The incredible inventions of intuitive AI | Maurice Conti

5,584,143 views ・ 2017-02-28

TED


请双击下面的英文字幕来播放视频。

00:00
Translator: Leslie Gauthier Reviewer: Camille Martínez
0
0
7000
翻译人员: Chen Zou 校对人员: Cong Zhu
00:12
How many of you are creatives,
1
12555
2289
你们其中多少人是创意者
00:14
designers, engineers, entrepreneurs, artists,
2
14868
3624
设计师,工程师 创业家或艺术家
00:18
or maybe you just have a really big imagination?
3
18516
2387
或许你只是正好有 天马行空的想象力?
00:20
Show of hands? (Cheers)
4
20927
1848
请举手(喝彩声)
00:22
That's most of you.
5
22799
1181
你们绝大多数人都是
00:25
I have some news for us creatives.
6
25154
2294
现在我有消息告诉我们创新者:
00:28
Over the course of the next 20 years,
7
28534
2573
在未来的20年内
00:33
more will change around the way we do our work
8
33291
2973
我们的工作方式将 会发生很多的改变
00:37
than has happened in the last 2,000.
9
37202
2157
远超过去的两千年发生的变化
00:40
In fact, I think we're at the dawn of a new age in human history.
10
40331
4628
实际上,我认为我们正处在 人类历史新纪元的黎明
00:45
Now, there have been four major historical eras defined by the way we work.
11
45465
4761
至今为止,人类历史共有四个主要 由我们的工作方式定义的阶段
00:51
The Hunter-Gatherer Age lasted several million years.
12
51224
3275
人类历史经历了数百万年 的狩猎采集时代
00:54
And then the Agricultural Age lasted several thousand years.
13
54983
3576
然后经历了数千年 的农耕时代
00:59
The Industrial Age lasted a couple of centuries.
14
59015
3490
工业时代延续 了几个世纪
01:02
And now the Information Age has lasted just a few decades.
15
62529
4287
目前的信息时代 才走了几十年
01:06
And now today, we're on the cusp of our next great era as a species.
16
66840
5220
如今,身为人类的我们 正站在下一个伟大时代的交汇点
01:13
Welcome to the Augmented Age.
17
73116
2680
欢迎来到“扩增时代"
01:15
In this new era, your natural human capabilities are going to be augmented
18
75820
3693
在这个新时代中,你们人类 天生的能力将会扩增
01:19
by computational systems that help you think,
19
79537
3068
计算系统将帮助你思考
01:22
robotic systems that help you make,
20
82629
2186
机器人系统将帮助你制作
01:24
and a digital nervous system
21
84839
1648
数字神经系统
01:26
that connects you to the world far beyond your natural senses.
22
86511
3690
将连接你到一个自然感官 无法触及的世界
01:31
Let's start with cognitive augmentation.
23
91257
1942
让我们从“认知扩增”说起
你们有多少人是“强化的搬机器人”?
01:33
How many of you are augmented cyborgs?
24
93223
2200
01:35
(Laughter)
25
95953
2650
(观众笑声)
01:38
I would actually argue that we're already augmented.
26
98627
2821
我想说的是 其实我们已经被强化了
01:42
Imagine you're at a party,
27
102108
1504
想想一下你在一个派对
01:43
and somebody asks you a question that you don't know the answer to.
28
103636
3520
然后有人问了一个 你不知道如何回答的问题
01:47
If you have one of these, in a few seconds, you can know the answer.
29
107180
3760
如果你有这些其中的一个 在几秒钟之内,你可以能知道答案
01:51
But this is just a primitive beginning.
30
111689
2299
但这仅仅是一个原始的开端
01:54
Even Siri is just a passive tool.
31
114683
3331
即使是Siri也是一个被动的工具
01:58
In fact, for the last three-and-a-half million years,
32
118480
3381
实际上,在过去的 3.5百万年间
02:01
the tools that we've had have been completely passive.
33
121885
3109
我们所拥有的工具 是完全被动的
02:06
They do exactly what we tell them and nothing more.
34
126023
3655
它们会照我们告诉它们的原封不动地做 一点多余的都没有
02:09
Our very first tool only cut where we struck it.
35
129702
3101
我们的第一个工具仅仅是会 在我们发起时切割
02:13
The chisel only carves where the artist points it.
36
133642
3040
凿子只会在艺术家 指示的地方雕刻
02:17
And even our most advanced tools do nothing without our explicit direction.
37
137163
5641
甚至是我们最先进的工具 在没有我们明确指示的情况下什么也做不了
02:22
In fact, to date, and this is something that frustrates me,
38
142828
3181
实际上,这是那现在为止 使我感到颓丧的地方
02:26
we've always been limited
39
146033
1448
我们总是被
02:27
by this need to manually push our wills into our tools --
40
147505
3501
手动地将我们的意愿推动到 我们的工具中的需要所限制
就像,手动 真正地用我们的手
02:31
like, manual, literally using our hands,
41
151030
2297
02:33
even with computers.
42
153351
1428
甚至是在使用电脑的时候
02:35
But I'm more like Scotty in "Star Trek."
43
155892
2463
但是我更像星际奇航中的史考特
02:38
(Laughter)
44
158379
1850
(观众笑声)
02:40
I want to have a conversation with a computer.
45
160253
2146
我想和电脑 有一段对话
02:42
I want to say, "Computer, let's design a car,"
46
162423
2970
我想说,“电脑, 让我们来设计一部车,”
02:45
and the computer shows me a car.
47
165417
1539
然后电脑就给我展现一部车
02:46
And I say, "No, more fast-looking, and less German,"
48
166980
2608
然后我就说,“不,一部更加 更不像德国车的车,”
02:49
and bang, the computer shows me an option.
49
169612
2163
然后,蹦,电脑给我展现了一个选项
02:51
(Laughter)
50
171799
1865
(观众笑声)
02:54
That conversation might be a little ways off,
51
174028
2306
这段对话也许有 一点不太切合实际
02:56
probably less than many of us think,
52
176358
2665
也许没有我们很多人想的那样偏离
但是现在
02:59
but right now,
53
179047
1763
03:00
we're working on it.
54
180834
1151
我们正在向这个目标迈进
03:02
Tools are making this leap from being passive to being generative.
55
182009
4033
使从被动到主动生成 跨越的工具
03:06
Generative design tools use a computer and algorithms
56
186651
3308
生成性的设计工具 使用一台电脑和算数
03:09
to synthesize geometry
57
189983
2608
去合成几何
03:12
to come up with new designs all by themselves.
58
192615
2754
去开始一个完全由它们 想出来的设计
03:15
All it needs are your goals and your constraints.
59
195816
2748
所有需要的是你的目标 和你的限制
03:18
I'll give you an example.
60
198588
1408
我给你们一个例子
03:20
In the case of this aerial drone chassis,
61
200020
2788
用空中无人机地盘来举例
03:22
all you would need to do is tell it something like,
62
202832
2626
你所需要做的 是告诉它
03:25
it has four propellers,
63
205482
1273
它有四个螺旋桨
03:26
you want it to be as lightweight as possible,
64
206779
2131
你想它尽可能的 轻
03:28
and you need it to be aerodynamically efficient.
65
208934
2270
而且你还需要它 在空气动力学的意义上高效
03:31
Then what the computer does is it explores the entire solution space:
66
211228
4914
电脑所做的是 探索整个解决空间
03:36
every single possibility that solves and meets your criteria --
67
216166
3927
在几百万个可能性中
03:40
millions of them.
68
220117
1442
寻找每一个能够解决你问题 和达到你标准的可能性
03:41
It takes big computers to do this.
69
221583
1975
这需要一个很大的电脑来做这个
03:43
But it comes back to us with designs
70
223582
1955
但是它给我们带来了设计
03:45
that we, by ourselves, never could've imagined.
71
225561
3143
这个设计是我们自己 从不会想象得到的
03:49
And the computer's coming up with this stuff all by itself --
72
229146
2912
电脑自己制作出了个这个
没有人绘画任何东西
03:52
no one ever drew anything,
73
232082
1678
03:53
and it started completely from scratch.
74
233784
2086
而且它从完全的无开始
03:56
And by the way, it's no accident
75
236858
2387
顺便说一下,这不是意外
03:59
that the drone body looks just like the pelvis of a flying squirrel.
76
239269
3481
那个无人操作的身体看上去就像 一个飞翔中松鼠的盆骨
04:03
(Laughter)
77
243107
2007
(观众笑声)
04:05
It's because the algorithms are designed to work
78
245860
2302
这是因为算数 是被设计成
和进化一样的工作方式
04:08
the same way evolution does.
79
248186
1637
04:10
What's exciting is we're starting to see this technology
80
250535
2660
使人兴奋的是我们开始 去看这个设计
在一个真实的世界中去看
04:13
out in the real world.
81
253219
1159
04:14
We've been working with Airbus for a couple of years
82
254402
2452
我们研究空中客车 有好几年了
04:16
on this concept plane for the future.
83
256878
1909
在未来飞机的概念下
仍然还在研究中
04:18
It's a ways out still.
84
258811
2070
04:20
But just recently we used a generative-design AI
85
260905
3780
但是仅仅在最近我们使用了 一个设计生成的AI
04:24
to come up with this.
86
264709
1807
去展开制作
04:27
This is a 3D-printed cabin partition that's been designed by a computer.
87
267429
5153
这是一个由电脑设计的 3d打印的舱室分隔
04:32
It's stronger than the original yet half the weight,
88
272606
2824
它比原来的舱室要更坚固 但同时重量只有原来的一半
04:35
and it will be flying in the Airbus A320 later this year.
89
275454
3146
而且它将于今年在A320 空中客机中飞翔
04:39
So computers can now generate;
90
279225
1559
所以电脑现在可以生成
04:40
they can come up with their own solutions to our well-defined problems.
91
280808
4595
它们可以针对我们复杂的问题 生成它们自己的解决方案
04:46
But they're not intuitive.
92
286497
1310
但是它们不是具有直觉的
04:47
They still have to start from scratch every single time,
93
287831
3086
它们仍然每次要 从新开始
04:50
and that's because they never learn.
94
290941
2565
那是因为它们从来不学习
04:54
Unlike Maggie.
95
294188
1766
不像麦琪
04:55
(Laughter)
96
295978
1581
(观众笑声)
04:57
Maggie's actually smarter than our most advanced design tools.
97
297583
3297
麦琪实际上比我们 大多数先进的设计工具要聪明
05:01
What do I mean by that?
98
301287
1440
我说这个是什么意思呢?
05:02
If her owner picks up that leash,
99
302751
1590
如果它的主人拿起绳子
05:04
Maggie knows with a fair degree of certainty
100
304365
2068
麦琪会一定确定度 的情况下
05:06
it's time to go for a walk.
101
306457
1404
知道是时候出去散步了
05:07
And how did she learn?
102
307885
1185
她是怎么学习这个的?
05:09
Well, every time the owner picked up the leash, they went for a walk.
103
309094
3324
每次主人拿起绳子 他们就去散步
05:12
And Maggie did three things:
104
312442
1878
麦琪做了三件事
05:14
she had to pay attention,
105
314344
1869
她必须对此花费注意力
05:16
she had to remember what happened
106
316237
2082
她必须记住发生的事情
05:18
and she had to retain and create a pattern in her mind.
107
318343
4017
而且她还必须在她脑子里 保持和创造一个模式
05:23
Interestingly, that's exactly what
108
323249
2095
有趣的是,那正是
电脑科学家一直致力于使 AIs去做的事
05:25
computer scientists have been trying to get AIs to do
109
325368
2523
05:27
for the last 60 or so years.
110
327915
1859
在过去的大约60年间
05:30
Back in 1952,
111
330503
1349
追溯到1952年
05:31
they built this computer that could play Tic-Tac-Toe.
112
331876
3801
他们建造了这个电脑 所以他们可以玩Tic-Tac-Toe
05:36
Big deal.
113
336901
1160
了不起的事
05:38
Then 45 years later, in 1997,
114
338849
3000
然后45年之后,在1997年
05:41
Deep Blue beats Kasparov at chess.
115
341873
2472
Deep Blue在象棋赛上打败了Kasparov
05:45
2011, Watson beats these two humans at Jeopardy,
116
345866
4968
2011年,Watson在有障碍的情况下 打败了这两个人
05:50
which is much harder for a computer to play than chess is.
117
350858
2928
这对于一台电脑来说 难度更大
05:53
In fact, rather than working from predefined recipes,
118
353810
3812
实际上,不像从之前制定好的 材料上开始工作
05:57
Watson had to use reasoning to overcome his human opponents.
119
357646
3323
Watson不得不使用推理 去克服它的人类对手
06:02
And then a couple of weeks ago,
120
362213
2439
然后在几个星期前
06:04
DeepMind's AlphaGo beats the world's best human at Go,
121
364676
4262
DeepMind的AlphaGo打败了 世界上最好的人类at Go
06:08
which is the most difficult game that we have.
122
368962
2212
那是我们现有的 难度最高的比赛
06:11
In fact, in Go, there are more possible moves
123
371198
2896
实际上,在Go里面有 更多的走步
06:14
than there are atoms in the universe.
124
374118
2024
相比起宇宙中的原子
06:18
So in order to win,
125
378030
1826
所以,为了取胜
06:19
what AlphaGo had to do was develop intuition.
126
379880
2618
AlphaGo所必须做的 是发展直觉力
06:22
And in fact, at some points, AlphaGo's programmers didn't understand
127
382918
4110
而且实际上,从某种程度上说 AlphaGo的程序不懂
06:27
why AlphaGo was doing what it was doing.
128
387052
2286
为什么AlphaGo要做这些 以及它正在做什么
06:31
And things are moving really fast.
129
391271
1660
事情进展得很快
06:32
I mean, consider -- in the space of a human lifetime,
130
392955
3227
我是说,考虑到 在一个人类有限的生命中
06:36
computers have gone from a child's game
131
396206
2233
电脑经历了从一个小孩子的比赛
06:39
to what's recognized as the pinnacle of strategic thought.
132
399740
3048
那现在被认为是 策略思考
06:43
What's basically happening
133
403819
2417
在这里发生的
06:46
is computers are going from being like Spock
134
406260
3310
是电脑经历了从Spock
06:49
to being a lot more like Kirk.
135
409594
1949
到更加像Kirk
06:51
(Laughter)
136
411567
3618
(观众笑声)
06:55
Right? From pure logic to intuition.
137
415209
3424
对吗?从纯逻辑到直觉
07:00
Would you cross this bridge?
138
420004
1743
你会不会跨越这个桥梁?
07:02
Most of you are saying, "Oh, hell no!"
139
422429
2323
你们中的大部分会说,“噢,不!”
07:04
(Laughter)
140
424776
1308
(观众笑声)
07:06
And you arrived at that decision in a split second.
141
426108
2657
而且你在不到一秒的时间内 作出那个反应
07:08
You just sort of knew that bridge was unsafe.
142
428789
2428
你只是知道那个 桥是不安全的
07:11
And that's exactly the kind of intuition
143
431241
1989
那正是一种直觉
07:13
that our deep-learning systems are starting to develop right now.
144
433254
3568
我们的深入学习系统正开始 发展那种直觉
07:17
Very soon, you'll literally be able
145
437542
1707
很快,你就能够
开始展现你制作的 你设计的
07:19
to show something you've made, you've designed,
146
439273
2206
07:21
to a computer,
147
441503
1153
向一台电脑
07:22
and it will look at it and say,
148
442680
1489
然后它就会看着它然后说
07:24
"Sorry, homie, that'll never work. You have to try again."
149
444193
2823
“对不起,宝贝,那个是没有用的 你必须得再次尝试。“
07:27
Or you could ask it if people are going to like your next song,
150
447674
3070
或者你可以问问是否 人们会喜欢你的下一首歌
07:31
or your next flavor of ice cream.
151
451593
2063
或者你下一个冰淇淋口味
07:35
Or, much more importantly,
152
455369
2579
或者,更重要的是
07:37
you could work with a computer to solve a problem
153
457972
2364
你可以和电脑合作 解决那些
07:40
that we've never faced before.
154
460360
1637
我们之前从来没有遇见过的问题
比如说,气候变暖
07:42
For instance, climate change.
155
462021
1401
07:43
We're not doing a very good job on our own,
156
463446
2020
我们自己没有对此 做一个很好的工作
我们绝对是可以用到 我们能得到的所有帮助
07:45
we could certainly use all the help we can get.
157
465490
2245
07:47
That's what I'm talking about,
158
467759
1458
那正是我所谈论的
科技放大了 我们的认知能力
07:49
technology amplifying our cognitive abilities
159
469241
2555
07:51
so we can imagine and design things that were simply out of our reach
160
471820
3552
所以我们可以得心应手地 想象和设计事物
07:55
as plain old un-augmented humans.
161
475396
2559
作为一个纯粹的没有被增强的人类
07:59
So what about making all of this crazy new stuff
162
479804
2941
那么,制作这些所有的 我们将去发明和设计的
08:02
that we're going to invent and design?
163
482769
2441
疯狂的新事物呢?
08:05
I think the era of human augmentation is as much about the physical world
164
485772
4093
我认为人类增强的世纪 其实是关于物理世界
08:09
as it is about the virtual, intellectual realm.
165
489889
3065
关于实际上的 知识领域
08:13
How will technology augment us?
166
493653
1921
科技是如何增强我们的?
08:16
In the physical world, robotic systems.
167
496081
2473
在物理世界,机器系统
08:19
OK, there's certainly a fear
168
499440
1736
好吧,这绝对是有一种恐惧
08:21
that robots are going to take jobs away from humans,
169
501200
2488
那就是机器人将会把 人类的工作带走
08:23
and that is true in certain sectors.
170
503712
1830
而且这在一定范围内是真实的
08:25
But I'm much more interested in this idea
171
505994
2878
但我对这个更感兴趣
08:28
that humans and robots working together are going to augment each other,
172
508896
5010
那就是如果人类和机器人在一起工作 它们会互相增强对方
08:33
and start to inhabit a new space.
173
513930
2058
然后会开始开发一个新的空间
08:36
This is our applied research lab in San Francisco,
174
516012
2362
这是我们的在三藩市的 应用研究实验室
08:38
where one of our areas of focus is advanced robotics,
175
518398
3142
在那里我们集中研究的 领域之一是先进的机器
08:41
specifically, human-robot collaboration.
176
521564
2511
具体说来,人类和机器合作
08:44
And this is Bishop, one of our robots.
177
524854
2759
这是教主,我们其中的一个机器人
08:47
As an experiment, we set it up
178
527637
1789
由于是一个实验,我们安排好了
08:49
to help a person working in construction doing repetitive tasks --
179
529450
3460
去帮助一个人建立操作 重复性的任务
08:53
tasks like cutting out holes for outlets or light switches in drywall.
180
533804
4194
就像是为衣物切割洞 或者是在石膏板上点燃
08:58
(Laughter)
181
538022
2466
(观众笑声)
09:01
So, Bishop's human partner can tell what to do in plain English
182
541697
3111
那么,教主的人类拍档 可以区别用纯粹英语该如何做
09:04
and with simple gestures,
183
544832
1305
附和一些简单的手势
09:06
kind of like talking to a dog,
184
546161
1447
就好像对一只狗说话
09:07
and then Bishop executes on those instructions
185
547632
2143
然后教主执行了 这些指导
09:09
with perfect precision.
186
549799
1892
这些指导是有完美的精确度的
09:11
We're using the human for what the human is good at:
187
551715
2989
我们在使用一个人类 擅长的地方
09:14
awareness, perception and decision making.
188
554728
2333
意识,洞察力,和决断力
09:17
And we're using the robot for what it's good at:
189
557085
2240
然后我们使用了一个机器人 擅长的地方
09:19
precision and repetitiveness.
190
559349
1748
准确度和重复性
09:22
Here's another cool project that Bishop worked on.
191
562072
2367
这里有另一个很酷的项目 也是教主在实施的
09:24
The goal of this project, which we called the HIVE,
192
564463
3075
这个项目的目标 我们把它叫作HIVE
09:27
was to prototype the experience of humans, computers and robots
193
567562
3851
是人类,电脑,和机器试验 的一个原型模型
09:31
all working together to solve a highly complex design problem.
194
571437
3220
它们工作在一起去解决 一个极端复杂的设计问题
09:35
The humans acted as labor.
195
575613
1451
人类起到的作用是付出人工劳动
09:37
They cruised around the construction site, they manipulated the bamboo --
196
577088
3473
它们在建设工地上巡航 它们玩弄竹子
09:40
which, by the way, because it's a non-isomorphic material,
197
580585
2756
顺便说一下 因为这是一个不同构的材料
它对于机器人来说是非常难应对的
09:43
is super hard for robots to deal with.
198
583365
1874
09:45
But then the robots did this fiber winding,
199
585263
2022
但是后来机器人 完成了这个纤维扭动
09:47
which was almost impossible for a human to do.
200
587309
2451
这个对于人类来说 几乎是不可能的
09:49
And then we had an AI that was controlling everything.
201
589784
3621
然后我们有一个AI 它控制着每一件事
09:53
It was telling the humans what to do, telling the robots what to do
202
593429
3290
它告诉人类应该做什么 告诉机器人应该做什么
09:56
and keeping track of thousands of individual components.
203
596743
2915
而且还要纪录几千个 个人的组成部分
09:59
What's interesting is,
204
599682
1180
有趣的是
10:00
building this pavilion was simply not possible
205
600886
3141
建造这个亭子 仅仅就是不可能
10:04
without human, robot and AI augmenting each other.
206
604051
4524
没有人类,机器和AI 互相增强
10:09
OK, I'll share one more project. This one's a little bit crazy.
207
609710
3320
好,我就再分享另一个项目 这一个有一点不可思议
10:13
We're working with Amsterdam-based artist Joris Laarman and his team at MX3D
208
613054
4468
我们致力于在一个阿姆斯特丹为基础的艺术家 Joris Laarman和他的团队在MX3D
10:17
to generatively design and robotically print
209
617546
2878
去生成地设计 和活跃地打印
10:20
the world's first autonomously manufactured bridge.
210
620448
2995
世界上第一个自动地 制造的桥梁
10:24
So, Joris and an AI are designing this thing right now, as we speak,
211
624135
3685
那么,Joris 和一个 AI 正在我们说话的功夫 设计这个东西
10:27
in Amsterdam.
212
627844
1172
在阿姆斯特丹
10:29
And when they're done, we're going to hit "Go,"
213
629040
2321
当他们完成的时候 我们按下“Go“
10:31
and robots will start 3D printing in stainless steel,
214
631385
3311
然后机器人将开始3D打印 在不锈钢上
10:34
and then they're going to keep printing, without human intervention,
215
634720
3283
然后它们将继续打印 在没有人类干预的情况下
10:38
until the bridge is finished.
216
638027
1558
直到桥梁完成
10:40
So, as computers are going to augment our ability
217
640919
2928
所以,随着电脑将 增强我们的能力
10:43
to imagine and design new stuff,
218
643871
2150
在想象和设计新事物上
10:46
robotic systems are going to help us build and make things
219
646045
2895
机器的系统将帮助我们 建造和制作事物
10:48
that we've never been able to make before.
220
648964
2084
建造那些我们之前从来没有能够做到的事物
10:52
But what about our ability to sense and control these things?
221
652167
4160
但那么我们去感知和控制 这些事物的能力呢?
10:56
What about a nervous system for the things that we make?
222
656351
4031
对于我们制作的这些事物的 一个神经系统呢?
11:00
Our nervous system, the human nervous system,
223
660406
2512
我们的神经系统 人类的神经系统
11:02
tells us everything that's going on around us.
224
662942
2311
告诉了我们每一件 在我们身边正在发生的事情
11:06
But the nervous system of the things we make is rudimentary at best.
225
666006
3684
但是我们制作的这些事物的 神经系统最好的也不过是简单的
11:09
For instance, a car doesn't tell the city's public works department
226
669714
3563
比如说,一辆车不能够分辨出 城市的公共工作部门
11:13
that it just hit a pothole at the corner of Broadway and Morrison.
227
673301
3130
那就像是在一个百老汇和莫里森 角落击中一个壶洞一样
11:16
A building doesn't tell its designers
228
676455
2032
一栋建筑不会对它的设计者说
11:18
whether or not the people inside like being there,
229
678511
2684
是否建筑里的人喜欢这个建筑
11:21
and the toy manufacturer doesn't know
230
681219
3010
而且玩具制造商不知道
11:24
if a toy is actually being played with --
231
684253
2007
是否一个玩具正在被把玩
11:26
how and where and whether or not it's any fun.
232
686284
2539
如何,在哪里,以及是否 是有趣的
11:29
Look, I'm sure that the designers imagined this lifestyle for Barbie
233
689440
3814
我很确定设计师们想象了 这个芭比的生活方式
11:33
when they designed her.
234
693278
1224
当他们设计她的时候
11:34
(Laughter)
235
694526
1447
(观众笑声)
11:35
But what if it turns out that Barbie's actually really lonely?
236
695997
2906
但是,如果结果是芭比 实际上是真的孤独?
11:38
(Laughter)
237
698927
3147
(观众笑声)
11:43
If the designers had known
238
703086
1288
如果设计师事先知道
11:44
what was really happening in the real world
239
704398
2107
在真实世界将会 发生什么
11:46
with their designs -- the road, the building, Barbie --
240
706529
2583
他们的设计 - 道路 建筑,芭比
他们可以用那个知识 去创造一个体验
11:49
they could've used that knowledge to create an experience
241
709136
2694
11:51
that was better for the user.
242
711854
1400
那个体验对于使用者来说更好
这里缺少的是一个神经系统
11:53
What's missing is a nervous system
243
713278
1791
11:55
connecting us to all of the things that we design, make and use.
244
715093
3709
将我们所有设计的,制作的 和使用的事情联结起来
11:59
What if all of you had that kind of information flowing to you
245
719735
3555
如果你们都有从现实世界 创造的事情
12:03
from the things you create in the real world?
246
723314
2183
的信息涌向你
12:07
With all of the stuff we make,
247
727252
1451
以及我们所做的所有的东西
12:08
we spend a tremendous amount of money and energy --
248
728727
2435
我们发费了巨大的 时间和精力
实际上,去年 有2万亿美金
12:11
in fact, last year, about two trillion dollars --
249
731186
2376
12:13
convincing people to buy the things we've made.
250
733586
2854
劝说人们去买 我们制作的事物
12:16
But if you had this connection to the things that you design and create
251
736464
3388
但是如果你有你设计和创造的 事物的联结
12:19
after they're out in the real world,
252
739876
1727
在它们出现在现实世界
12:21
after they've been sold or launched or whatever,
253
741627
3614
在它们被卖掉 或者发展或这之类的
12:25
we could actually change that,
254
745265
1620
我们实际上可以改变那个
12:26
and go from making people want our stuff,
255
746909
3047
而且从制作人们想要的东西
12:29
to just making stuff that people want in the first place.
256
749980
3434
到仅仅是制作人们一开始 想要的东西
12:33
The good news is, we're working on digital nervous systems
257
753438
2787
好消息是,我们在数码 神经系统上工作
12:36
that connect us to the things we design.
258
756249
2801
这个系统连接我们和我们设计的东西
12:40
We're working on one project
259
760185
1627
我们正致力于一个项目
12:41
with a couple of guys down in Los Angeles called the Bandito Brothers
260
761836
3712
和几个人在洛杉矶 项目叫作Bandito Brothers
12:45
and their team.
261
765572
1407
以及他们的团队
12:47
And one of the things these guys do is build insane cars
262
767003
3433
这些人想做的其中一件事情是 建造不可思议的车
12:50
that do absolutely insane things.
263
770460
2873
那些车可以去做绝对是不可思议的事情
12:54
These guys are crazy --
264
774725
1450
这些人是很疯狂的
12:56
(Laughter)
265
776199
1036
(观众笑声)
12:57
in the best way.
266
777259
1403
以最好的方式
13:00
And what we're doing with them
267
780813
1763
我们和他们做的
13:02
is taking a traditional race-car chassis
268
782600
2440
是拿一个传统的赛车地盘
13:05
and giving it a nervous system.
269
785064
1585
然后给它一个神经系统
13:06
So we instrumented it with dozens of sensors,
270
786673
3058
那么我们用了几打感应 去组建它
13:09
put a world-class driver behind the wheel,
271
789755
2635
在车上放上一个世界级 的司机
13:12
took it out to the desert and drove the hell out of it for a week.
272
792414
3357
将他带到沙漠里 然后让他不停地连续开上一个星期
13:15
And the car's nervous system captured everything
273
795795
2491
然后车的神经系统 抓住了车上
13:18
that was happening to the car.
274
798310
1482
发生的每件事情
13:19
We captured four billion data points;
275
799816
2621
我们抓住了4亿个数据点
13:22
all of the forces that it was subjected to.
276
802461
2310
所有的动力
13:24
And then we did something crazy.
277
804795
1659
然后我们做了一些疯狂的事
13:27
We took all of that data,
278
807088
1500
我们拿出了所有的数据
13:28
and plugged it into a generative-design AI we call "Dreamcatcher."
279
808612
3736
然后把它们放到一个我们叫做Dreamcatcher 地生成性设计的AI里
13:33
So what do get when you give a design tool a nervous system,
280
813090
3964
那么当你给一个设计 神经系统
13:37
and you ask it to build you the ultimate car chassis?
281
817078
2882
而且你要它给你建造 最终的车地盘时,你会得到什么?
13:40
You get this.
282
820543
1973
你得到这个
13:44
This is something that a human could never have designed.
283
824113
3713
这是一个人类永远不会设计的
13:48
Except a human did design this,
284
828527
1888
除了一个人设计了这个
13:50
but it was a human that was augmented by a generative-design AI,
285
830439
4309
但是是一个被生成性设计AI 增强的人类
13:54
a digital nervous system
286
834772
1231
一个数码神经系统
13:56
and robots that can actually fabricate something like this.
287
836027
3005
而且机器人实际上是 可以制造这样的东西的
13:59
So if this is the future, the Augmented Age,
288
839500
3595
所以,如果这是未来 增强时代
14:03
and we're going to be augmented cognitively, physically and perceptually,
289
843119
4261
我们将会被在认知上,物理上,和洞察力 上被增强
14:07
what will that look like?
290
847404
1408
那看上去会是什么?
14:09
What is this wonderland going to be like?
291
849396
3321
这个仙境将会是一个什么?
14:12
I think we're going to see a world
292
852741
1709
我认为我们将会看到一个
14:14
where we're moving from things that are fabricated
293
854474
3068
在那里我们从制作事物
14:17
to things that are farmed.
294
857566
1445
到种植事物的世界
14:19
Where we're moving from things that are constructed
295
859979
3453
在那里我们将会从建筑事物
14:23
to that which is grown.
296
863456
1704
到生长事物
14:25
We're going to move from being isolated
297
865954
2188
我们将会从被孤独隔离
14:28
to being connected.
298
868166
1610
到被连接
14:30
And we'll move away from extraction
299
870454
2411
我们将远离灭绝
14:32
to embrace aggregation.
300
872889
1873
去拥抱集合
14:35
I also think we'll shift from craving obedience from our things
301
875787
3767
我还认为我们将从对我们的事情的 疯狂饥渴服从
14:39
to valuing autonomy.
302
879578
1641
转换到珍视自主
14:42
Thanks to our augmented capabilities,
303
882330
1905
感谢我们的增强放大能力
14:44
our world is going to change dramatically.
304
884259
2377
我们的世界将会有翻天覆地地改变
14:47
We're going to have a world with more variety, more connectedness,
305
887396
3246
我们将会看到一个更加 多样化,更多连接
14:50
more dynamism, more complexity,
306
890666
2287
更多动态,更多复杂性
14:52
more adaptability and, of course,
307
892977
2318
更多适应性,当然
更加美丽
14:55
more beauty.
308
895319
1217
14:57
The shape of things to come
309
897051
1564
那些将要到来的事情
14:58
will be unlike anything we've ever seen before.
310
898639
2290
不会像任何我们之前看到的事情
15:00
Why?
311
900953
1159
为什么?
因为将会是新的关系 来整理成型新的事物
15:02
Because what will be shaping those things is this new partnership
312
902136
3755
15:05
between technology, nature and humanity.
313
905915
3670
在科技,自然,和人性之间新的关系
15:11
That, to me, is a future well worth looking forward to.
314
911099
3804
那个,对我来说,是一个 值得向未来展望的事情
15:14
Thank you all so much.
315
914927
1271
非常感谢
15:16
(Applause)
316
916222
5669
(观众鼓掌)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7