原子數量。
06:18
So in order to win,
125
378030
1826
所以為了取得勝利,
06:19
what AlphaGo had to do was develop intuition.
126
379880
2618
阿爾法圍棋必須學會使用直覺。
06:22
And in fact, at some points, AlphaGo's programmers didn't understand
127
382918
4110
實際上,有些下法, 阿爾法圍棋的程式人員也不懂
06:27
why AlphaGo was doing what it was doing.
128
387052
2286
為什麼阿爾法圍棋要那樣下。
06:31
And things are moving really fast.
129
391271
1660
世界變化真快。
06:32
I mean, consider -- in the space of a human lifetime,
130
392955
3227
我的意思是,想像一下—— 在人類壽命這麼長的時間裡,
06:36
computers have gone from a child's game
131
396206
2233
電腦已經從小孩子的遊戲
06:39
to what's recognized as the pinnacle of strategic thought.
132
399740
3048
發展到策略思考的頂尖水平。
06:43
What's basically happening
133
403819
2417
電腦基本上的發展,
06:46
is computers are going from being like Spock
134
406260
3310
已經從史巴克大副進化到
06:49
to being a lot more like Kirk.
135
409594
1949
寇克艦長。
06:51
(Laughter)
136
411567
3618
(笑聲)
06:55
Right? From pure logic to intuition.
137
415209
3424
對吧?從純粹的邏輯運算 到直覺判斷。
07:00
Would you cross this bridge?
138
420004
1743
你們會跨過這座橋嗎?
07:02
Most of you are saying, "Oh, hell no!"
139
422429
2323
大部分人應該都說, 「喔,打死我也不要!」
07:04
(Laughter)
140
424776
1308
(笑聲)
07:06
And you arrived at that decision in a split second.
141
426108
2657
你瞬間就可以做出這個決定。
07:08
You just sort of knew that bridge was unsafe.
142
428789
2428
你就是隱約知道那座橋並不安全。
07:11
And that's exactly the kind of intuition
143
431241
1989
這種直覺判斷,
07:13
that our deep-learning systems are starting to develop right now.
144
433254
3568
就是目前我們深度學習系統 正在發展的能力。
07:17
Very soon, you'll literally be able
145
437542
1707
很快的,各位就可以
07:19
to show something you've made, you've designed,
146
439273
2206
把你製作、設計出來的東西
07:21
to a computer,
147
441503
1153
拿給電腦評判,
07:22
and it will look at it and say,
148
442680
1489
然後它看完後會說,
07:24
"Sorry, homie, that'll never work. You have to try again."
149
444193
2823
「抱歉,兄弟,這東西行不通, 你再試試別的吧!」
07:27
Or you could ask it if people are going to like your next song,
150
447674
3070
或者你可以問它, 人們會不會喜歡你的新歌?
07:31
or your next flavor of ice cream.
151
451593
2063
或者你冰淇淋的新口味?
07:35
Or, much more importantly,
152
455369
2579
再或者,更重要的,
07:37
you could work with a computer to solve a problem
153
457972
2364
你可以跟電腦一起解決
我們從未面臨過的問題。
07:40
that we've never faced before.
154
460360
1637
07:42
For instance, climate change.
155
462021
1401
例如,氣候變遷問題。
07:43
We're not doing a very good job on our own,
156
463446
2020
我們自己沒有做得很好的事,
07:45
we could certainly use all the help we can get.
157
465490
2245
我們當然可以利用身邊 各種資源來幫忙解決。
07:47
That's what I'm talking about,
158
467759
1458
這就是我接下來要談的,
07:49
technology amplifying our cognitive abilities
159
469241
2555
科技強化了我們的認知能力,
07:51
so we can imagine and design things that were simply out of our reach
160
471820
3552
所以我們可以想像並設計出, 當我們還未具有強化擴增能力時
07:55
as plain old un-augmented humans.
161
475396
2559
所未能創造出來的東西。
07:59
So what about making all of this crazy new stuff
162
479804
2941
那麼,製造這些我們即將發明設計的
08:02
that we're going to invent and design?
163
482769
2441
瘋狂新產品會如何呢?
08:05
I think the era of human augmentation is as much about the physical world
164
485772
4093
我認為在人類擴增的時代, 現實世界
及虛擬智慧領域 與其皆有不分軒輊的重要相關性。
08:09
as it is about the virtual, intellectual realm.
165
489889
3065
08:13
How will technology augment us?
166
493653
1921
科技將會如何強化我們?
08:16
In the physical world, robotic systems.
167
496081
2473
在現實世界,就是機械人系統。
08:19
OK, there's certainly a fear
168
499440
1736
沒錯,很多人擔心,
08:21
that robots are going to take jobs away from humans,
169
501200
2488
機械人會搶走人類的工作,
08:23
and that is true in certain sectors.
170
503712
1830
在某些領域,確實是如此。
08:25
But I'm much more interested in this idea
171
505994
2878
但,我對以下的想法比較有興趣,
08:28
that humans and robots working together are going to augment each other,
172
508896
5010
就是,人類與機械人 將會一起工作並互相強化,
08:33
and start to inhabit a new space.
173
513930
2058
並開創出一種新的共生空間。
08:36
This is our applied research lab in San Francisco,
174
516012
2362
這是我們在舊金山的 應用研究實驗室,
08:38
where one of our areas of focus is advanced robotics,
175
518398
3142
我們專研的領域之一就是 高階機械人,
08:41
specifically, human-robot collaboration.
176
521564
2511
特別是人機合作的領域。
08:44
And this is Bishop, one of our robots.
177
524854
2759
這是畢夏普, 我們其中的一個機器人。
08:47
As an experiment, we set it up
178
527637
1789
在實驗裡,我將它設定為
08:49
to help a person working in construction doing repetitive tasks --
179
529450
3460
在建築領域中, 幫助人類做重複性的工作——
08:53
tasks like cutting out holes for outlets or light switches in drywall.
180
533804
4194
比如說,在石牆上打出一個 插座孔或電燈開關孔。
08:58
(Laughter)
181
538022
2466
(笑聲)
09:01
So, Bishop's human partner can tell what to do in plain English
182
541697
3111
所以,畢夏普的人類夥伴 就可以用簡單的英語和手勢
09:04
and with simple gestures,
183
544832
1305
告訴它該做什麼,
09:06
kind of like talking to a dog,
184
546161
1447
有點像是在跟狗狗說話。
09:07
and then Bishop executes on those instructions
185
547632
2143
然後畢夏普會以完美的準確度
09:09
with perfect precision.
186
549799
1892
執行人類所下達的指令。
09:11
We're using the human for what the human is good at:
187
551715
2989
我們讓人類做人類擅長的事,像是:
09:14
awareness, perception and decision making.
188
554728
2333
需要意識力、洞察力、做決策的工作。
09:17
And we're using the robot for what it's good at:
189
557085
2240
我們讓機械人做機械人擅長的事, 像是:
09:19
precision and repetitiveness.
190
559349
1748
準確度及重複性的工作。
09:22
Here's another cool project that Bishop worked on.
191
562072
2367
畢夏普還有另一個很酷的專案。
09:24
The goal of this project, which we called the HIVE,
192
564463
3075
這個專案的目標, 我們稱它為<<蜂巢>>,
09:27
was to prototype the experience of humans, computers and robots
193
567562
3851
主要目標是把人類、電腦、 機械人的經驗結合起來,
09:31
all working together to solve a highly complex design problem.
194
571437
3220
一起工作解決極複雜的設計問題。
09:35
The humans acted as labor.
195
575613
1451
人類的工作是
09:37
They cruised around the construction site, they manipulated the bamboo --
196
577088
3473
在建築基地巡邏監工 並熟練地操作竹子——
09:40
which, by the way, because it's a non-isomorphic material,
197
580585
2756
順便一提,因為每一根竹子的 材料性質都不一樣,
09:43
is super hard for robots to deal with.
198
583365
1874
所以機械人操作起來非常困難。
09:45
But then the robots did this fiber winding,
199
585263
2022
但機械人做的是彎曲竹子的纖維,
09:47
which was almost impossible for a human to do.
200
587309
2451
這種事人類幾乎做不來。
09:49
And then we had an AI that was controlling everything.
201
589784
3621
然後我們讓一台人工智慧 來控制所有的東西。
09:53
It was telling the humans what to do, telling the robots what to do
202
593429
3290
它會告訴人類要做什麼, 告訴機械人要做什麼,
09:56
and keeping track of thousands of individual components.
203
596743
2915
並且對成千上萬個部件 進行持續的追蹤。
09:59
What's interesting is,
204
599682
1180
有趣的是,
10:00
building this pavilion was simply not possible
205
600886
3141
要建造出這樣的亭狀建築物,
10:04
without human, robot and AI augmenting each other.
206
604051
4524
如果沒有人類、機械、人工智慧的 互補強化,根本不可能做得出來。
10:09
OK, I'll share one more project. This one's a little bit crazy.
207
609710
3320
好,我再分享一個專案, 這個有點瘋狂。
10:13
We're working with Amsterdam-based artist Joris Laarman and his team at MX3D
208
613054
4468
我們與阿姆斯特丹的藝術家 尤爾斯‧拉曼和他的 MX3D 團隊,
10:17
to generatively design and robotically print
209
617546
2878
正使用衍生性設計 與機械列印的方式,
10:20
the world's first autonomously manufactured bridge.
210
620448
2995
打造世界第一座機械人自造的橋梁。
10:24
So, Joris and an AI are designing this thing right now, as we speak,
211
624135
3685
所以,就在我們談話的這一刻,
尤爾斯正和人工智慧一起 在阿姆斯特丹設計這座橋梁。
10:27
in Amsterdam.
212
627844
1172
10:29
And when they're done, we're going to hit "Go,"
213
629040
2321
等他們設計完成後, 我們就會按下「啟動」開關,
10:31
and robots will start 3D printing in stainless steel,
214
631385
3311
讓機械人開始 用不鏽鋼 3D 列印出橋梁,
10:34
and then they're going to keep printing, without human intervention,
215
634720
3283
在沒有人類的介入幫忙下, 它們會持續地列印
10:38
until the bridge is finished.
216
638027
1558
直到橋樑完工為止。
10:40
So, as computers are going to augment our ability
217
640919
2928
所以,電腦將強化
10:43
to imagine and design new stuff,
218
643871
2150
我們的想像及設計新事物的能力,
10:46
robotic systems are going to help us build and make things
219
646045
2895
機械人系統將協助我們製造
10:48
that we've never been able to make before.
220
648964
2084
我們以前無法製造的東西。
10:52
But what about our ability to sense and control these things?
221
652167
4160
但是我們感知和控制 這些東西的能力呢?
10:56
What about a nervous system for the things that we make?
222
656351
4031
我們製成東西的神經系統 又如何呢?
11:00
Our nervous system, the human nervous system,
223
660406
2512
我們的神經系統,人類的神經系統,
11:02
tells us everything that's going on around us.
224
662942
2311
可以告訴我們周遭發生的每一件事。
11:06
But the nervous system of the things we make is rudimentary at best.
225
666006
3684
但這些東西的神經系統, 最多只能算「尚未成熟」。
11:09
For instance, a car doesn't tell the city's public works department
226
669714
3563
比如說,車輛本身 不會主動通告市政府的工部門,
11:13
that it just hit a pothole at the corner of Broadway and Morrison.
227
673301
3130
說它在經過百老匯和 莫里森轉角口時撞到水坑。
11:16
A building doesn't tell its designers
228
676455
2032
建築物本身不會告知它的設計師,
11:18
whether or not the people inside like being there,
229
678511
2684
裡面的居民是否喜歡住在那裏,
11:21
and the toy manufacturer doesn't know
230
681219
3010
玩具製造商也不知道
他們的玩具 現在是跟誰在玩、在哪玩、
11:24
if a toy is actually being played with --
231
684253
2007
11:26
how and where and whether or not it's any fun.
232
686284
2539
是不是玩的很開心。
11:29
Look, I'm sure that the designers imagined this lifestyle for Barbie
233
689440
3814
我確定設計師在設計芭比時,
一定想像過芭比的生活方式。
11:33
when they designed her.
234
693278
1224
11:34
(Laughter)
235
694526
1447
(笑聲)
11:35
But what if it turns out that Barbie's actually really lonely?
236
695997
2906
但要是芭比變的很孤單怎麼辦?
11:38
(Laughter)
237
698927
3147
(笑聲)
11:43
If the designers had known
238
703086
1288
如果設計師知道
11:44
what was really happening in the real world
239
704398
2107
他們設計的東西, 在真實世界裡發生了什麼事,
11:46
with their designs -- the road, the building, Barbie --
240
706529
2583
像是道路、建築物、芭比——
11:49
they could've used that knowledge to create an experience
241
709136
2694
那他們就可以運用所獲得的訊息,
11:51
that was better for the user.
242
711854
1400
為使用者創造出更好的使用體驗。
11:53
What's missing is a nervous system
243
713278
1791
我們欠缺的就是一個
11:55
connecting us to all of the things that we design, make and use.
244
715093
3709
可以連結所有我們設計、製造、 使用事物的神經系統。
11:59
What if all of you had that kind of information flowing to you
245
719735
3555
如果大家在真實世界,能收到 自己創造的東西所回饋的資訊,
12:03
from the things you create in the real world?
246
723314
2183
那會如何呢?
12:07
With all of the stuff we make,
247
727252
1451
所有我們製造的東西,
12:08
we spend a tremendous amount of money and energy --
248
728727
2435
我們花了很多錢跟精力 ──
實際上光是去年, 大約就有兩兆美金 ──
12:11
in fact, last year, about two trillion dollars --
249
731186
2376
12:13
convincing people to buy the things we've made.
250
733586
2854
去說服人們購買我們製造的東西。
12:16
But if you had this connection to the things that you design and create
251
736464
3388
但如果你所設計製造出來的東西 能連結傳送給你回饋的訊息,
12:19
after they're out in the real world,
252
739876
1727
不管是在它們上市以後,
12:21
after they've been sold or launched or whatever,
253
741627
3614
或是在賣出或發表以後,
12:25
we could actually change that,
254
745265
1620
我們就可以改變既有的銷售模式,
12:26
and go from making people want our stuff,
255
746909
3047
從說服人們來購買我們的產品,
12:29
to just making stuff that people want in the first place.
256
749980
3434
轉變成我們第一時間就做出 人們真正需要的東西。
12:33
The good news is, we're working on digital nervous systems
257
753438
2787
好消息是,我們正在研發的 這套數位神經系統
12:36
that connect us to the things we design.
258
756249
2801
能連結我們與我們所設計的產品。
12:40
We're working on one project
259
760185
1627
我們與在洛杉磯的
12:41
with a couple of guys down in Los Angeles called the Bandito Brothers
260
761836
3712
邦帝圖兄弟公司和他們的團隊
12:45
and their team.
261
765572
1407
正合作進行一個專案。
12:47
And one of the things these guys do is build insane cars
262
767003
3433
這幾個人做的其中一件事 就是製造「瘋狂賽車」,
12:50
that do absolutely insane things.
263
770460
2873
他們做的東西真的很瘋狂。
12:54
These guys are crazy --
264
774725
1450
這些人真的是瘋了──
12:56
(Laughter)
265
776199
1036
(笑聲)
12:57
in the best way.
266
777259
1403
不過是用最厲害的方式。
13:00
And what we're doing with them
267
780813
1763
我們跟他們一起合作的模式,
13:02
is taking a traditional race-car chassis
268
782600
2440
就是將傳統的賽車底盤
13:05
and giving it a nervous system.
269
785064
1585
安裝神經系統。
13:06
So we instrumented it with dozens of sensors,
270
786673
3058
所以,我們在底盤 安裝了好幾組感應器,
13:09
put a world-class driver behind the wheel,
271
789755
2635
然後請一位世界級車手來駕駛,
13:12
took it out to the desert and drove the hell out of it for a week.
272
792414
3357
把車送到沙漠連續開它個一禮拜。
13:15
And the car's nervous system captured everything
273
795795
2491
之後車子的神經系統
就能紀錄到車子發生的所有反應。
13:18
that was happening to the car.
274
798310
1482
13:19
We captured four billion data points;
275
799816
2621
我們抓到了 40 億個資料點;
13:22
all of the forces that it was subjected to.
276
802461
2310
所有底盤所承受的壓力數據。
13:24
And then we did something crazy.
277
804795
1659
然後我們做了一些瘋狂的事。
13:27
We took all of that data,
278
807088
1500
我們把所有的資料
13:28
and plugged it into a generative-design AI we call "Dreamcatcher."
279
808612
3736
連接到一個叫做「捕夢者」的 衍生設計人工智慧上 。
13:33
So what do get when you give a design tool a nervous system,
280
813090
3964
所以當你把神經系統 安裝到設計工具上,
13:37
and you ask it to build you the ultimate car chassis?
281
817078
2882
並請它幫你建造一個 終極汽車底盤時,你會得到什麼?
13:40
You get this.
282
820543
1973
你會得到這個。
13:44
This is something that a human could never have designed.
283
824113
3713
這是人類永遠無法設計出的東西。
13:48
Except a human did design this,
284
828527
1888
如果真有人這樣設計過,
13:50
but it was a human that was augmented by a generative-design AI,
285
830439
4309
那個人一定也是透過 衍生設計的人工智慧強化、
13:54
a digital nervous system
286
834772
1231
數位神經系統的強化、
13:56
and robots that can actually fabricate something like this.
287
836027
3005
和機械人一起合作, 才做得出來的東西。
13:59
So if this is the future, the Augmented Age,
288
839500
3595
所以,如果擴增時代 就是我們的未來,
14:03
and we're going to be augmented cognitively, physically and perceptually,
289
843119
4261
而我們的認知、體格、知覺 都將被強化、擴增,
14:07
what will that look like?
290
847404
1408
那會是怎樣的世界?
14:09
What is this wonderland going to be like?
291
849396
3321
那會是個什麼樣的美麗新世界?
14:12
I think we're going to see a world
292
852741
1709
我認為我們即將見證這麼一個世界,
14:14
where we're moving from things that are fabricated
293
854474
3068
一個東西從製造出來的變成
14:17
to things that are farmed.
294
857566
1445
「種 」出來的世界。
14:19
Where we're moving from things that are constructed
295
859979
3453
一個東西從建造出來的
14:23
to that which is grown.
296
863456
1704
變成自己「長 」出來的世界。
14:25
We're going to move from being isolated
297
865954
2188
我們將從自我隔離
14:28
to being connected.
298
868166
1610
轉變成相互交流。
14:30
And we'll move away from extraction
299
870454
2411
我們也將從奪取者
14:32
to embrace aggregation.
300
872889
1873
變成相互擁抱的給予者。
14:35
I also think we'll shift from craving obedience from our things
301
875787
3767
我也認為,我們將會從冀望產品 順從我們的指令,
14:39
to valuing autonomy.
302
879578
1641
轉變成重視其自主性。
14:42
Thanks to our augmented capabilities,
303
882330
1905
由於我們的擴增強化能力,
14:44
our world is going to change dramatically.
304
884259
2377
我們的世界將會有劇烈的變化。
14:47
We're going to have a world with more variety, more connectedness,
305
887396
3246
我們的世界會變得更多元、 更加連通、
14:50
more dynamism, more complexity,
306
890666
2287
更有活力、更多複雜的變化、
14:52
more adaptability and, of course,
307
892977
2318
更有適應力、當然
14:55
more beauty.
308
895319
1217
也會更美麗。
14:57
The shape of things to come
309
897051
1564
未來世界的雛型
14:58
will be unlike anything we've ever seen before.
310
898639
2290
是我們前所未見的。
15:00
Why?
311
900953
1159
為什麼?
15:02
Because what will be shaping those things is this new partnership
312
902136
3755
因為形塑這個世界的
15:05
between technology, nature and humanity.
313
905915
3670
將會是科技、自然與人類的 新結盟關係。
15:11
That, to me, is a future well worth looking forward to.
314
911099
3804
對我而言,那樣的未來 是值得我們期待的。
15:14
Thank you all so much.
315
914927
1271
非常感謝各位。
15:16
(Applause)
316
916222
5669
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog