A robot that runs and swims like a salamander | Auke Ijspeert

814,809 views ใƒป 2016-02-18

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Zeeva Livshitz
00:12
This is Pleurobot.
0
12760
1840
ื–ื” ืคืœื•ืื•ืจื•ื‘ื•ื˜.
00:15
Pleurobot is a robot that we designed to closely mimic a salamander species
1
15400
3616
ืคืœื•ืื•ืจื•ื‘ื•ื˜ ื”ื•ื ืจื•ื‘ื•ื˜ ืฉืชื•ื›ื ืŸ ืœื—ืงื•ืช ื‘ืžื“ื•ื™ืง ืžื™ืŸ ืกืœืžื ื“ืจื•ืช
00:19
called Pleurodeles waltl.
2
19040
1400
ืฉื ืงืจื ืคืœื•ืื•ืจื•ื“ืœืก ื•ื•ืœื˜ืœ.
00:21
Pleurobot can walk, as you can see here,
3
21240
2256
ืคืœื•ืื•ืจื•ื‘ื•ื˜ ื™ื›ื•ืœ ืœืœื›ืช, ื›ืžื• ืฉืืชื ืจื•ืื™ื ืคื”,
00:23
and as you'll see later, it can also swim.
4
23520
2040
ื•ืืชื ืชืจืื• ืžืื•ื—ืจ ื™ื•ืชืจ, ืฉื”ื•ื ื™ื›ื•ืœ ื’ื ืœืฉื—ื•ืช.
00:26
So you might ask, why did we design this robot?
5
26280
2191
ืื– ืืชื ืื•ืœื™ ืฉื•ืืœื™ื, ืœืžื” ืชื›ื ื ื• ืืช ื”ืจื•ื‘ื•ื˜ ื”ื–ื”?
00:28
And in fact, this robot has been designed as a scientific tool for neuroscience.
6
28960
3762
ื•ืœืžืขืฉื”, ื”ืจื•ื‘ื•ื˜ ื”ื–ื” ืชื•ื›ื ืŸ ื›ื›ืœื™ ืžื“ืขื™ ืœืžื“ืขื ื™ ืžื•ื—.
00:33
Indeed, we designed it together with neurobiologists
7
33400
2496
ื•ื‘ืืžืช, ืชื›ื ื ื• ืื•ืชื• ื™ื—ื“ ืขื ื ื™ื•ืจื• ื‘ื™ื•ืœื•ื’ื™ื
00:35
to understand how animals move,
8
35920
1896
ื›ื“ื™ ืœื”ื‘ื™ืŸ ืื™ืš ื—ื™ื•ืช ื ืขื•ืช,
00:37
and especially how the spinal cord controls locomotion.
9
37840
2760
ื•ื‘ืžื™ื•ื—ื“ ืื™ืš ื—ื•ื˜ ื”ืฉื“ืจื” ืฉื•ืœื˜ ื‘ืชื ื•ืขื”.
00:41
But the more I work in biorobotics,
10
41560
1696
ืื‘ืœ ื›ื›ืœ ืฉืื ื™ ืขื•ื‘ื“ ื™ื•ืชืจ ื‘ื‘ื™ื• ืจื•ื‘ื•ื˜ื™ืงื”,
00:43
the more I'm really impressed by animal locomotion.
11
43280
2381
ืื ื™ ืžืชืจืฉื ื™ื•ืชืจ ืžืชื ื•ืขืช ื—ื™ื•ืช.
00:45
If you think of a dolphin swimming or a cat running or jumping around,
12
45920
4296
ืื ืืชื ื—ื•ืฉื‘ื™ื ืขืœ ื“ื•ืœืคื™ืŸ ืฉื•ื—ื” ืื• ื—ืชื•ืœ ืจืฅ ืื• ืงื•ืคืฅ,
00:50
or even us as humans,
13
50240
1576
ืื• ืืคื™ืœื• ืื ื—ื ื• ื”ืื ืฉื™ื,
00:51
when you go jogging or play tennis,
14
51840
1816
ื›ืฉืืชื ืจืฆื™ื ืื• ืžืฉื—ืงื™ื ื˜ื ื™ืก,
00:53
we do amazing things.
15
53680
1240
ืื ื—ื ื• ืขื•ืฉื™ื ื“ื‘ืจื™ื ืžื“ื”ื™ืžื™ื.
00:55
And in fact, our nervous system solves a very, very complex control problem.
16
55880
4136
ื•ืœืžืขืฉื”, ืžืขืจื›ืช ื”ืขืฆื‘ื™ื ืฉืœื ื• ืคื•ืชืจืช ื‘ืขื™ื•ืช ืชื ื•ืขื” ืžืื•ื“ ืžืื•ื“ ืžื•ืจื›ื‘ื•ืช.
01:00
It has to coordinate more or less 200 muscles perfectly,
17
60040
3096
ื”ื™ื ืฆืจื™ื›ื” ืœืชืื ืคื—ื•ืช ืื• ื™ื•ืชืจ 200 ืฉืจื™ืจื™ื ื‘ืฉืœืžื•ืช,
01:03
because if the coordination is bad, we fall over or we do bad locomotion.
18
63160
3680
ืžืคื ื™ ืฉืื ื”ืชืื•ื ืฉืœื ื• ื’ืจื•ืข, ืื ื—ื ื• ื ื•ืคืœื™ื ืื• ืฉื ืขื™ื ื‘ืฆื•ืจื” ื’ืจื•ืขื”.
01:07
And my goal is to understand how this works.
19
67560
2720
ื•ื”ืžื˜ืจื” ืฉืœื™ ื”ื™ื ืœื”ื‘ื™ืŸ ืื™ืš ื–ื” ืขื•ื‘ื“.
01:11
There are four main components behind animal locomotion.
20
71160
2840
ื™ืฉ ืฉืœื•ืฉื” ืžืจื›ื™ื‘ื™ื ืขื™ืงืจื™ื™ื ืžืื—ื•ืจื™ ืชื ื•ืขืช ื”ื—ื™ื•ืช.
01:14
The first component is just the body,
21
74800
1936
ื”ืจื›ื™ื‘ ื”ืจืืฉื•ืŸ ื”ื•ื ืจืง ื”ื’ื•ืฃ,
01:16
and in fact we should never underestimate
22
76760
1976
ื•ืœืžืขืฉื” ืืกื•ืจ ืœื ื• ืœืขื•ืœื ืœื ืœื”ืขืจื™ืš ืžืกืคื™ืง
01:18
to what extent the biomechanics already simplify locomotion in animals.
23
78760
3480
ืœืื™ื–ื• ืจืžื” ื”ื‘ื™ื• ืžื›ืื ื™ืงื” ื›ื‘ืจ ืคื™ืฉื˜ื” ืืช ื”ืชื ื•ืขื” ื‘ื—ื™ื•ืช.
01:22
Then you have the spinal cord,
24
82920
1456
ืื– ื™ืฉ ืœื›ื ืืช ื—ื•ื˜ ื”ืฉื“ืจื”,
01:24
and in the spinal cord you find reflexes,
25
84400
1976
ื•ื‘ื—ื•ื˜ ื”ืฉื“ืจื” ืืชื ืžื•ืฆืื™ื ืจืคืœืงืกื™ื,
01:26
multiple reflexes that create a sensorimotor coordination loop
26
86400
3456
ืจืคืœืงืกื™ื ืžืจื•ื‘ื™ื ืฉื™ื•ืฆืจื™ื ืœื•ืœืืช ืงื•ืื•ืจื“ื™ื ืฆื™ื” ืกื ืกื•ืจื™ืช ืžื•ื˜ื•ืจื™ืช
01:29
between neural activity in the spinal cord and mechanical activity.
27
89880
3480
ื‘ื™ืŸ ืคืขื™ืœื•ืช ืขืฆื‘ื™ืช ื‘ื—ื•ื˜ ื”ืฉื“ืจื” ื•ืคืขื™ืœื•ืช ืžื›ืื ื™ืช.
01:34
A third component are central pattern generators.
28
94000
2976
ืจื›ื™ื‘ ืฉืœื™ืฉื™ ื”ื ื™ืฆืจื ื™ ื”ืชื‘ื ื™ื•ืช ื”ืžืจื›ื–ื™ื™ื.
01:37
These are very interesting circuits in the spinal cord of vertebrate animals
29
97000
3896
ืืœื” ื”ื ืžืขื’ืœื™ื ืžืขื ื™ื™ื ื™ื ื‘ืขืžื•ื“ ื”ืฉื“ืจื” ืฉืœ ื‘ืขืœื™ ื—ื•ืœื™ื•ืช
01:40
that can generate, by themselves,
30
100920
1616
ืฉื™ื›ื•ืœื™ื ืœื™ื™ืฆืจ, ื‘ืขืฆืžื,
01:42
very coordinated rhythmic patterns of activity
31
102560
2736
ืชื‘ื ื™ื•ืช ืžืื•ื“ ืžื•ืจื›ื‘ื•ืช ื•ืจืชืžื™ื•ืช ืฉืœ ืคืขื™ืœื•ืช
01:45
while receiving only very simple input signals.
32
105320
2376
ื‘ืขื•ื“ื ืžืงื‘ืœื™ื ืจืง ืงืœื˜ ืฉืœ ืื•ืชื•ืช ืžืื•ื“ ืคืฉื•ื˜ื™ื.
01:47
And these input signals
33
107720
1216
ื•ืื•ืชื•ืช ื”ืงืœื˜ ื”ืืœื•
01:48
coming from descending modulation from higher parts of the brain,
34
108960
3056
ืžื’ื™ืขื™ื ืžืžื•ื“ื•ืœืฆื™ื•ืช ื™ื•ืจื“ื•ืช ืžื—ืœืงื™ื ื’ื‘ื•ื”ื™ื ื™ื•ืชืจ ื‘ืžื•ื—,
01:52
like the motor cortex, the cerebellum, the basal ganglia,
35
112040
2696
ื›ืžื• ื”ืื•ื ื” ื”ืžื•ื˜ื•ืจื™ืช, ื”ืžื•ื— ื”ืงื˜ืŸ, ื”ื’ื ื’ืœื™ื•ื ื™ื ื”ื‘ืื–ืœืชื™ื™ื,
01:54
will all modulate activity of the spinal cord
36
114760
2136
ื›ื•ืœื ื™ืขื‘ื™ืจื• ืคืขื™ืœื•ืช ืœื—ื•ื˜ ื”ืฉื“ืจื”
01:56
while we do locomotion.
37
116920
1456
ื‘ืขื•ื“ื ื• ื ืขื™ื.
01:58
But what's interesting is to what extent just a low-level component,
38
118400
3216
ืื‘ืœ ืžื” ืฉืžืขื ื™ื™ืŸ ื–ื” ื‘ืื™ื–ื• ืจืžื” ื—ืœืง ื‘ืจืžื” ื ืžื•ื›ื”,
02:01
the spinal cord, together with the body,
39
121640
1936
ื—ื•ื˜ ื”ืฉื“ืจื”, ื™ื—ื“ ืขื ื”ื’ื•ืฃ,
02:03
already solve a big part of the locomotion problem.
40
123600
2456
ื›ื‘ืจ ืคืชืจื• ื—ืœืง ื’ื“ื•ืœ ืฉืœ ื‘ืขื™ืช ื”ืชื ื•ืขื”.
02:06
You probably know it by the fact that you can cut the head off a chicken,
41
126080
3422
ื•ืืชื ื›ื ืจืื” ื™ื•ื“ืขื™ื ืืช ื–ื” ื‘ื’ืœืœ ื”ืขื•ื‘ื“ื” ืฉืืชื ื™ื›ื•ืœื™ื ืœื—ืชื•ืš ืืช ืจืืฉ ื”ืชืจื ื’ื•ืœืช,
02:09
it can still run for a while,
42
129532
1381
ื•ื”ื™ื ื™ื›ื•ืœื” ืœื”ืžืฉื™ืš ืœืจื•ืฅ ืœื–ืžืŸ ืžืกื•ื™ื™ื,
02:10
showing that just the lower part, spinal cord and body,
43
130937
2539
ืžื” ืฉืžืจืื” ืฉืจืง ื”ื—ืœืง ื”ืชื—ืชื•ืŸ, ื—ื•ื˜ ืฉื“ืจื” ื•ื’ื•ืฃ,
02:13
already solve a big part of locomotion.
44
133500
1873
ื›ื‘ืจ ืคืชืจื• ื—ืœืง ื’ื“ื•ืœ ืžื‘ืขื™ืช ื”ืชื ื•ืขื”.
02:15
Now, understanding how this works is very complex,
45
135397
2459
ืขื›ืฉื™ื•, ืœื”ื‘ื™ืŸ ืื™ืš ื–ื” ืขื•ื‘ื“ ื–ื” ืžืื•ื“ ืžื•ืจื›ื‘,
02:17
because first of all,
46
137880
1296
ื‘ื’ืœืœ ืฉืจืืฉื™ืช,
02:19
recording activity in the spinal cord is very difficult.
47
139200
2620
ืœื”ืงืœื™ื˜ ืคืขื™ืœื•ืช ื‘ื—ื•ื˜ ื”ืฉื“ืจื” ื–ื” ืžืื•ื“ ืงืฉื”,
02:21
It's much easier to implant electrodes in the motor cortex
48
141844
2772
ื–ื” ื”ืจื‘ื” ื™ื•ืชืจ ืงืœ ืœืฉืชื•ืœ ืืœืงื˜ืจื•ื“ื•ืช ื‘ืื•ื ื” ื”ืžื•ื˜ื•ืจื™ืช
02:24
than in the spinal cord, because it's protected by the vertebrae.
49
144640
3056
ืžืืฉืจ ื‘ื—ื•ื˜ ื”ืฉื“ืจื”, ืžืคื ื™ ืฉื”ื•ื ืžื•ื’ืŸ ืขืœ ื™ื“ื™ ื—ื•ืœื™ื•ืช.
02:27
Especially in humans, very hard to do.
50
147720
1816
ื‘ืขื™ืงืจ ื‘ืื ืฉื™ื, ืžืžืฉ ืžืื•ื“ ืงืฉื” ืœืขืฉื•ืช.
02:29
A second difficulty is that locomotion is really due to a very complex
51
149560
3776
ืงื•ืฉื™ ืฉื ื™ ื”ื•ื ืฉื”ืชื ื•ืขื” ื”ื™ื ื‘ืืžืช ื‘ืฉืœ ืชืงืฉื•ืจืช
02:33
and very dynamic interaction between these four components.
52
153360
3056
ืžืื•ื“ ืžื•ืจื›ื‘ืช ื•ื“ื™ื ืžื™ืช ื‘ื™ืŸ ืืจื‘ืขืช ื”ืจื›ื™ื‘ื™ื ื”ืืœื•.
02:36
So it's very hard to find out what's the role of each over time.
53
156440
3240
ืื– ื–ื” ืžืื•ื“ ืงืฉื” ืœื’ืœื•ืช ืžื” ื”ืชืคืงื™ื“ ืฉืœ ื›ืœ ืื—ื“ ืœืื•ืจืš ื”ื–ืžืŸ.
02:40
This is where biorobots like Pleurobot and mathematical models
54
160880
3736
ืฉื ื”ื‘ื™ื• ืจื•ื‘ื•ื˜ื™ื ื›ืžื• ืคืœืื•ืจื•ื‘ื•ื˜ ื•ืžื•ื“ืœื™ื ืžืชืžื˜ื™ื™ื
02:44
can really help.
55
164640
1200
ื™ื›ื•ืœื™ื ืœืขื–ื•ืจ.
02:47
So what's biorobotics?
56
167480
1256
ืื– ืžื” ื–ื” ื‘ื™ื• ืจื•ื‘ื•ื˜ื™ืงื”?
02:48
Biorobotics is a very active field of research in robotics
57
168760
2736
ื‘ื™ื• ืจื•ื‘ื•ื˜ื™ืงื” ื”ื™ื ืฉื“ื” ืžืื•ื“ ืืงื˜ื™ื‘ื™ ืฉืœ ืžื—ืงืจ ื‘ืจื•ื‘ื•ื˜ื™ืงื”
02:51
where people want to take inspiration from animals
58
171520
2456
ืฉื ืื ืฉื™ื ืจื•ืฆื™ื ืœืงื—ืช ื”ืฉืจืื” ืžื—ื™ื•ืช
02:54
to make robots to go outdoors,
59
174000
2456
ื›ื“ื™ ืœื™ืฆื•ืจ ืจื•ื‘ื•ื˜ื™ื ืฉื™ืฆืื• ื”ื—ื•ืฆื”,
02:56
like service robots or search and rescue robots
60
176480
2656
ื›ืžื• ืจื•ื‘ื•ื˜ื™ ืฉืจื•ืช ื•ืจื•ื‘ื•ื˜ื™ ื—ื™ืคื•ืฉ ื•ื”ืฆืœื”
02:59
or field robots.
61
179160
1200
ืื• ืจื•ื‘ื•ื˜ื™ ืฉื“ื”.
03:00
And the big goal here is to take inspiration from animals
62
180880
2696
ื•ื”ืžื˜ืจื” ื”ื’ื“ื•ืœื” ืคื” ื”ื™ื ืœืงื—ืช ื”ืฉืจืื” ืžื—ื™ื•ืช
03:03
to make robots that can handle complex terrain --
63
183600
2336
ื›ื“ื™ ืœื™ืฆื•ืจ ืจื•ื‘ื•ื˜ื™ื ืฉื™ื›ื•ืœื™ื ืœื”ืชืžื•ื“ื“ ืขื ืคื ื™ ืฉื˜ื— ืžื•ืจื›ื‘ื™ื --
03:05
stairs, mountains, forests,
64
185960
1616
ืžื“ืจื’ื•ืช, ื”ืจื™ื, ื™ืขืจื•ืช,
03:07
places where robots still have difficulties
65
187600
2016
ืžืงื•ืžื•ืช ื‘ื”ื ืœืจื•ื‘ื•ื˜ื™ื ืขื“ื™ื™ืŸ ื™ืฉ ืงืฉื™ื™ื
03:09
and where animals can do a much better job.
66
189640
2056
ื•ื‘ื”ื ื—ื™ื•ืช ื™ื›ื•ืœื•ืช ืœืขืฉื•ืช ืขื‘ื•ื“ื” ื˜ื•ื‘ื” ื™ื•ืชืจ.
03:11
The robot can be a wonderful scientific tool as well.
67
191720
2496
ื”ืจื•ื‘ื•ื˜ ื™ื›ื•ืœ ืœื”ื™ื•ืช ื’ื ื›ืœื™ ืžื“ืขื™ ื ืคืœื.
03:14
There are some very nice projects where robots are used,
68
194240
2620
ื™ืฉ ื›ืžื” ืคืจื•ื™ื™ืงื˜ื™ื ืžืื•ื“ ื ื—ืžื“ื™ื ืฉื ื”ืจื•ื‘ื•ื˜ื™ื ื ืžืฆืื™ื ื‘ืฉื™ืžื•ืฉ,
03:16
like a scientific tool for neuroscience, for biomechanics or for hydrodynamics.
69
196884
3972
ื›ืžื• ื›ืœื™ื ืžื“ืขื™ื™ื ืœืžื“ืขื™ ื”ืžื•ื—, ืœื‘ื™ื• ืžื›ืื ื™ืงื” ืื• ืœื”ื™ื“ืจื• ื“ื™ื ืžื™ืงื”.
03:20
And this is exactly the purpose of Pleurobot.
70
200880
2120
ื•ื–ื• ื‘ื“ื™ื•ืง ื”ืžื˜ืจื” ืฉืœ ืคืœืื•ืจื•ื‘ื•ื˜.
03:23
So what we do in my lab is to collaborate with neurobiologists
71
203600
2936
ืื– ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื ื‘ืžืขื‘ื“ื” ืฉืœื™ ื–ื” ืœืฉืชืฃ ืคืขื•ืœื” ืขื ื ื™ื•ืจื• ื‘ื™ื•ืœื•ื’ื™ื
03:26
like Jean-Marie Cabelguen, a neurobiologist in Bordeaux in France,
72
206560
3216
ื›ืžื• ื–'ืืŸ ืžื™ืฉืœ ืงื‘ืœื’ืŸ, ื ื•ื™ืจื• ื‘ื™ื•ืœื•ื’ ื‘ื‘ื•ืจื“ื•, ืฆืจืคืช,
03:29
and we want to make spinal cord models and validate them on robots.
73
209800
4040
ื•ืื ื—ื ื• ืจื•ืฆื™ื ืœืขืฉื•ืช ืžื•ื“ืœื™ื ืฉืœ ื—ื•ื˜ ืฉื“ืจื” ื•ืœืืžืช ืื•ืชื ื‘ืจื•ื‘ื•ื˜ื™ื.
03:34
And here we want to start simple.
74
214480
1616
ื•ืคื” ืื ื—ื ื• ืจื•ืฆื™ื ืœื”ืชื—ื™ืœ ื‘ืคืฉื•ื˜.
03:36
So it's good to start with simple animals
75
216120
1976
ืื– ื–ื” ื˜ื•ื‘ ืœื”ืชื—ื™ืœ ืขื ื—ื™ื•ืช ืคืฉื•ื˜ื•ืช
03:38
like lampreys, which are very primitive fish,
76
218120
2256
ื›ืžื• ื“ื’ื™ ืœืžืคืจื™ื™, ืฉื”ื ื“ื’ื™ื ืžืื•ื“ ืคืจื™ืžื™ื˜ื™ื‘ื™ื,
03:40
and then gradually go toward more complex locomotion,
77
220400
2496
ื•ืื– ืœืื˜ ืœืื˜ ืœืœื›ืช ืœื›ื™ื•ื•ืŸ ืชื ื•ืขื” ื™ื•ืชืจ ืžื•ืจื›ื‘ืช,
03:42
like in salamanders,
78
222920
1256
ื›ืžื• ืกืœืžื ื“ืจื•ืช,
03:44
but also in cats and in humans,
79
224200
1496
ืื‘ืœ ื’ื ื‘ื—ืชื•ืœื™ื ื•ื‘ื ื™ ืื“ื,
03:45
in mammals.
80
225720
1200
ื‘ื™ื•ื ืงื™ื.
03:47
And here, a robot becomes an interesting tool
81
227880
2376
ื•ืคื”, ืจื•ื‘ื•ื˜ ื”ื•ืคืš ืœื›ืœื™ ืžืขื ื™ื™ืŸ
03:50
to validate our models.
82
230280
1936
ื›ื“ื™ ืœืืฉืจ ืืช ื”ืžื•ื“ืœื™ื ืฉืœื ื•.
03:52
And in fact, for me, Pleurobot is a kind of dream becoming true.
83
232240
3016
ื•ืœืžืขืฉื”, ื‘ืฉื‘ื™ืœื™, ืคืœืื•ืจื•ื‘ื•ื˜ ื”ื•ื ืกื•ื’ ืฉืœ ื—ืœื•ื ืฉื”ืชื’ืฉื.
03:55
Like, more or less 20 years ago I was already working on a computer
84
235280
3256
ื›ืžื•, ืคื—ื•ืช ืื• ื™ื•ืชืจ ืœืคื ื™ 20 ืฉื ื” ืขื‘ื“ืชื™ ื›ื‘ืจ ืขืœ ืžื—ืฉื‘
03:58
making simulations of lamprey and salamander locomotion
85
238560
2656
ืฉืขืฉื” ื”ื“ืžื™ื•ืช ืฉืœ ืชื ื•ืขืช ืœืžืคืจื™ื™ ื•ืกืœืžื ื“ืจื•ืช
04:01
during my PhD.
86
241240
1536
ื‘ืžื”ืœืš ื”ื“ื•ืงื˜ื•ืจื˜ ืฉืœื™.
04:02
But I always knew that my simulations were just approximations.
87
242800
3376
ืื‘ืœ ืชืžื™ื“ ื™ื“ืขืชื™ ืฉื”ื”ื“ืžื™ื•ืช ืฉืœื™ ื”ื™ื• ืžืฉื•ืขืจื•ืช.
04:06
Like, simulating the physics in water or with mud or with complex ground,
88
246200
3976
ื›ืžื•, ืœื“ืžื•ืช ืืช ื”ืคื™ื–ื™ืงื” ื‘ืžื™ื ืื• ืขื ื‘ื•ืฅ ืื• ืขื ืคื ื™ ืฉื˜ื— ืžื•ืจื›ื‘ื™ื,
04:10
it's very hard to simulate that properly on a computer.
89
250200
2656
ื–ื” ืžืื•ื“ ืงืฉื” ืœื“ืžื•ืช ืืช ื–ื” ื‘ื“ื™ื•ืง ืขืœ ืžื—ืฉื‘.
04:12
Why not have a real robot and real physics?
90
252880
2040
ืœืžื” ืฉืœื ื™ื”ื™ื” ืจื•ื‘ื•ื˜ ืืžื™ืชื™ ื•ืคื™ื–ื™ืงื” ืืžื™ืชื™ืช?
04:15
So among all these animals, one of my favorites is the salamander.
91
255600
3136
ืื– ื‘ื™ืŸ ื›ืœ ื”ื—ื™ื•ืช ื”ืืœื•, ืื—ืช ืžื”ืžื•ืขื“ืคื•ืช ืขืœื™ ื”ื™ื ื”ืกืœืžื ื“ืจื”.
04:18
You might ask why, and it's because as an amphibian,
92
258760
3456
ืืชื ืื•ืœื™ ืชืฉืืœื• ืœืžื”, ื•ื–ื” ื‘ื’ืœืœ ืฉื›ื—ื™ื” ืืžืคื™ื‘ื™ืช,
04:22
it's a really key animal from an evolutionary point of view.
93
262240
2856
ื–ื• ื‘ืืžืช ื—ื™ื” ื—ืฉื•ื‘ื” ืžื ืงื•ื“ืช ืžื‘ื˜ ืื‘ื•ืœื•ืฆื™ื•ื ื™ืช.
04:25
It makes a wonderful link between swimming,
94
265120
2056
ื–ื” ื™ื•ืฆืจ ืงื™ืฉื•ืจ ืžืขื•ืœื” ื‘ื™ืŸ ืฉื—ื™ื”,
04:27
as you find it in eels or fish,
95
267200
1896
ื›ืžื• ืฉืืชื ืžื•ืฆืื™ื ืืช ื–ื” ื‘ืฆืœื•ืคื—ื™ื ื•ื“ื’ื™ื,
04:29
and quadruped locomotion, as you see in mammals, in cats and humans.
96
269120
4120
ื•ืชื ื•ืขื” ืืจื‘ืข ืจื’ืœื™ืช, ื›ืžื• ืฉืืชื ืจื•ืื™ื ื‘ื™ื•ื ืงื™ื, ื‘ื—ืชื•ืœื™ื ื•ืื ืฉื™ื.
04:34
And in fact, the modern salamander
97
274160
1656
ื•ืœืžืขืฉื”, ื”ืกืœืžื ื“ืจื” ื”ืžื•ื“ืจื ื™ืช
04:35
is very close to the first terrestrial vertebrate,
98
275840
2376
ืžืื•ื“ ืงืจื•ื‘ื” ืœื‘ืขืœ ื”ื—ื•ืœื™ื•ืช ื”ื™ื‘ืฉืชื™ ื”ืจืืฉื•ืŸ,
04:38
so it's almost a living fossil,
99
278240
1536
ืื– ื–ื” ื›ืžืขื˜ ืžืื•ื‘ืŸ ื—ื™,
04:39
which gives us access to our ancestor,
100
279800
1936
ืฉื ื•ืชืŸ ืœื ื• ื’ื™ืฉื” ืœืื‘ื•ืช ืื‘ื•ืชื™ื ื•,
04:41
the ancestor to all terrestrial tetrapods.
101
281760
2920
ื”ืื‘ื•ืช ืœื›ืœ ื”ื˜ื˜ืจืคื•ื“ื™ื ื”ื™ื‘ืฉืชื™ื™ื.
04:45
So the salamander swims
102
285240
1376
ืื– ื”ืกืœืžื ื“ืจื” ืฉื•ื—ื”
04:46
by doing what's called an anguilliform swimming gait,
103
286640
2496
ืขืœ ื™ื“ื™ ืžื” ืฉื ืงืจื ืฆื•ืจืช ื”ืœื™ื›ืช ืฉื—ื™ื” ืื ื’ื™ื•ืœื™ืคื•ืจืžื™,
04:49
so they propagate a nice traveling wave of muscle activity from head to tail.
104
289160
3640
ืื– ื”ื ื™ื•ืฆืจื™ื ื’ืœ ืชื ื•ืขื” ืžืขื ื™ื™ืŸ ืฉืœ ืคืขื™ืœื•ืช ืฉืจื™ืจื™ื ืžื”ืจืืฉ ืœื–ื ื‘.
04:53
And if you place the salamander on the ground,
105
293440
2176
ื•ืื ืชืฉื™ืžื• ืืช ื”ืกืœืžื ื“ืจื” ืขืœ ื”ืงืจืงืข,
04:55
it switches to what's called a walking trot gait.
106
295640
2336
ื”ื™ื ืžื—ืœื™ืคื” ืœืžื” ืฉื ืงืจื ืžืคืชื— ื”ืœื™ื›ื” ื˜ืคื™ืคื”.
04:58
In this case, you have nice periodic activation of the limbs
107
298000
2863
ื‘ืžืงืจื” ื”ื–ื”, ื™ืฉ ืœื›ื ื”ืคืขืœื” ืชืงื•ืคืชื™ืช ื ื—ืžื“ื” ืฉืœ ื”ื’ืคื™ื™ื
05:00
which are very nicely coordinated
108
300887
1609
ืฉื”ืŸ ืžืชื•ืืžื•ืช ืžืื•ื“ ื™ืคื”
05:02
with this standing wave undulation of the body,
109
302520
2656
ืขื ื’ืœ ืขื•ืžื“ ื‘ืชื ื•ืขื” ื’ืœื™ืช ืฉืœ ื”ื’ื•ืฃ,
05:05
and that's exactly the gait that you are seeing here on Pleurobot.
110
305200
3656
ื•ื–ื” ื‘ื“ื™ื•ืง ื”ืžืคืชื— ืฉืืชื ืจื•ืื™ื ืคื” ื‘ืคืœืื•ืจื•ื‘ื•ื˜.
05:08
Now, one thing which is very surprising and fascinating in fact
111
308880
2976
ืขื›ืฉื™ื•, ื“ื‘ืจ ืื—ื“ ืฉืžืื•ื“ ืžืคืชื™ืข ื•ืžืจืชืง ืœืžืขืฉื”
05:11
is the fact that all this can be generated just by the spinal cord and the body.
112
311880
4136
ื–ื• ื”ืขื•ื‘ื“ื” ืฉื›ืœ ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžื™ื•ืฆืจ ืจืง ืขืœ ื™ื“ื™ ื—ื•ื˜ ื”ืฉื“ืจื” ื•ื”ื’ื•ืฃ.
05:16
So if you take a decerebrated salamander --
113
316040
2000
ืื– ืื ืืชื ืœื•ืงื—ื™ื ืกืœืžื ื“ืจื” ื ื˜ื•ืœืช ืžื•ื— --
05:18
it's not so nice but you remove the head --
114
318064
2016
ื–ื” ืœื ื›ืœ ื›ืš ื ื—ืžื“ ืื‘ืœ ืืชื ืžืกื™ืจื™ื ืืช ื”ืจืืฉ --
05:20
and if you electrically stimulate the spinal cord,
115
320104
2672
ื•ืื ืืชื ืžื’ืจื™ื ื—ืฉืžืœื™ืช ืืช ื—ื•ื˜ ื”ืฉื“ืจื”,
05:22
at low level of stimulation this will induce a walking-like gait.
116
322800
3256
ื‘ืจืžื•ืช ื ืžื•ื›ื•ืช ืฉืœ ื’ื™ืจื•ื™ ื–ื” ื™ืขื•ืจืจ ืžื” ืฉื ืจืื” ื›ืžื• ืฆื•ืจืช ื”ืœื™ื›ื”.
05:26
If you stimulate a bit more, the gait accelerates.
117
326080
2456
ืื ืืชื ืžื’ืจื™ื ืžืขื˜ ื™ื•ืชืจ, ืฆื•ืจืช ื”ื”ืœื™ื›ื” ืžื•ืืฆืช.
05:28
And at some point, there's a threshold,
118
328560
1896
ื•ื‘ื ืงื•ื“ื” ืžืกื•ื™ื™ืžืช, ื™ืฉ ืกืฃ,
05:30
and automatically, the animal switches to swimming.
119
330480
2536
ื•ืื•ื˜ื•ืžื˜ื™ืช, ื”ื—ื™ื” ืžื—ืœื™ืคื” ืœืฉื—ื™ื”.
05:33
This is amazing.
120
333040
1376
ื–ื” ืžื“ื”ื™ื.
05:34
Just changing the global drive,
121
334440
1496
ืคืฉื•ื˜ ืœืฉื ื•ืช ืืช ื”ืชื ื•ืขื” ื”ื’ืœื•ื‘ืœื™ืช,
05:35
as if you are pressing the gas pedal
122
335960
1736
ื›ืื™ืœื• ืืชื ืœื•ื—ืฆื™ื ืขืœ ื“ื•ื•ืฉืช ื”ื’ื–
05:37
of descending modulation to your spinal cord,
123
337720
2136
ืฉืœ ืžื•ื“ื•ืœืฆื™ื” ื™ื•ืจื“ืช ืœื—ื•ื˜ ื”ืฉื“ืจื” ืฉืœื›ื,
05:39
makes a complete switch between two very different gaits.
124
339880
3000
ื•ื–ื” ื™ื•ืฆืจ ืžื™ืชื•ื’ ืฉืœื ื‘ื™ืŸ ืฉืชื™ ืฆื•ืจื•ืช ื”ืœื™ื›ื” ืžืื•ื“ ืฉื•ื ื•ืช.
05:44
And in fact, the same has been observed in cats.
125
344440
2576
ืœืžืขืฉื”, ืื•ืชื• ื”ื“ื‘ืจ ืื•ื‘ื—ืŸ ื‘ื—ืชื•ืœื™ื.
05:47
If you stimulate the spinal cord of a cat,
126
347040
2016
ืื ืืชื ืžื’ืจื™ื ืืช ื—ื•ื˜ ื”ืฉื“ืจื” ืฉืœ ื—ืชื•ืœ,
05:49
you can switch between walk, trot and gallop.
127
349080
2216
ืืชื ื™ื›ื•ืœื™ื ืœืžืชื’ ื‘ื™ืŸ ื”ืœื™ื›ื”, ื˜ื™ืคื•ืฃ ื•ื“ื”ื™ืจื”.
05:51
Or in birds, you can make a bird switch between walking,
128
351320
2736
ืื• ื‘ืฆื™ืคื•ืจื™ื, ืืชื ื™ื›ื•ืœื™ื ืœื’ืจื•ื ืœืฆื™ืคื•ืจ ืœืžืชื’ ื‘ื™ืŸ ื”ืœื™ื›ื”,
05:54
at a low level of stimulation,
129
354080
1456
ื‘ืจืžื” ื ืžื•ื›ื” ืฉืœ ื’ื™ืจื•ื™,
05:55
and flapping its wings at high-level stimulation.
130
355560
2816
ื•ืœื ืคื ืฃ ื‘ื›ื ืคื™ื™ื ื‘ืจืžื•ืช ื’ื‘ื•ื”ื•ืช ืฉืœ ื’ื™ืจื•ื™.
05:58
And this really shows that the spinal cord
131
358400
2016
ื•ื–ื” ื‘ืืžืช ืžืจืื” ืฉื—ื•ื˜ ื”ืฉื“ืจื”
06:00
is a very sophisticated locomotion controller.
132
360440
2416
ื”ื•ื ื‘ืงืจ ืชื ื•ืขื” ืžืื•ื“ ืžื•ืจื›ื‘.
06:02
So we studied salamander locomotion in more detail,
133
362880
2456
ืื– ื—ืงืจื ื• ืชื ื•ืขืช ืกืœืžื ื“ืจื•ืช ื‘ืคืจื•ื˜ ืจื‘ ื™ื•ืชืจ,
06:05
and we had in fact access to a very nice X-ray video machine
134
365360
3096
ื•ืœืžืขืฉื” ื”ื™ืชื” ืœื ื• ื’ื™ืฉื” ืœืžื›ื•ื ืช ื•ื™ื“ืื• ืจื ื˜ื’ืŸ ืžืžืฉ ื ื—ืžื“ื”
06:08
from Professor Martin Fischer in Jena University in Germany.
135
368480
3576
ืžืคืจื•ืคืกื•ืจ ืžืจื˜ื™ืŸ ืคื™ืฉืจ ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ื™ื ื” ื‘ื’ืจืžื ื™ื”.
06:12
And thanks to that, you really have an amazing machine
136
372080
2576
ื•ืชื•ื“ื•ืช ืœื–ื”,ื™ืฉ ืœื›ื ื‘ืืžืช ืžื›ื•ื ื” ืžื“ื”ื™ืžื”
06:14
to record all the bone motion in great detail.
137
374680
2456
ื›ื“ื™ ืœื”ืงืœื™ื˜ ืืช ื›ืœ ืชื ื•ืขื•ืช ื”ืขืฆืžื•ืช ื‘ืคืจื•ื˜ ื’ื“ื•ืœ.
06:17
That's what we did.
138
377160
1256
ื•ื–ื” ืžื” ืฉืขืฉื™ื ื•.
06:18
So we basically figured out which bones are important for us
139
378440
3176
ืื– ื‘ืขื™ืงืจื•ืŸ ื”ื‘ื ื• ืื™ื–ื” ืขืฆืžื•ืช ื—ืฉื•ื‘ื•ืช ืœื ื•
06:21
and collected their motion in 3D.
140
381640
3016
ื•ืืกืคื ื• ืืช ื”ืชื ื•ืขื•ืช ืฉืœื”ืŸ ื‘ืชืœืช ืžื™ืžื“.
06:24
And what we did is collect a whole database of motions,
141
384680
2696
ื•ืžื” ืฉืขืฉื™ื ื• ื–ื” ืœืืกื•ืฃ ืžืื’ืจ ืžื™ื“ืข ืฉืœื ืฉืœ ืชื ื•ืขื•ืช,
06:27
both on ground and in water,
142
387400
1656
ื’ื ืขืœ ื”ืงืจืงืข ื•ื’ื ื‘ืžื™ื,
06:29
to really collect a whole database of motor behaviors
143
389080
2484
ื›ื“ื™ ื‘ืืžืช ืœืืกื•ืฃ ืžืื’ืจ ืžื™ื“ืข ืฉืœื ืฉืœ ืชื ื•ืขื•ืช ืžื•ื˜ื•ืจื™ื•ืช
06:31
that a real animal can do.
144
391589
1244
ืฉื—ื™ื” ืืžื™ืชื™ืช ื™ื›ื•ืœื” ืœืขืฉื•ืช.
06:32
And then our job as roboticists was to replicate that in our robot.
145
392858
3150
ื•ืื– ื”ืขื‘ื•ื“ื” ืฉืœื ื• ื›ืจื•ื‘ื•ื˜ื™ืงืื™ื ื”ื™ืชื” ืœืฉื›ืคืœ ืืช ื–ื” ื‘ืจื•ื‘ื•ื˜ื™ื.
06:36
So we did a whole optimization process to find out the right structure,
146
396033
3383
ืื– ืขืฉื™ื ื• ืชื”ืœื™ืš ืžื™ื˜ื•ื‘ ืฉืœื ื›ื“ื™ ืœื’ืœื•ืช ืืช ื”ืžื‘ื ื” ื”ื ื›ื•ืŸ,
06:39
where to place the motors, how to connect them together,
147
399440
2656
ื”ื™ื›ืŸ ืœืžืงื ืืช ื”ืžื ื•ืขื™ื, ืื™ืš ืœื—ื‘ืจ ืื•ืชื ื™ื—ื“,
06:42
to be able to replay these motions as well as possible.
148
402120
2880
ื›ื“ื™ ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืฉื—ื–ืจ ืืช ื”ืชื ื•ืขื•ืช ื”ืืœื• ื”ื›ื™ ื˜ื•ื‘ ืฉืืคืฉืจ.
06:45
And this is how Pleurobot came to life.
149
405680
2360
ื•ื›ืš ืคืœืื•ืจื•ื‘ื•ื˜ ื‘ื ืœื—ื™ื™ื.
06:49
So let's look at how close it is to the real animal.
150
409200
2416
ืื– ื‘ื•ืื• ื ื‘ื™ื˜ ื‘ื›ืžื” ืงืจื•ื‘ ื–ื” ืœื—ื™ื” ื”ืืžื™ืชื™ืช.
06:52
So what you see here is almost a direct comparison
151
412960
2496
ืื– ืžื” ืฉืืชื ืจื•ืื™ื ืคื” ื–ื” ื›ืžืขื˜ ื”ืฉื•ื•ืื” ื™ืฉื™ืจื”
06:55
between the walking of the real animal and the Pleurobot.
152
415480
2696
ื‘ื™ืŸ ื”ื”ืœื™ื›ื” ืฉืœ ื—ื™ื•ืช ืืžื™ืชื™ื•ืช ื•ื”ืคืœืื•ืจื•ื‘ื•ื˜.
06:58
You can see that we have almost a one-to-one exact replay
153
418200
2736
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉื™ืฉ ืœื ื• ื›ืžืขื˜ ื—ื–ืจื” ืฉืœ ืื—ื“ ืœืื—ื“
07:00
of the walking gait.
154
420960
1256
ืฉืœ ืฆื•ืจืช ื”ื”ืœื™ื›ื”.
07:02
If you go backwards and slowly, you see it even better.
155
422240
2600
ืื ืืชื ื”ื•ืœื›ื™ื ืื—ื•ืจื” ื•ื‘ืื™ื˜ื™ื•ืช, ืืชื ืจื•ืื™ื ืืช ื–ื” ื”ืจื‘ื” ื™ื•ืชืจ ื˜ื•ื‘.
07:07
But even better, we can do swimming.
156
427520
2376
ืื‘ืœ ืืคื™ืœื• ื˜ื•ื‘ ื™ื•ืชืจ, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืฉื—ื™ื”.
07:09
So for that we have a dry suit that we put all over the robot --
157
429920
3016
ืื– ื‘ืฉื‘ื™ืœ ื–ื” ื™ืฉ ืœื ื• ื—ืœื™ืคืช ืฆืœื™ืœื” ืฉืื ื—ื ื• ืฉืžื™ื ืขืœ ื›ืœ ื”ืจื•ื‘ื•ื˜ --
07:12
(Laughter)
158
432960
1096
(ืฆื—ื•ืง)
07:14
and then we can go in water and start replaying the swimming gaits.
159
434080
3176
ื•ืื– ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ื›ื ืก ืœืžื™ื ื•ืœื”ืชื—ื™ืœ ืœืฉื—ื–ืจ ืืช ืฆื•ืจืช ื”ืฉื—ื™ื”.
07:17
And here, we were very happy, because this is difficult to do.
160
437280
3336
ื•ืคื”, ื”ื™ื™ื ื• ืžืื•ื“ ืฉืžื—ื™ื, ืžืคื ื™ ืฉื–ื” ื‘ืืžืช ืงืฉื” ืœืขืฉื•ืช.
07:20
The physics of interaction are complex.
161
440640
2216
ื”ืคื™ื–ื™ืงื” ืฉืœ ืคืขื•ืœื” ื”ื•ื ืžื•ืจื›ื‘.
07:22
Our robot is much bigger than a small animal,
162
442880
2416
ื”ืจื•ื‘ื•ื˜ ืฉืœื ื• ื”ื•ื ื’ื“ื•ืœ ื‘ื”ืจื‘ื” ืžื—ื™ื” ืงื˜ื ื”,
07:25
so we had to do what's called dynamic scaling of the frequencies
163
445320
3056
ืื– ื”ื™ื™ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืžื” ืฉืงืจืื ื• ืœื• ื”ื’ื“ืœื” ื“ื™ื ืžื™ืช ืฉืœ ืชื“ื™ืจื•ื™ื•ืช
07:28
to make sure we had the same interaction physics.
164
448400
2336
ื›ื“ื™ ืœื•ื•ื“ื ืฉืชื”ื™ื” ืœื ื• ืืช ืื•ืชื” ืคื™ื–ื™ืงืช ืคืขื•ืœื”.
07:30
But you see at the end, we have a very close match,
165
450760
2416
ืื‘ืœ ืืชื ืจื•ืื™ื ื‘ืกื•ืฃ, ื™ืฉ ืœื ื• ื”ืชืืžื” ื“ื™ ื˜ื•ื‘ื”,
07:33
and we were very, very happy with this.
166
453200
1880
ื•ื”ื™ื™ื ื• ืžืื•ื“ ืžืื•ื“ ืฉืžื—ื™ื ืขื ื–ื”.
07:35
So let's go to the spinal cord.
167
455480
2216
ืื– ื‘ื•ืื• ื ืขื‘ื•ืจ ืœื—ื•ื˜ ื”ืฉื“ืจื”.
07:37
So here what we did with Jean-Marie Cabelguen
168
457720
2296
ืื– ืคื” ืžื” ืฉืขืฉื™ื ื• ืขื ื–'ืืŸ ืžืจื™ ืงื‘ืœื’ืŸ
07:40
is model the spinal cord circuits.
169
460040
2240
ื–ื” ืœืžื“ืœ ืืช ืžืขื’ืœื™ ื—ื•ื˜ ื”ืฉื“ืจื”.
07:43
And what's interesting is that the salamander
170
463040
2136
ื•ืžื” ืฉืžืขื ื™ื™ืŸ ื–ื” ืฉื”ืกืœืžื ื“ืจื”
07:45
has kept a very primitive circuit,
171
465200
1620
ืฉืžืจื” ืขืœ ืžืขื’ืœ ืžืื•ื“ ืคืจื™ืžื™ื˜ื™ื‘ื™,
07:46
which is very similar to the one we find in the lamprey,
172
466844
2652
ืฉืžืื•ื“ ื“ื•ืžื” ืœื–ื” ืฉืื ื—ื ื• ืžื•ืฆืื™ื ื‘ืœืžืคืจื™ื™,
07:49
this primitive eel-like fish,
173
469520
1976
ื”ื“ื’ ื”ืคืจื™ืžื™ื˜ื™ื‘ื™ ื“ืžื•ื™ ื”ืฆืœื•ืคื— ื”ื–ื”,
07:51
and it looks like during evolution,
174
471520
1736
ื•ื–ื” ื ืจืื” ื›ืื™ืœื• ื‘ื–ืžืŸ ื”ืื‘ื•ืœื•ืฆื™ื”,
07:53
new neural oscillators have been added to control the limbs,
175
473280
2936
ืชื ื•ื“ื•ืช ื ื™ื•ืจื•ื ืœื™ื•ืช ื—ื“ืฉื•ืช ื”ื•ืกืคื• ื›ื“ื™ ืœืฉืœื•ื˜ ื‘ืื‘ืจื™ื,
07:56
to do the leg locomotion.
176
476240
1416
ืœืขืฉื•ืช ืืช ืชื ื•ืขืช ื”ืจื’ืœื™ื™ื.
07:57
And we know where these neural oscillators are
177
477680
2176
ื•ืื ื—ื ื• ื™ื•ื“ืขื™ื ืื™ืคื” ื”ืชื ื•ื“ื•ืช ื”ืขืฆื‘ื™ื•ืช ื”ืืœื• ื ืžืฆืื•ืช
07:59
but what we did was to make a mathematical model
178
479880
2256
ืื‘ืœ ืžื” ืฉืขืฉื™ื ื• ื”ื™ื” ืœื™ืฆื•ืจ ืžื•ื“ืœ ืžืชืžื˜ื™
08:02
to see how they should be coupled
179
482160
1616
ื›ื“ื™ ืœืจืื•ืช ืื™ืš ื”ื ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ืžื—ื•ื‘ืจื™ื
08:03
to allow this transition between the two very different gaits.
180
483800
2936
ื›ื“ื™ ืœืืคืฉืจ ืืช ื”ืžืขื‘ืจ ื”ื–ื” ื‘ื™ืŸ ืฉืชื™ ืฆื•ืจื•ืช ื”ื”ืœื™ื›ื” ื”ืžืื•ื“ ืฉื•ื ื•ืช ื”ืืœื•.
08:06
And we tested that on board of a robot.
181
486760
2560
ื•ื‘ื—ื ื• ืืช ื–ื” ืขืœ ืจื•ื‘ื•ื˜.
08:09
And this is how it looks.
182
489680
1200
ื•ื›ืš ื–ื” ื ืจืื”.
08:18
So what you see here is a previous version of Pleurobot
183
498920
3016
ืื– ืžื” ืฉืืชื ืจื•ืื™ื ืคื” ื–ื” ื’ืจืกื” ืงื•ื“ืžืช ืฉืœ ื”ืคืœืื•ืจื•ื‘ื•ื˜
08:21
that's completely controlled by our spinal cord model
184
501960
3096
ืฉืœื’ืžืจื™ ื ืฉืœื˜ืช ืขืœ ื™ื“ ืžื•ื“ืœ ื—ื•ื˜ ื”ืฉื“ืจื”
08:25
programmed on board of the robot.
185
505080
1600
ืฉืžืชื•ื›ื ืช ืขืœ ื”ืจื•ื‘ื•ื˜.
08:27
And the only thing we do
186
507280
1216
ื•ื”ื“ื‘ืจ ื”ื™ื—ื™ื“ ืฉืื ื—ื ื• ืขื•ืฉื™ื
08:28
is send to the robot through a remote control
187
508520
2176
ื–ื” ืœืฉืœื•ื— ืœืจื•ื‘ื•ื˜ ื“ืจืš ืฉืœื˜
08:30
the two descending signals it normally should receive
188
510720
2496
ืืช ืฉื ื™ ื”ืื•ืชื•ืช ื”ื™ื•ืจื“ื™ื ืฉื”ื•ื ื‘ื“ืจืš ื›ืœืœ ืฆืจื™ืš ืœืงื‘ืœ
08:33
from the upper part of the brain.
189
513240
1600
ืžื”ื—ืœืง ื”ืขืœื™ื•ืŸ ืฉืœ ื”ืžื•ื—.
08:35
And what's interesting is, by playing with these signals,
190
515480
2696
ื•ืžื” ืฉืžืขื ื™ืŸ ื–ื”, ืฉืขืœ ื™ื“ื™ ืžืฉื—ืง ืขื ื”ืื•ืชื•ืช ื”ืืœื•,
08:38
we can completely control speed, heading and type of gait.
191
518200
2800
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืฉืœื•ื˜ ืœื’ืžืจื™ ื‘ืžื”ื™ืจื•ืช, ื‘ื›ื™ื•ื•ืŸ ื•ื‘ืกื•ื’ ื”ื”ืœื™ื›ื”.
08:41
For instance,
192
521600
1216
ืœื“ื•ื’ืžื”,
08:42
when we stimulate at a low level, we have the walking gait,
193
522840
3576
ื›ืฉืื ื—ื ื• ืžื’ืจื™ื ื‘ืจืžื•ืช ื ืžื•ื›ื•ืช, ื™ืฉ ืœื ื• ืฆื•ืจืช ืฆืขื“ ืฉืœ ื”ืœื™ื›ื”,
08:46
and at some point, if we stimulate a lot,
194
526440
1976
ื•ื‘ื ืงื•ื“ื” ืžืกื•ื™ื™ืžืช, ืื ืื ื—ื ื• ืžื’ืจื™ื ื”ืจื‘ื”,
08:48
very rapidly it switches to the swimming gait.
195
528440
2160
ืžื”ืจ ืžืื•ื“ ื–ื” ืžืฉืชื ื” ืœืฆื•ืจืช ื”ืฉื—ื™ื”.
08:51
And finally, we can also do turning very nicely
196
531480
2216
ื•ืœื‘ืกื•ืฃ, ืื ื—ื ื• ื™ื›ื•ืœื™ื ื’ื ืœืขืฉื•ืช ืคื ื™ื•ืช ืžืื•ื“ ื™ืคื”
08:53
by just stimulating more one side of the spinal cord than the other.
197
533720
3520
ืจืง ืขืœ ื™ื“ื™ ื’ื™ืจื•ื™ ืฆื“ ืื—ื“ ืฉืœ ื—ื•ื˜ ื”ืฉื“ืจื” ื™ื•ืชืจ ืžืืฉืจ ื”ืื—ืจ.
08:58
And I think it's really beautiful
198
538200
1616
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ื‘ืืžืช ื™ืคื”ืคื”
08:59
how nature has distributed control
199
539840
2256
ืื™ืš ื”ื˜ื‘ืข ื—ื™ืœืง ืืช ื”ืฉืœื™ื˜ื”
09:02
to really give a lot of responsibility to the spinal cord
200
542120
2856
ื›ื“ื™ ื‘ืืžืช ืœืชืช ื”ืจื‘ื” ืื—ืจื™ื•ืช ืœื—ื•ื˜ ื”ืฉื“ืจื”
09:05
so that the upper part of the brain doesn't need to worry about every muscle.
201
545000
3656
ื›ืš ืฉื”ื—ืœืง ื”ืขืœื™ื•ืŸ ืฉืœ ื”ืžื•ื— ืœื ืฆืจื™ืš ืœื“ืื•ื’ ื‘ื ื•ื’ืข ืœื›ืœ ืฉืจื™ืจ.
09:08
It just has to worry about this high-level modulation,
202
548680
2536
ื”ื•ื ืจืง ืฆืจื™ืš ืœื“ืื•ื’ ื‘ื ื•ื’ืข ืœืชื ื•ื“ื•ืช ื‘ืจืžื•ืช ื’ื‘ื•ื”ื•ืช,
09:11
and it's really the job of the spinal cord to coordinate all the muscles.
203
551240
3576
ื•ื–ื• ื‘ืืžืช ื”ืขื‘ื•ื“ื” ืฉืœ ื—ื•ื˜ ื”ืฉื“ืจื” ืœืชืื ืืช ื›ืœ ื”ืฉืจื™ืจื™ื.
09:14
So now let's go to cat locomotion and the importance of biomechanics.
204
554840
3520
ืื– ืขื›ืฉื™ื• ื‘ื•ืื• ื ืขื‘ื•ืจ ืœืชื ื•ืขืช ื—ืชื•ืœื™ื ื•ื”ื—ืฉื™ื‘ื•ืช ืฉืœ ื‘ื™ื• ืžื›ืื ื™ืงื”.
09:19
So this is another project
205
559080
1256
ืื– ื–ื” ืคืจื•ื™ื™ืงื˜ ื ื•ืกืฃ
09:20
where we studied cat biomechanics,
206
560360
2416
ืฉื ื—ืงืจื ื• ื‘ื™ื• ืžื›ืื ื™ืงื” ืฉืœ ื—ืชื•ืœื™ื,
09:22
and we wanted to see how much the morphology helps locomotion.
207
562800
3896
ื•ืจืฆื™ื ื• ืœืจืื•ืช ื›ืžื” ื”ืžื•ืจืคื•ืœื•ื’ื™ื” ืขื•ื–ืจืช ืœืชื ื•ืขื”.
09:26
And we found three important criteria in the properties,
208
566720
3616
ื•ื’ื™ืœื™ื ื• ืฉืœื•ืฉื” ืงืจื™ื˜ืจื™ื•ื ื™ื ื—ืฉื•ื‘ื™ื ื‘ืชื›ื•ื ื•ืช,
09:30
basically, of the limbs.
209
570360
1320
ื‘ืขื™ืงืจื•ืŸ, ืฉืœ ื”ื’ืคื™ื™ื.
09:32
The first one is that a cat limb
210
572320
1976
ื”ืจืืฉื•ื ื” ื”ื™ื ืฉื’ืคื™ื™ื ืฉืœ ื—ืชื•ืœื™ื
09:34
more or less looks like a pantograph-like structure.
211
574320
2696
ืคื—ื•ืช ืื• ื™ื•ืชืจ ื ืจืื™ื ื›ืžื• ืžื‘ื ื” ืฉืœ ืคื ื˜ื•ื’ืจืฃ.
09:37
So a pantograph is a mechanical structure
212
577040
2216
ืื– ืคื ื˜ื•ื’ืจืฃ ื”ื•ื ืžื‘ื ื” ืžื›ืื ื™
09:39
which keeps the upper segment and the lower segments always parallel.
213
579280
3400
ืฉืฉื•ืžืจ ืขืœ ื”ื—ืœืง ื”ืขืœื™ื•ืŸ ื•ื”ื—ืœืงื™ื ื”ื ืžื•ื›ื™ื ืชืžื™ื“ ืžืงื‘ื™ืœื™ื.
09:43
So a simple geometrical system that kind of coordinates a bit
214
583600
3096
ืื– ืžืขืจื›ืช ื’ืื•ืžื˜ืจื™ืช ืคืฉื•ื˜ื” ืฉืกื•ื’ ืฉืœ ืžืชืืžืช ืžืขื˜
09:46
the internal movement of the segments.
215
586720
1816
ืืช ื”ืชื ื•ืขื” ื”ืคื ื™ืžื™ืช ืฉืœ ื”ืกื’ืžื ื˜ื™ื.
09:48
A second property of cat limbs is that they are very lightweight.
216
588560
3056
ืชื›ื•ื ื” ืฉื ื™ื” ืฉืœ ื’ืคื™ื™ ื—ืชื•ืœื™ื ื”ื™ื ืฉื”ื ืžืื•ื“ ืงืœื™ื.
09:51
Most of the muscles are in the trunk,
217
591640
1856
ืจื•ื‘ ื”ืฉืจื™ืจื™ื ื”ื ื‘ื’ื•ืฃ,
09:53
which is a good idea, because then the limbs have low inertia
218
593520
2896
ืฉื–ื” ืจืขื™ื•ืŸ ื˜ื•ื‘, ืžืคื ื™ ืฉืื– ืœื’ืคื™ื™ื ื™ืฉ ืื™ื ืจืฆื™ื” ื ืžื•ื›ื”
09:56
and can be moved very rapidly.
219
596440
1776
ื•ื™ื›ื•ืœื•ืช ืœื ื•ืข ื‘ืžื”ื™ืจื•ืช ื’ื‘ื•ื”ื”.
09:58
The last final important property is this very elastic behavior of the cat limb,
220
598240
3816
ื”ืชื›ื•ื ื” ื”ื—ืฉื•ื‘ื” ื”ืื—ืจื•ื ื” ื”ื™ื ื”ืชื”ื ื”ื’ื•ืช ื”ืžืื•ื“ ืืœืกื˜ื™ืช ืฉืœ ื’ืคื™ ื”ื—ืชื•ืœ,
10:02
so to handle impacts and forces.
221
602080
2656
ื›ื“ื™ ืœื”ืชืžื•ื“ื“ ืขื ืคื’ื™ืขื•ืช ื•ื›ื•ื—ื•ืช.
10:04
And this is how we designed Cheetah-Cub.
222
604760
2336
ื•ื›ืš ืชื›ื ื ื• ืืช ื’ื•ืจ ื”ืฆ'ื™ื˜ื”.
10:07
So let's invite Cheetah-Cub onstage.
223
607120
2200
ืื– ื‘ื•ืื• ื ื–ืžื™ืŸ ืืช ื’ื•ืจ ื”ืฆ'ื™ื˜ื” ืœื‘ืžื”.
10:14
So this is Peter Eckert, who does his PhD on this robot,
224
614160
3656
ืื– ื–ื” ืคื™ื˜ืจ ืืงื”ืจื˜, ืฉืขื•ืฉื” ืืช ื”ื“ื•ืงื˜ื•ืจื˜ ืฉืœื• ืขืœ ื”ืจื•ื‘ื•ื˜ ื”ื–ื”,
10:17
and as you see, it's a cute little robot.
225
617840
2056
ื›ืžื• ืฉืืชื ืจื•ืื™ื, ื–ื” ืจื•ื‘ื•ื˜ ืงื˜ืŸ ื•ื—ืžื•ื“.
10:19
It looks a bit like a toy,
226
619920
1256
ื–ื” ื ืจืื” ืžืขื˜ ื›ืžื• ืฆืขืฆื•ืข,
10:21
but it was really used as a scientific tool
227
621200
2056
ืื‘ืœ ื”ื•ื ื‘ืืžืช ื”ื™ื” ื‘ืฉื™ืžื•ืฉ ื›ื›ืœื™ ืžื“ืขื™
10:23
to investigate these properties of the legs of the cat.
228
623280
3296
ื›ื“ื™ ืœื—ืงื•ืจ ืืช ื”ืชื›ื•ื ื•ืช ื”ืืœื• ืฉืœ ืจื’ืœื™ ื”ื—ืชื•ืœ.
10:26
So you see, it's very compliant, very lightweight,
229
626600
2616
ืื– ืืชื ืจื•ืื™ื, ื–ื” ืžืื•ื“ ืžื•ืชืื, ืžืื•ื“ ืงืœ ืžืฉืงืœ,
10:29
and also very elastic,
230
629240
1256
ื•ื’ื ืžืื•ื“ ืืœืกื˜ื™,
10:30
so you can easily press it down and it will not break.
231
630520
2776
ืื– ืืชื ื™ื›ื•ืœื™ื ืœืœื—ื•ืฅ ืขืœื™ื• ื‘ืงืœื•ืช ื•ื”ื•ื ืœื ื™ืฉื‘ืจ.
10:33
It will just jump, in fact.
232
633320
1456
ื”ื•ื ืคืฉื•ื˜ ื™ืงืคื•ืฅ, ืœืžืขืฉื”.
10:34
And this very elastic property is also very important.
233
634800
2880
ื•ื”ืชื›ื•ื ื” ื”ืžืื•ื“ ืืœืกื˜ื™ืช ื”ื™ื ื’ื ืžืื•ื“ ื—ืฉื•ื‘ื”.
10:39
And you also see a bit these properties
234
639160
1896
ื•ืืชื ื’ื ืจื•ืื™ื ืžืขื˜ ืืช ื”ืชื›ื•ื ื•ืช ื”ืืœื•
10:41
of these three segments of the leg as pantograph.
235
641080
2400
ืฉืœ ืฉืœื•ืฉืช ื”ืžืงื˜ืขื™ื ื”ืืœื• ืฉืœ ื”ืจื’ืœ ื›ืคื ื˜ื•ื’ืจืฃ.
10:44
Now, what's interesting is that this quite dynamic gait
236
644280
2776
ืขื›ืฉื™ื•, ืžื” ืฉืžืขื ื™ื™ืŸ ื–ื” ืฉืฆื•ืจืช ื”ืฆืขื“ ื”ื“ื™ ื“ื™ื ืžื™ืช
10:47
is obtained purely in open loop,
237
647080
1896
ืžื•ืฉื’ืช ืคืฉื•ื˜ ื‘ืœื•ืœืื” ืคืชื•ื—ื”,
10:49
meaning no sensors, no complex feedback loops.
238
649000
3136
ืžื” ืฉืื•ืžืจ ืœืœื ื—ื™ื™ืฉื ื™ื, ืœืœื ืœื•ืœืื•ืช ืžืฉื•ื‘ ืžื•ืจื›ื‘ื•ืช.
10:52
And that's interesting, because it means
239
652160
2416
ื•ื–ื” ืžืขื ื™ื™ืŸ, ืžืคื ื™ ืฉื–ื” ืื•ืžืจ
10:54
that just the mechanics already stabilized this quite rapid gait,
240
654600
4016
ืฉืจืง ื”ืžื›ื ื™ืงื” ื›ื‘ืจ ืžื™ื™ืฆื‘ืช ืืช ื”ืฆืขื“ ื”ื“ื™ ืžื”ื™ืจ ื”ื–ื”,
10:58
and that really good mechanics already basically simplify locomotion.
241
658640
4176
ื•ื”ืžื›ื ื™ืงื” ื”ื˜ื•ื‘ื” ื‘ืืžืช ื”ื–ื• ื›ื‘ืจ ื‘ืขื™ืงืจื•ืŸ ืžืคืฉื˜ืช ืชื ื•ืขื”.
11:02
To the extent that we can even disturb a bit locomotion,
242
662840
3296
ืœืจืžื” ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืืคื™ืœื• ืœื”ืคืจื™ืข ืœืชื ื•ืขื”,
11:06
as you will see in the next video,
243
666160
1656
ื›ืžื• ืฉืืชื ืชืจืื• ื‘ืกืจื˜ื•ืŸ ื”ื‘ื,
11:07
where we can for instance do some exercise where we have the robot go down a step,
244
667840
3896
ื‘ื• ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื“ื•ื’ืžื” ืœืขืฉื•ืช ืชืจื’ื™ืœ ื‘ื• ื”ืจื•ื‘ื•ื˜ ื™ื•ืจื“ ื‘ืžื“ืจื’ื•ืช,
11:11
and the robot will not fall over,
245
671760
1616
ื•ื”ืจื•ื‘ื•ื˜ ืœื ื™ืคื•ืœ,
11:13
which was a surprise for us.
246
673400
1576
ืžื” ืฉื”ื™ื” ื”ืคืชืขื” ื’ื“ื•ืœื” ื‘ืฉื‘ื™ืœื ื•.
11:15
This is a small perturbation.
247
675000
1416
ื–ื• ื”ืคืจืขื” ืงื˜ื ื”.
11:16
I was expecting the robot to immediately fall over,
248
676440
2416
ืฆื™ืคื™ืชื™ ืฉื”ืจื•ื‘ื•ื˜ ืฉืœื™ ื™ืคื•ืœ ืžื™ื™ื“,
11:18
because there are no sensors, no fast feedback loop.
249
678880
2436
ืžืคื ื™ ืฉืื™ืŸ ื—ื™ื™ืฉื ื™ื, ืื™ืŸ ืœื•ืœืืช ืžืฉื•ื‘ ืžื”ื™ืจื”.
11:21
But no, just the mechanics stabilized the gait,
250
681340
2196
ืื‘ืœ ืœื, ืจืง ื”ืžื›ืื ื™ืงื” ืžื™ืฆืฆื‘ืช ืืช ื”ืฆืขื“,
11:23
and the robot doesn't fall over.
251
683560
1576
ื•ื”ืจื•ื‘ื•ื˜ ืœื ื ื•ืคืœ.
11:25
Obviously, if you make the step bigger, and if you have obstacles,
252
685160
3136
ื‘ื‘ืจื•ืจ, ืื ืืชื ืขื•ืฉื™ื ืืช ื”ืฆืขื“ ื’ื“ื•ืœ ื™ื•ืชืจ, ื•ืื ื™ืฉ ืœื›ื ืžื›ืฉื•ืœื™ื,
11:28
you need the full control loops and reflexes and everything.
253
688320
3656
ืืชื ืฆืจื™ื›ื™ื ืืช ืœื•ืœืืช ื”ืฉืœื™ื˜ื” ื”ืžืœืื” ื•ืจื™ืคืœืงืกื™ื ื•ื”ื›ืœ.
11:32
But what's important here is that just for small perturbation,
254
692000
2936
ืื‘ืœ ืžื” ืฉื—ืฉื•ื‘ ืคื” ื–ื” ืฉืจืง ืœื”ืคืจืขื•ืช ืงื˜ื ื•ืช,
11:34
the mechanics are right.
255
694960
1496
ื”ืžื›ืื ื™ืงื” ื”ื™ื ื ื›ื•ื ื”.
11:36
And I think this is a very important message
256
696480
2096
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืžืกืจ ืžืื•ื“ ื—ืฉื•ื‘
11:38
from biomechanics and robotics to neuroscience,
257
698600
2191
ืžื”ื‘ื™ื• ืžื›ืื ื™ืงื” ื•ื”ืจื•ื‘ื•ื˜ื™ื ืœืžื“ืขื™ ื”ืžื•ื—,
11:40
saying don't underestimate to what extent the body already helps locomotion.
258
700815
4680
ืฉืื•ืžืจ ืœื”ืขืจื™ืš ืœืื™ื–ื• ืจืžื” ื”ื’ื•ืฃ ื›ื‘ืจ ืขื•ื–ืจ ืœืชื ื•ืขื”.
11:47
Now, how does this relate to human locomotion?
259
707440
2160
ืขื›ืฉื™ื•, ืื™ืš ื–ื” ืžืชืงืฉืจ ืœืชื ื•ืขื” ืื ื•ืฉื™ืช?
11:49
Clearly, human locomotion is more complex than cat and salamander locomotion,
260
709960
3640
ื‘ื‘ืจื•ืจ, ืชื ื•ืขื” ืื ื•ืฉื™ืช ื”ื™ื ื™ื•ืชืจ ืžื•ืจื›ื‘ืช ืžืชื ื•ืขื” ืฉืœ ื—ืชื•ืœื™ื ื•ืกืœืžื ื“ืจื•ืช,
11:54
but at the same time, the nervous system of humans is very similar
261
714360
3136
ืื‘ืœ ื‘ืื•ืชื• ื–ืžืŸ, ืžืขืจื›ืช ื”ืขืฆื‘ื™ื ืฉืœ ืื ืฉื™ื ื”ื™ื ืžืื•ื“ ื“ื•ืžื”
11:57
to that of other vertebrates.
262
717520
1576
ืœื–ื• ืฉืœ ื‘ืขืœื™ ื—ื•ืœื™ื•ืช ืื—ืจื™ื.
11:59
And especially the spinal cord
263
719120
1456
ื•ื‘ืขื™ืงืจ ื—ื•ื˜ ื”ืฉื“ืจื”
12:00
is also the key controller for locomotion in humans.
264
720600
2640
ื–ื” ื’ื ื”ื‘ืงืจ ื”ืขื™ืงืจื™ ืฉืœ ืชื ื•ืขื” ื‘ื‘ื ื™ ืื“ื.
12:03
That's why, if there's a lesion of the spinal cord,
265
723760
2416
ืœื›ืŸ, ืื ื™ืฉ ืคื’ื™ืขื” ื‘ื—ื•ื˜ ื”ืฉื“ืจื”,
12:06
this has dramatic effects.
266
726200
1496
ื™ืฉ ืœื–ื” ื”ืฉืคืขื•ืช ื“ืจืžื˜ื™ื•ืช.
12:07
The person can become paraplegic or tetraplegic.
267
727720
2776
ื”ืื“ื ื™ื›ื•ืœ ืœื”ืคื•ืš ืœืžืฉื•ืชืง ื‘ืจื’ืœื™ื™ื ืื• ื‘ื™ื“ื™ื™ื.
12:10
This is because the brain loses this communication
268
730520
2376
ื–ื” ื‘ื’ืœืœ ืฉื”ืžื•ื— ืžืื‘ื“ ืืช ื”ืชืงืฉื•ืจืช
12:12
with the spinal cord.
269
732920
1256
ืขื ื—ื•ื˜ ื”ืฉื“ืจื”.
12:14
Especially, it loses this descending modulation
270
734200
2216
ื‘ืขื™ืงืจ, ื”ื•ื ืžืื‘ื“ ืืช ื”ืžื•ื“ื•ืœืฆื™ื” ื”ื™ื•ืจื“ืช
12:16
to initiate and modulate locomotion.
271
736440
1920
ื›ื“ื™ ืœื”ืชื—ื™ืœ ื•ืœื ื˜ืจ ืืช ื”ืชื ื•ืขื”.
12:19
So a big goal of neuroprosthetics
272
739640
1696
ืื– ืžื˜ืจื” ื’ื“ื•ืœื” ืฉืœ ืชื•ืชื‘ื•ืช ื ื™ื•ืจื•ืœื•ื’ื™ื•ืช
12:21
is to be able to reactivate that communication
273
741360
2376
ื–ื” ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื”ืคืขื™ืœ ืžื—ื“ืฉ ืืช ื”ืชืงืฉื•ืจืช
12:23
using electrical or chemical stimulations.
274
743760
2440
ื‘ืฉื™ืžื•ืฉ ื‘ื’ื™ืจื•ื™ื™ื ื—ืฉืžืœื™ื™ื ื•ื›ื™ืžื™ื™ื.
12:26
And there are several teams in the world that do exactly that,
275
746840
2936
ื•ื™ืฉ ืžืกืคืจ ืฆื•ื•ืชื™ื ื‘ืขื•ืœื ืฉืขื•ืฉื™ื ื‘ื“ื™ื•ืง ืืช ื–ื”,
12:29
especially at EPFL.
276
749800
1216
ื‘ืขื™ืงืจ ื‘ EPFL.
12:31
My colleagues Grรฉgoire Courtine and Silvestro Micera,
277
751040
2496
ื”ืงื•ืœื’ื•ืช ืฉืœื™ ื’ืจื’ื•ืจื™ ืงื•ืจื˜ื™ืŸ ื•ืกื™ืœื‘ืกื˜ืจื• ืžื™ืกืจื”,
12:33
with whom I collaborate.
278
753560
1240
ืื™ืชื ืฉื™ืชืคืชื™ ืคืขื•ืœื”.
12:35
But to do this properly, it's very important to understand
279
755960
3096
ืื‘ืœ ื›ื“ื™ ืœืขืฉื•ืช ืืช ื–ื” ื ื›ื•ืŸ, ื–ื” ืžืื•ื“ ื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ
12:39
how the spinal cord works,
280
759080
1736
ืื™ืš ื—ื•ื˜ ื”ืฉื“ืจื” ืขื•ื‘ื“,
12:40
how it interacts with the body,
281
760840
1696
ืื™ืš ื”ื•ื ืžืชืงืฉืจ ืขื ื”ื’ื•ืฃ,
12:42
and how the brain communicates with the spinal cord.
282
762560
2480
ื•ืื™ืš ื”ืžื•ื— ืžืชืงืฉืจ ืขื ื—ื•ื˜ ื”ืฉื“ืจื”.
12:45
This is where the robots and models that I've presented today
283
765800
2896
ืฉื ื”ืจื•ื‘ื•ื˜ ื•ื”ืžื•ื“ืœื™ื ืฉื”ืฆื’ืชื™ ื”ื™ื•ื
12:48
will hopefully play a key role
284
768720
1896
ื‘ืชืงื•ื•ื” ื™ืฉื—ืงื• ืชืคืงื™ื“ ื—ืฉื•ื‘
12:50
towards these very important goals.
285
770640
2656
ื›ืœืคื™ ื”ืžื˜ืจื•ืช ื”ืžืื•ื“ ื—ืฉื•ื‘ื•ืช ื”ืืœื•.
12:53
Thank you.
286
773320
1216
ืชื•ื“ื” ืœื›ื.
12:54
(Applause)
287
774560
4560
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
13:04
Bruno Giussani: Auke, I've seen in your lab other robots
288
784100
2636
ื‘ืจื•ื ื• ื’ื™ืื•ืกื™ืื ื™: ืืื•ืงื”, ืจืื™ืชื™ ื‘ืžืขื‘ื“ื” ืฉืœืš ืจื•ื‘ื•ื˜ื™ื ืื—ืจื™ื
13:06
that do things like swim in pollution
289
786760
2456
ืฉืขื•ืฉื™ื ื“ื‘ืจื™ื ื›ืžื• ืœืฉื—ื•ืช ื‘ื–ื™ื”ื•ื
13:09
and measure the pollution while they swim.
290
789240
2456
ื•ืœืžื“ื•ื“ ืืช ื”ื–ื™ื”ื•ื ื‘ืขื•ื“ื ืฉื•ื—ื™ื.
13:11
But for this one,
291
791720
1216
ืื‘ืœ ืœื–ื”,
13:12
you mentioned in your talk, like a side project,
292
792960
3480
ื”ื–ื›ืจืช ื‘ื”ืจืฆืื” ืฉืœืš, ื›ืžื• ืคืจื•ื™ื™ืงื˜ ืฆื™ื“ื™,
13:17
search and rescue,
293
797640
1216
ื—ื™ืคื•ืฉ ื•ื”ืฆืœื”,
13:18
and it does have a camera on its nose.
294
798880
2176
ื•ื™ืฉ ืœื• ืžืฆืœืžื” ืขืœ ื”ืืฃ.
13:21
Auke Ijspeert: Absolutely. So the robot --
295
801080
2496
ืืื•ืงื” ืื™ื’'ืกืคื™ืจื˜: ื‘ื”ื—ืœื˜. ืื– ื”ืจื•ื‘ื•ื˜ --
13:23
We have some spin-off projects
296
803600
1429
ื™ืฉ ืœื ื• ื›ืžื” ืคืจื•ื™ื™ืงื˜ื™ื ืฆื™ื“ื™ื™ื
13:25
where we would like to use the robots to do search and rescue inspection,
297
805053
3443
ืฉื ื”ื™ื™ื ื• ืจื•ืฆื™ื ืœื”ืชืฉืชืžืฉ ื‘ืจื•ื‘ื•ื˜ื™ื ื›ื“ื™ ืœืขืฉื•ืช ื‘ื“ื™ืงื•ืช ื—ื™ืคื•ืฉ ื•ื”ืฆืœื”,
13:28
so this robot is now seeing you.
298
808520
1576
ืื– ื”ืจื•ื‘ื•ื˜ ื”ื–ื” ืจื•ืื” ืืชื›ื ืขื›ืฉื™ื•.
13:30
And the big dream is to, if you have a difficult situation
299
810120
3176
ื•ื”ื—ืœื•ื ื”ื’ื“ื•ืœ ื”ื•ื, ืื ื™ืฉ ืœื›ื ืžืฆื‘ ืงืฉื”
13:33
like a collapsed building or a building that is flooded,
300
813320
3616
ื›ืžื• ื‘ื ื™ื™ืŸ ืฉืงืจืก ืื• ื‘ื ื™ื™ืŸ ืฉืžื•ืฆืฃ,
13:36
and this is very dangerous for a rescue team or even rescue dogs,
301
816960
3336
ื•ื–ื” ืžืื•ื“ ืžืกื•ื›ืŸ ืœืฆื•ื•ืช ื”ืฆืœื” ืื• ืืคื™ืœื• ืœื›ืœื‘ื™ ื”ืฆืœื”,
13:40
why not send in a robot that can crawl around, swim, walk,
302
820320
2896
ืœืžื” ืœื ืœืฉืœื•ื— ืจื•ื‘ื•ื˜ ืฉื™ื›ื•ืœ ืœื–ื—ื•ืœ ื‘ืื–ื•ืจ, ืœืฉื—ื•ืช, ืœืœื›ืช,
13:43
with a camera onboard to do inspection and identify survivors
303
823240
3176
ืขื ืžืฆืœืžื” ืขืœื™ื• ื›ื“ื™ ืœืขืฉื•ืช ื‘ื—ื™ื ื” ื•ื–ื™ื”ื•ื™ ืฉืœ ื ื™ืฆื•ืœื™ื
13:46
and possibly create a communication link with the survivor.
304
826440
2776
ื•ืื•ืœื™ ืœื™ืฆื•ืจ ืงืฉืจ ืชืงืฉื•ืจืช ืขื ื”ื ื™ืฆื•ืœื™ื.
13:49
BG: Of course, assuming the survivors don't get scared by the shape of this.
305
829240
3576
ื‘.ื’: ื›ืžื•ื‘ืŸ, ื‘ื”ื ื—ื” ืฉื”ื ื™ืฆื•ืœื™ื ืœื ื™ืคื—ื“ื• ืžื”ืฆื•ืจื” ืฉืœ ื–ื”.
13:52
AI: Yeah, we should probably change the appearance quite a bit,
306
832840
3296
ื.ื: ื›ืŸ, ื”ื™ื™ื ื• ืฆืจื™ื›ื™ื ื›ื ืจืื” ืœืฉื ื•ืช ืืช ื”ื ืจืื•ืช ื“ื™ ื”ืจื‘ื”,
13:56
because here I guess a survivor might die of a heart attack
307
836160
2816
ืžืคื ื™ ืฉืคื” ืื ื™ ืžื ื—ืฉ ืฉื ื™ืฆื•ืœ ืื•ืœื™ ื™ืžื•ืช ืžื”ืชืงืฃ ืœื‘
13:59
just of being worried that this would feed on you.
308
839000
2536
ืคืฉื•ื˜ ืžืœื”ื™ื•ืช ืžื•ื“ืื’ ืฉื–ื” ื™ืื›ืœ ืื•ืชื•.
14:01
But by changing the appearance and it making it more robust,
309
841560
2856
ืื‘ืœ ืขืœ ื™ื“ื™ ืฉื™ื ื•ื™ ื”ื ืจืื•ืช ื•ืœืขืฉื•ืช ืื•ืชื• ื™ื•ืชืจ ืขืžื™ื“,
14:04
I'm sure we can make a good tool out of it.
310
844440
2056
ืื ื™ ื‘ื˜ื•ื— ืฉื ื•ื›ืœ ืœื™ืฆื•ืจ ื›ืœื™ ื˜ื•ื‘ ืžืžื ื•.
14:06
BG: Thank you very much. Thank you and your team.
311
846520
2286
ื‘ื’: ืชื•ื“ื” ืจื‘ื” ืœืš. ืชื•ื“ื” ืœืš ื•ืœืฆื•ื•ืช.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7