A robot that runs and swims like a salamander | Auke Ijspeert

814,622 views ใƒป 2016-02-18

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Hansol Ryu ๊ฒ€ํ† : rosie cha
00:12
This is Pleurobot.
0
12760
1840
์ด๊ฒƒ์€ ํ”Œ๋กœ๋กœ๋ด‡(Pleurobot)์ž…๋‹ˆ๋‹ค.
00:15
Pleurobot is a robot that we designed to closely mimic a salamander species
1
15400
3616
ํ”Œ๋กœ๋กœ๋ด‡์€ ์ด๋ฒ ๋ฆฌ์•„์˜์› (Pleurodeles waltl)์ด๋ผ๋Š” ๋„๋กฑ๋‡ฝ์„
๊ทผ์ ‘ํ•˜๊ฒŒ ๋ชจ์‚ฌํ•˜๋„๋ก ์ €ํฌ๊ฐ€ ์„ค๊ณ„ํ•œ ๋กœ๋ด‡์ž…๋‹ˆ๋‹ค.
00:19
called Pleurodeles waltl.
2
19040
1400
00:21
Pleurobot can walk, as you can see here,
3
21240
2256
๋ณด์‹œ๋‹ค์‹œํ”ผ ํ”Œ๋กœ๋กœ๋ด‡์€ ๊ฑธ์„ ์ˆ˜ ์žˆ๊ณ ,
00:23
and as you'll see later, it can also swim.
4
23520
2040
๋‚˜์ค‘์— ๋ณด์‹œ๊ฒ ์ง€๋งŒ ์ˆ˜์˜๋„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
00:26
So you might ask, why did we design this robot?
5
26280
2191
์ด ๋กœ๋ด‡์„ ์™œ ์„ค๊ณ„ํ–ˆ๋Š”์ง€ ๊ถ๊ธˆํ•˜์‹ค ์ˆ˜๋„ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
00:28
And in fact, this robot has been designed as a scientific tool for neuroscience.
6
28960
3762
์‚ฌ์‹ค, ์ด ๋กœ๋ด‡์€ ์‹ ๊ฒฝ ๊ณผํ•™ ์—ฐ๊ตฌ์— ์‚ฌ์šฉ๋  ๊ณผํ•™์  ๋„๊ตฌ๋กœ ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
00:33
Indeed, we designed it together with neurobiologists
7
33400
2496
์‹ค์ œ๋กœ ์ €ํฌ๋Š” ์ด ๋กœ๋ด‡์„ ์‹ ๊ฒฝ๊ณผํ•™์ž๋“ค๊ณผ ํ•จ๊ป˜ ์„ค๊ณ„ํ–ˆ์Šต๋‹ˆ๋‹ค.
00:35
to understand how animals move,
8
35920
1896
๋™๋ฌผ์ด ์–ด๋–ป๊ฒŒ ์›€์ง์ด๋Š”์ง€,
00:37
and especially how the spinal cord controls locomotion.
9
37840
2760
ํŠนํžˆ ์–ด๋–ป๊ฒŒ ์ฒ™์ˆ˜๊ฐ€ ๋ณดํ–‰์„ ์ œ์–ดํ•˜๋Š”์ง€๋ฅผ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ์˜€์Šต๋‹ˆ๋‹ค.
00:41
But the more I work in biorobotics,
10
41560
1696
๊ทธ๋Ÿฐ๋ฐ ์ƒ์ฒด ๊ธฐ๊ณ„ ๋ถ„์•ผ์—์„œ ์ผํ•˜๋ฉด ํ• ์ˆ˜๋ก
00:43
the more I'm really impressed by animal locomotion.
11
43280
2381
์ €๋Š” ๊ฐˆ์ˆ˜๋ก ๋™๋ฌผ์˜ ๋ณดํ–‰์— ๊นŠ์€ ์ธ์ƒ์„ ๋ฐ›๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
00:45
If you think of a dolphin swimming or a cat running or jumping around,
12
45920
4296
ํ—ค์—„์น˜๋Š” ๋Œ๊ณ ๋ž˜, ํ˜น์€ ๋‹ฌ๋ฆฌ๊ฑฐ๋‚˜ ๋›ฐ์–ด์˜ค๋ฅด๋Š” ๊ณ ์–‘์ด,
ํ˜น์€ ์šฐ๋ฆฌ๋“ค ์‚ฌ๋žŒ์˜ ์šด๋™๋„ ๊ทธ๋ ‡์Šต๋‹ˆ๋‹ค.
00:50
or even us as humans,
13
50240
1576
00:51
when you go jogging or play tennis,
14
51840
1816
๊ฐ€๋ณ๊ฒŒ ๋›ฐ๊ฑฐ๋‚˜ ํ…Œ๋‹ˆ์Šค๋ฅผ ์น˜๋Š” ๋™์ž‘ ๋“ฑ์„ ์ƒ๊ฐํ•ด๋ณด๋ฉด
00:53
we do amazing things.
15
53680
1240
์šฐ๋ฆฌ๋Š” ๋†€๋ผ์šด ์ผ์„ ํ•˜๊ณ  ์žˆ๋Š” ๊ฒ๋‹ˆ๋‹ค.
00:55
And in fact, our nervous system solves a very, very complex control problem.
16
55880
4136
์‹ค์ œ๋กœ ์šฐ๋ฆฌ์˜ ์‹ ๊ฒฝ๊ณ„๋Š” ๋งค์šฐ ๋ณต์žกํ•œ ์ œ์–ด ๋ฌธ์ œ๋ฅผ ํ’€์–ด๋‚ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
01:00
It has to coordinate more or less 200 muscles perfectly,
17
60040
3096
์•ฝ 200๊ฐœ์˜ ๊ทผ์œก์„ ์™„๋ฒฝํ•˜๊ฒŒ ์กฐ์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
01:03
because if the coordination is bad, we fall over or we do bad locomotion.
18
63160
3680
๊ทธ๋ ‡์ง€ ์•Š๋‹ค๋ฉด ์šฐ๋ฆฌ๋Š” ๋„˜์–ด์ง€๊ฑฐ๋‚˜ ์ž˜ ๊ฑท์ง€ ๋ชปํ•˜๊ฒŒ ๋˜๊ฒ ์ฃ .
01:07
And my goal is to understand how this works.
19
67560
2720
์ €์˜ ๋ชฉํ‘œ๋Š” ๊ทธ๊ฒƒ์ด ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€๋ฅผ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:11
There are four main components behind animal locomotion.
20
71160
2840
๋™๋ฌผ์˜ ๋ณดํ–‰์—๋Š” ๋„ค ๊ฐ€์ง€ ๊ธฐ๋ณธ์ ์ธ ์š”์†Œ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
01:14
The first component is just the body,
21
74800
1936
์ฒซ ๋ฒˆ์งธ ์š”์†Œ๋Š” ๋ชธ์ž…๋‹ˆ๋‹ค.
01:16
and in fact we should never underestimate
22
76760
1976
์‚ฌ์‹ค ์ƒ์ฒด ์—ญํ•™์˜ ์„ ํ–‰ ์—ฐ๊ตฌ์—์„œ ์ด๋ฏธ ๋™๋ฌผ์˜ ๋ณดํ–‰์„ ์–ด๋Š ์ •๋„๊นŒ์ง€
01:18
to what extent the biomechanics already simplify locomotion in animals.
23
78760
3480
๋‹จ์ˆœํ™”์‹œ์ผฐ๋Š”์ง€๋ฅผ ์ ˆ๋Œ€๋กœ ๊ณผ์†Œํ‰๊ฐ€ํ•ด์„œ๋Š” ์•ˆ ๋ฉ๋‹ˆ๋‹ค.
01:22
Then you have the spinal cord,
24
82920
1456
๋‘๋ฒˆ์งธ ์š”์†Œ๋Š” ์šฐ๋ฆฌ ๋ชธ ์†์— ์žˆ๋Š” ์ฒ™์ˆ˜์ž…๋‹ˆ๋‹ค.
01:24
and in the spinal cord you find reflexes,
25
84400
1976
์ด ์ฒ™์ˆ˜์—์„œ ๋ฐ˜์‚ฌ๊ฐ€ ์ผ์–ด๋‚ฉ๋‹ˆ๋‹ค.
01:26
multiple reflexes that create a sensorimotor coordination loop
26
86400
3456
์—ฌ๊ธฐ์„œ ์ผ์–ด๋‚˜๋Š” ๋‹ค์ˆ˜์˜ ๋ฐ˜์‚ฌ๊ฐ€ ๊ฐ๊ฐ์šด๋™ ์กฐ์ • ํšŒ๋กœ๋ฅผ ๊ตฌ์„ฑํ•ฉ๋‹ˆ๋‹ค.
01:29
between neural activity in the spinal cord and mechanical activity.
27
89880
3480
์ฒ™์ˆ˜์˜ ์‹ ๊ฒฝ ํ™œ๋™๊ณผ ๋ชธ์˜ ๊ธฐ๊ณ„์  ์ž‘์šฉ ์‚ฌ์ด๋ฅผ ์กฐ์ •ํ•˜๋Š” ํšŒ๋กœ์ฃ .
01:34
A third component are central pattern generators.
28
94000
2976
์„ธ ๋ฒˆ์งธ ์š”์†Œ๋Š” ์ด ์ฒ™์ˆ˜ ๋‚ด์— ์žˆ๋Š” ์ค‘์ถ” ํŒจํ„ด ๋ฐœ์ƒ๊ธฐ(CPG)์ž…๋‹ˆ๋‹ค.
01:37
These are very interesting circuits in the spinal cord of vertebrate animals
29
97000
3896
์ฒ™์ถ” ๋™๋ฌผ์˜ ์ฒ™์ˆ˜์— ์žˆ๋Š” ๋งค์šฐ ํฅ๋ฏธ๋กœ์šด ํšŒ๋กœ์ธ๋ฐ,
01:40
that can generate, by themselves,
30
100920
1616
์ด ํšŒ๋กœ๋Š” ์ž์ฒด์ ์œผ๋กœ ๋™์ž‘์„ ์ž˜ ์กฐ์งํ™”ํ•ด์„œ
01:42
very coordinated rhythmic patterns of activity
31
102560
2736
๊ทœ์น™์ ์ธ ๋™์ž‘ ํŒจํ„ด์„ ๋งŒ๋“ค์–ด๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:45
while receiving only very simple input signals.
32
105320
2376
๋งค์šฐ ๋‹จ์ˆœํ•œ ์ž…๋ ฅ ์‹ ํ˜ธ๋งŒ ๋ฐ›์•„์„œ์š”.
01:47
And these input signals
33
107720
1216
๋งˆ์ง€๋ง‰ ์š”์†Œ๋Š” ์ด๋Ÿฐ ์ž…๋ ฅ ์‹ ํ˜ธ๋“ค์ธ๋ฐ,
01:48
coming from descending modulation from higher parts of the brain,
34
108960
3056
๋‡Œ์˜ ์šด๋™ํ”ผ์งˆ, ์†Œ๋‡Œ, ๊ธฐ์ €ํ•ต ๋“ฑ์˜ ๋‡Œ์˜ ์ƒ์œ„๋ถ€๋ถ„์—์„œ
ํ•˜ํ–‰์กฐ์ •์œผ๋กœ ๋‚ด๋ ค์˜ค๋Š” ์‹ ํ˜ธ๋ฅผ ๋งํ•˜๋ฉฐ,
01:52
like the motor cortex, the cerebellum, the basal ganglia,
35
112040
2696
01:54
will all modulate activity of the spinal cord
36
114760
2136
์ด ์‹ ํ˜ธ๋“ค์€ ์šฐ๋ฆฌ๊ฐ€ ๋ณดํ–‰ํ•˜๋Š” ๋™์•ˆ์—
01:56
while we do locomotion.
37
116920
1456
์ฒ™์ˆ˜์˜ ํ™œ๋™์„ ์กฐ์ ˆํ•ฉ๋‹ˆ๋‹ค.
01:58
But what's interesting is to what extent just a low-level component,
38
118400
3216
๊ทธ๋Ÿฐ๋ฐ ํฅ๋ฏธ๋กœ์šด ์ ์€ ๋‚ฎ์€ ๋‹จ๊ณ„์˜ ์š”์†Œ๋“ค์ธ
์ฒ™์ˆ˜์™€ ๋ชธ๋งŒ์œผ๋กœ๋„
02:01
the spinal cord, together with the body,
39
121640
1936
๋ณดํ–‰ ๋ฌธ์ œ์˜ ์–ผ๋งˆ๋‚˜ ํฐ ๋ถ€๋ถ„์„ ์ด๋ฏธ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€ ํ•˜๋Š” ์ ์ž…๋‹ˆ๋‹ค.
02:03
already solve a big part of the locomotion problem.
40
123600
2456
์•„๋งˆ๋„ ์—ฌ๋Ÿฌ๋ถ„์€ ๋‹ญ์˜ ๋จธ๋ฆฌ๋ฅผ ์ž˜๋ผ๋„ ์–ผ๋งˆ๊ฐ„์€ ๋‹ฌ๋ฆด ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„
02:06
You probably know it by the fact that you can cut the head off a chicken,
41
126080
3422
์•„์‹ค ์ˆ˜๋„ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
02:09
it can still run for a while,
42
129532
1381
ํ•˜์œ„ ๋ถ€๋ถ„, ๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์ฒ™์ˆ˜์™€ ๋ชธ๋งŒ์œผ๋กœ๋„
02:10
showing that just the lower part, spinal cord and body,
43
130937
2539
๋ณดํ–‰์˜ ํฐ ๋ถ€๋ถ„์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๋œป์ด์ฃ .
02:13
already solve a big part of locomotion.
44
133500
1873
02:15
Now, understanding how this works is very complex,
45
135397
2459
์ด๋“ค์ด ์–ด๋–ป๊ฒŒ ์ž‘์šฉํ•˜๋Š”์ง€๋ฅผ ์•Œ๊ธฐ๋Š” ๋งค์šฐ ๋ณต์žกํ•œ๋ฐ
02:17
because first of all,
46
137880
1296
์™œ๋ƒํ•˜๋ฉด ์šฐ์„ 
02:19
recording activity in the spinal cord is very difficult.
47
139200
2620
์ฒ™์ˆ˜์˜ ํ™œ๋™์„ ๊ธฐ๋กํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
02:21
It's much easier to implant electrodes in the motor cortex
48
141844
2772
์šด๋™ ํ”ผ์งˆ์— ์ „๊ทน์„ ์‹ฌ๋Š” ๊ฒƒ์ด ์ฒ™์ˆ˜์— ์‹ฌ๋Š” ๊ฒƒ ๋ณด๋‹ค ํ›จ์”ฌ ์‰ฌ์šด๋ฐ
02:24
than in the spinal cord, because it's protected by the vertebrae.
49
144640
3056
์ฒ™์ถ”๊ฐ€ ์ฒ™์ˆ˜๋ฅผ ๊ฐ์‹ธ๊ณ  ๋ณดํ˜ธํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
02:27
Especially in humans, very hard to do.
50
147720
1816
์‚ฌ๋žŒ์—๊ฒŒ๋Š” ํŠนํžˆ ๋” ์–ด๋ ต์ฃ .
02:29
A second difficulty is that locomotion is really due to a very complex
51
149560
3776
๋‘ ๋ฒˆ์งธ ์–ด๋ ค์›€์€ ๋ณดํ–‰์ด ์•ž์„œ ๋ง์”€๋“œ๋ฆฐ ๋„ค ๊ฐ€์ง€ ์š”์†Œ ์‚ฌ์ด์˜
02:33
and very dynamic interaction between these four components.
52
153360
3056
์ •๋ง์ด์ง€ ๋งค์šฐ ๋ณต์žกํ•˜๊ณ  ๋™์ ์ธ ๊ด€๊ณ„์— ์˜์กดํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
02:36
So it's very hard to find out what's the role of each over time.
53
156440
3240
๊ทธ๋ž˜์„œ ๋งค ์ˆœ๊ฐ„์— ๊ฐ ์š”์†Œ๊ฐ€ ๋ฌด์Šจ ์—ญํ• ์„ ํ•˜๋Š”์ง€ ์•Œ์•„๋‚ด๊ธฐ๊ฐ€ ์–ด๋ ต์Šต๋‹ˆ๋‹ค.
02:40
This is where biorobots like Pleurobot and mathematical models
54
160880
3736
์ด ์ ์ด ํ”Œ๋กœ๋กœ๋ด‡ ๊ฐ™์€ ์ƒ์ฒด ๊ธฐ๊ณ„์™€ ์ˆ˜ํ•™์  ๋ชจ๋ธ์ด
02:44
can really help.
55
164640
1200
๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ๋ถ€๋ถ„์ž…๋‹ˆ๋‹ค.
02:47
So what's biorobotics?
56
167480
1256
๊ทธ๋ ‡๋‹ค๋ฉด ์ƒ์ฒด ๊ธฐ๊ณ„๋Š” ๋ฌด์—‡์ผ๊นŒ์š”?
02:48
Biorobotics is a very active field of research in robotics
57
168760
2736
์ƒ์ฒด ๊ธฐ๊ณ„๋Š” ๋กœ๋ด‡ ๊ณตํ•™์—์„œ ๋งค์šฐ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํ•œ ๋ถ„์•ผ์ž…๋‹ˆ๋‹ค.
02:51
where people want to take inspiration from animals
58
171520
2456
์‚ฌ๋žŒ๋“ค์€ ๋™๋ฌผ์— ์ฐฉ์•ˆํ•ด์„œ
02:54
to make robots to go outdoors,
59
174000
2456
์‹ค์™ธ์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋กœ๋ด‡์„ ๋งŒ๋“œ๋Š” ์—ฐ๊ตฌ๋ฅผ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
02:56
like service robots or search and rescue robots
60
176480
2656
์˜ˆ๋ฅผ ๋“ค์–ด ์„œ๋น„์Šค ๋กœ๋ด‡์ด๋‚˜ ์ˆ˜์ƒ‰ ๋ฐ ๊ตฌ์กฐ ๋กœ๋ด‡,
02:59
or field robots.
61
179160
1200
์•ผ์™ธ์šฉ ๋กœ๋ด‡ ๋“ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
03:00
And the big goal here is to take inspiration from animals
62
180880
2696
์ด ๋ถ„์•ผ์˜ ํฐ ๋ชฉํ‘œ๋Š” ๋™๋ฌผ์— ์ฐฉ์•ˆํ•ด์„œ
03:03
to make robots that can handle complex terrain --
63
183600
2336
๋ณต์žกํ•œ ์ง€ํ˜•์— ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋กœ๋ด‡์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:05
stairs, mountains, forests,
64
185960
1616
๊ณ„๋‹จ์ด๋‚˜ ์‚ฐ, ์ˆฒ ๋“ฑ์ด์š”.
03:07
places where robots still have difficulties
65
187600
2016
๊ธฐ์กด์˜ ๋กœ๋ด‡๋“ค์ด ์ž˜ ๋Œ€์ฒ˜ํ•˜์ง€ ๋ชปํ•˜์ง€๋งŒ
03:09
and where animals can do a much better job.
66
189640
2056
๋™๋ฌผ๋“ค์€ ํ›จ์”ฌ ์ž˜ ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ๋Š” ์žฅ์†Œ๋“ค์ž…๋‹ˆ๋‹ค.
03:11
The robot can be a wonderful scientific tool as well.
67
191720
2496
๋˜ํ•œ ๋กœ๋ด‡์€ ํ›Œ๋ฅญํ•œ ๊ณผํ•™์  ๋„๊ตฌ๊ฐ€ ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
03:14
There are some very nice projects where robots are used,
68
194240
2620
๋กœ๋ด‡์ด ์‚ฌ์šฉ๋˜๋Š” ๋ฉ‹์ง„ ํ”„๋กœ์ ํŠธ๊ฐ€ ๋ช‡ ๊ฐ€์ง€ ์žˆ๋Š”๋ฐ
03:16
like a scientific tool for neuroscience, for biomechanics or for hydrodynamics.
69
196884
3972
์‹ ๊ฒฝ๊ณผํ•™์ด๋‚˜ ์ƒ์ฒด์—ญํ•™, ์œ ์ฒด์—ญํ•™ ๋“ฑ์— ๊ณผํ•™์  ๋„๊ตฌ๋กœ ์ด์šฉํ•  ์ˆ˜ ์žˆ์ฃ .
03:20
And this is exactly the purpose of Pleurobot.
70
200880
2120
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ์ด ๋ฐ”๋กœ ํ”Œ๋กœ๋กœ๋ด‡์˜ ๋ชฉ์ ์ž…๋‹ˆ๋‹ค.
03:23
So what we do in my lab is to collaborate with neurobiologists
71
203600
2936
์—ฐ๊ตฌ์‹ค์—์„œ ์ €ํฌ๊ฐ€ ํ•˜๋Š” ์ผ์€ ํ”„๋ž‘์Šค ๋ณด๋ฅด๋„์˜ ์ง„-๋งˆ๋ฆฌ ์นด๋ฒจ๊ฒ ๊ฐ™์€
03:26
like Jean-Marie Cabelguen, a neurobiologist in Bordeaux in France,
72
206560
3216
์‹ ๊ฒฝ๊ณผํ•™์ž๋“ค๊ณผ ํ˜‘๋ ฅํ•ด์„œ
03:29
and we want to make spinal cord models and validate them on robots.
73
209800
4040
์ฒ™์ˆ˜์— ๋Œ€ํ•œ ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ณ  ์ด๋ฅผ ๋กœ๋ด‡์„ ํ†ตํ•ด ์ž…์ฆํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:34
And here we want to start simple.
74
214480
1616
์ €ํฌ๋Š” ๊ฐ„๋‹จํ•œ ๊ฒƒ์—์„œ ์‹œ์ž‘ํ•˜๊ณ ์ž ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:36
So it's good to start with simple animals
75
216120
1976
๋งค์šฐ ์›์‹œ์ ์ธ ๋ฌผ๊ณ ๊ธฐ์ธ ์น ์„ฑ์žฅ์–ด ๋“ฑ
03:38
like lampreys, which are very primitive fish,
76
218120
2256
๋‹จ์ˆœํ•œ ๋™๋ฌผ์—์„œ ์‹œ์ž‘ํ•˜๋Š” ๊ฒƒ์ด ์ข‹์ฃ .
03:40
and then gradually go toward more complex locomotion,
77
220400
2496
๊ทธ๋ฆฌ๊ณ  ์ ์ฐจ ๋ณด๋‹ค ๋ณต์žกํ•œ ์šด๋™,
03:42
like in salamanders,
78
222920
1256
๋„๋กฑ๋‡ฝ์˜ ๋ณดํ–‰์ด๋‚˜
03:44
but also in cats and in humans,
79
224200
1496
๊ณ ์–‘์ด์™€ ์‚ฌ๋žŒ ๋“ฑ ํฌ์œ ๋ฅ˜์˜ ๋ณดํ–‰ ๋“ฑ์œผ๋กœ ๋ฐœ์ „์‹œํ‚ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
03:45
in mammals.
80
225720
1200
03:47
And here, a robot becomes an interesting tool
81
227880
2376
์—ฌ๊ธฐ์„œ ๋กœ๋ด‡์€ ์ €ํฌ ๋ชจ๋ธ์„ ์ž…์ฆํ•˜๊ธฐ ์œ„ํ•œ
03:50
to validate our models.
82
230280
1936
ํฅ๋ฏธ๋กœ์šด ๋„๊ตฌ๊ฐ€ ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
03:52
And in fact, for me, Pleurobot is a kind of dream becoming true.
83
232240
3016
์‹ค์€ ์ €์—๊ฒŒ ํ”Œ๋กœ๋กœ๋ด‡์€ ๊ฟˆ์„ ์‹คํ˜„์‹œํ‚จ ๊ฒƒ์ด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
03:55
Like, more or less 20 years ago I was already working on a computer
84
235280
3256
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ, 20๋…„๋„ ๋” ์ „๋ถ€ํ„ฐ ์ €๋Š” ์ปดํ“จํ„ฐ๋ฅผ ์ด์šฉํ•ด์„œ
03:58
making simulations of lamprey and salamander locomotion
85
238560
2656
์น ์„ฑ์žฅ์–ด์™€ ๋„๋กฑ๋‡ฝ์˜ ์›€์ง์ž„์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ํ•˜๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
04:01
during my PhD.
86
241240
1536
๊ทธ๋•Œ๋Š” ๋ฐ•์‚ฌ ๊ณผ์ • ์ค‘์ด์—ˆ์ฃ .
04:02
But I always knew that my simulations were just approximations.
87
242800
3376
ํ•˜์ง€๋งŒ ์ €๋Š” ์ €์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ด ๋‹จ์ง€ ๊ทผ์‚ฌ์ผ ๋ฟ์ž„์„ ์•Œ๊ณ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
04:06
Like, simulating the physics in water or with mud or with complex ground,
88
246200
3976
์˜ˆ๋ฅผ ๋“ค์–ด ๋ฌผ์ด๋‚˜ ์ง„ํ™, ๋ณต์žกํ•œ ์ง€ํ‘œ๋ฉด์— ๋Œ€ํ•œ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์€
04:10
it's very hard to simulate that properly on a computer.
89
250200
2656
์ปดํ“จํ„ฐ์— ๋ฐ”๋ฅด๊ฒŒ ๊ตฌํ˜„ํ•˜๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค.
04:12
Why not have a real robot and real physics?
90
252880
2040
๊ทธ๋ ‡๋‹ค๋ฉด ์‹ค์ œ ๋กœ๋ด‡๊ณผ ์‹ค์ œ ๋ฌผ๋ฆฌํ•™์„ ์‚ฌ์šฉํ•˜๋ฉด ๋˜์ง€ ์•Š์„๊นŒ์š”?
04:15
So among all these animals, one of my favorites is the salamander.
91
255600
3136
์—ฌ๋Ÿฌ ๋™๋ฌผ ์ค‘์—์„œ ์ œ๊ฐ€ ์ข‹์•„ํ•˜๋Š” ๋™๋ฌผ ํ•˜๋‚˜๊ฐ€ ๋„๋กฑ๋‡ฝ์ž…๋‹ˆ๋‹ค.
04:18
You might ask why, and it's because as an amphibian,
92
258760
3456
์™œ์ธ์ง€ ๊ถ๊ธˆํ•˜์‹ค ํ…๋ฐ์š”, ๊ทธ ์ด์œ ๋Š” ๋„๋กฑ๋‡ฝ์ด ์†ํ•œ ์–‘์„œ๋ฅ˜๊ฐ€
04:22
it's a really key animal from an evolutionary point of view.
93
262240
2856
์ง„ํ™”์˜ ๊ด€์ ์—์„œ ๋งค์šฐ ํ•ต์‹ฌ์ ์ธ ์œ„์น˜๋ฅผ ์ฐจ์ง€ํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
์ด๋“ค์€ ํ›Œ๋ฅญํ•œ ์—ฐ๊ฒฐ ๊ณ ๋ฆฌ๊ฐ€ ๋˜์–ด ์ค๋‹ˆ๋‹ค.
04:25
It makes a wonderful link between swimming,
94
265120
2056
๋ฑ€์žฅ์–ด๋‚˜ ๋ฌผ๊ณ ๊ธฐ๊ฐ€ ๋ฌผ์—์„œ ํ—ค์—„์น˜๋Š” ๊ฒƒ๊ณผ
04:27
as you find it in eels or fish,
95
267200
1896
๊ณ ์–‘์ด๋‚˜ ์‚ฌ๋žŒ ๋“ฑ ํฌ์œ ๋ฅ˜๊ฐ€ ์‚ฌ์กฑ ๋ณดํ–‰ํ•˜๋Š” ๊ฒƒ ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ ๊ณ ๋ฆฌ์ฃ .
04:29
and quadruped locomotion, as you see in mammals, in cats and humans.
96
269120
4120
04:34
And in fact, the modern salamander
97
274160
1656
์‹ค์ œ๋กœ ํ˜„ ์‹œ๋Œ€์˜ ๋„๋กฑ๋‡ฝ์€
04:35
is very close to the first terrestrial vertebrate,
98
275840
2376
์ตœ์ดˆ๋กœ ์œก์ง€์— ๋‚˜์™”๋˜ ์ฒ™์ถ” ๋™๋ฌผ๊ณผ ๋งค์šฐ ์œ ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
์‚ด์•„์žˆ๋Š” ํ™”์„์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์„ ์ •๋„์ฃ .
04:38
so it's almost a living fossil,
99
278240
1536
04:39
which gives us access to our ancestor,
100
279800
1936
์šฐ๋ฆฌ์˜ ์กฐ์ƒ, ์œก์ง€์— ์‚ฌ๋Š” ๋ชจ๋“  ์‚ฌ์กฑ ๋™๋ฌผ๋“ค์˜
04:41
the ancestor to all terrestrial tetrapods.
101
281760
2920
์กฐ์ƒ์— ์ด๋ฅด๋Š” ๊ธธ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.
04:45
So the salamander swims
102
285240
1376
๋„๋กฑ๋‡ฝ์ด ํ—ค์—„์น˜๋Š” ๋ฐฉ๋ฒ•์€
04:46
by doing what's called an anguilliform swimming gait,
103
286640
2496
๋ฑ€์žฅ์–ด ํ˜•ํƒœ์˜ ํ—ค์—„์ด๋ผ ๋ถˆ๋ฆฝ๋‹ˆ๋‹ค.
๋จธ๋ฆฌ์—์„œ ๊ผฌ๋ฆฌ์— ์ด๋ฅด๋Š” ๊ทผ์œก์ด ์ง„ํ–‰ํ•˜๋Š” ํŒŒ๋™์ฒ˜๋Ÿผ ํ™œ์„ฑํ™”๋ฉ๋‹ˆ๋‹ค.
04:49
so they propagate a nice traveling wave of muscle activity from head to tail.
104
289160
3640
04:53
And if you place the salamander on the ground,
105
293440
2176
๋„๋กฑ๋‡ฝ์„ ๋•…์— ๋‚ด๋ ค๋†“์œผ๋ฉด
04:55
it switches to what's called a walking trot gait.
106
295640
2336
๋น ๋ฅธ ๊ฑธ์Œ์œผ๋กœ ๊ฑท๋Š” ํ˜•ํƒœ์˜ ๋ณดํ–‰์œผ๋กœ ๋ฐ”๋€๋‹ˆ๋‹ค.
์ด ๊ฒฝ์šฐ ๋„๋กฑ๋‡ฝ์˜ ๋‹ค๋ฆฌ๋Š” ์•„์ฃผ ์ฃผ๊ธฐ์ ์œผ๋กœ ์šด๋™ํ•˜๋Š”๋ฐ
04:58
In this case, you have nice periodic activation of the limbs
107
298000
2863
05:00
which are very nicely coordinated
108
300887
1609
์ด ์šด๋™์ด ๋งค์šฐ ์ž˜ ์กฐ์ •๋˜๊ณ  ์žˆ์œผ๋ฉฐ,
05:02
with this standing wave undulation of the body,
109
302520
2656
๋ชธ์€ ์ •์ƒํŒŒ ํ˜•ํƒœ์˜ ํŒŒ๋™์„ ๊ทธ๋ฆฌ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:05
and that's exactly the gait that you are seeing here on Pleurobot.
110
305200
3656
ํ”Œ๋กœ๋กœ๋ด‡์— ๊ตฌํ˜„๋œ ๋ณดํ–‰๊ณผ ๊ฐ™์ฃ .
05:08
Now, one thing which is very surprising and fascinating in fact
111
308880
2976
๋ฌด์ฒ™ ๋†€๋ผ์šฐ๋ฉด์„œ ํฅ๋ฏธ๋กœ์šด ์‚ฌ์‹ค ํ•˜๋‚˜๋Š”
05:11
is the fact that all this can be generated just by the spinal cord and the body.
112
311880
4136
์ด ๋ชจ๋“  ์›€์ง์ž„์ด ๋‹จ์ง€ ์ฒ™์ˆ˜์™€ ๋ชธ๋งŒ์œผ๋กœ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
๋งŒ์•ฝ ๋„๋กฑ๋‡ฝ์˜ ๋Œ€๋‡Œ๋ฅผ ์ œ๊ฑฐํ•œ๋‹ค๋ฉด
05:16
So if you take a decerebrated salamander --
113
316040
2000
05:18
it's not so nice but you remove the head --
114
318064
2016
- ๋ชป๋œ ์ผ์ด์ง€๋งŒ, ๋„๋กฑ๋‡ฝ์˜ ๋จธ๋ฆฌ๋ฅผ ์ œ๊ฑฐํ•˜๋ฉด ๋ง์ž…๋‹ˆ๋‹ค -
์ฒ™์ˆ˜์— ์ „๊ธฐ ์ž๊ทน์„ ์ฃผ์—ˆ์„ ๋•Œ
05:20
and if you electrically stimulate the spinal cord,
115
320104
2672
05:22
at low level of stimulation this will induce a walking-like gait.
116
322800
3256
์ž๊ทน์ด ๋‚ฎ์„ ๋•Œ๋Š” ๊ฑท๋Š” ๋™์ž‘์„ ์œ ๋ฐœํ•˜๊ฒŒ ๋˜๊ณ ,
์กฐ๊ธˆ ๋” ๊ฐ•ํ•˜๊ฒŒ ์ž๊ทนํ•˜๋ฉด ๊ฐ€์† ๋ณดํ–‰์„ ์œ ๋ฐœํ•ฉ๋‹ˆ๋‹ค.
05:26
If you stimulate a bit more, the gait accelerates.
117
326080
2456
05:28
And at some point, there's a threshold,
118
328560
1896
์–ด๋Š ์ˆœ๊ฐ„, ๊ธฐ์ค€์ด ๋˜๋Š” ์ ์„ ์ง€๋‚˜๋ฉด
05:30
and automatically, the animal switches to swimming.
119
330480
2536
์ž๋™์ ์œผ๋กœ ์ด ๋™๋ฌผ์€ ํ—ค์—„์„ ์น˜๊ธฐ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค.
05:33
This is amazing.
120
333040
1376
์ •๋ง ๋†€๋ผ์šด ์ผ์ž…๋‹ˆ๋‹ค.
05:34
Just changing the global drive,
121
334440
1496
๊ทธ์ € ์ „์ฒด์ ์ธ ๊ตฌ๋™์„ ๋ฐ”๊ฟˆ์œผ๋กœ์จ,
05:35
as if you are pressing the gas pedal
122
335960
1736
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ๋งˆ์น˜ ๊ฐ€์† ํŽ˜๋‹ฌ์„ ๋ฐŸ๋“ฏ
05:37
of descending modulation to your spinal cord,
123
337720
2136
์ฒ™์ˆ˜๋กœ ๋‚ด๋ ค๊ฐ€๋Š” ๋ช…๋ น์„ ๋ฐ”๊พธ๊ธฐ๋งŒ ํ•˜๋ฉด
05:39
makes a complete switch between two very different gaits.
124
339880
3000
์„œ๋กœ ๊ต‰์žฅํžˆ ๋‹ค๋ฅธ ๋‘ ๊ฐ€์ง€ ์›€์ง์ž„์„ ์˜ค๊ฐˆ ์ˆ˜ ์žˆ๋‹ค๋Š” ๋œป์ž…๋‹ˆ๋‹ค.
05:44
And in fact, the same has been observed in cats.
125
344440
2576
์‚ฌ์‹ค, ๊ฐ™์€ ํ˜„์ƒ์€ ๊ณ ์–‘์ด์—๊ฒŒ์„œ๋„ ๋ฐœ๊ฒฌ๋ฉ๋‹ˆ๋‹ค.
05:47
If you stimulate the spinal cord of a cat,
126
347040
2016
๊ณ ์–‘์ด์˜ ์ฒ™์ˆ˜๋ฅผ ์ž๊ทนํ•˜๋ฉด
๊ฑท๋Š” ๋™์ž‘, ๊ฐ€๋ณ๊ฒŒ ๋›ฐ๋Š” ๋™์ž‘, ์ „์†๋ ฅ ๋‹ฌ๋ฆฌ๊ธฐ ์‚ฌ์ด์—์„œ ์ „ํ™˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:49
you can switch between walk, trot and gallop.
127
349080
2216
05:51
Or in birds, you can make a bird switch between walking,
128
351320
2736
ํ˜น์€ ์ƒˆ์—๊ฒŒ์„œ, ๋‚ฎ์€ ์ •๋„์˜ ์ž๊ทน์„ ์ฃผ๋ฉด
05:54
at a low level of stimulation,
129
354080
1456
๊ฑท๋„๋ก ํ•  ์ˆ˜ ์žˆ๊ณ ,
05:55
and flapping its wings at high-level stimulation.
130
355560
2816
๋†’์€ ์ •๋„์˜ ์ž๊ทน์—์„œ๋Š” ๋‚ ๊ฐœ๋ฅผ ์น˜๊ฒŒ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:58
And this really shows that the spinal cord
131
358400
2016
์ด ๋ชจ๋“  ๊ฒƒ์„ ํ†ตํ•ด์„œ ์ฒ™์ˆ˜๊ฐ€
06:00
is a very sophisticated locomotion controller.
132
360440
2416
๋งค์šฐ ์ •๊ตํ•œ ๋ณดํ–‰ ์ œ์–ด๊ธฐ์ž„์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:02
So we studied salamander locomotion in more detail,
133
362880
2456
๊ทธ๋ž˜์„œ ์ €ํฌ๋Š” ๋„๋กฑ๋‡ฝ์˜ ๋ณดํ–‰์„ ๋” ์ž์„ธํžˆ ์—ฐ๊ตฌํ–ˆ์Šต๋‹ˆ๋‹ค.
06:05
and we had in fact access to a very nice X-ray video machine
134
365360
3096
์ €ํฌ๋Š” ์ž˜ ๋งŒ๋“ค์–ด์ง„ ์—‘์Šค๋ ˆ์ด ์˜์ƒ ์žฅ๋น„๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
06:08
from Professor Martin Fischer in Jena University in Germany.
135
368480
3576
๋…์ผ ์˜ˆ๋‚˜ ๋Œ€ํ•™์˜ ๋งˆํ‹ด ํ”ผ์…” ๊ต์ˆ˜๋‹˜์˜ ๋„์›€์„ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค.
๋•๋ถ„์— ๊ทธ ์žฅ์น˜๋ฅผ ์ด์šฉํ•ด์„œ
06:12
And thanks to that, you really have an amazing machine
136
372080
2576
๋ผˆ์˜ ์›€์ง์ž„์„ ๋งค์šฐ ์ƒ์„ธํ•˜๊ฒŒ ๊ธฐ๋กํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
06:14
to record all the bone motion in great detail.
137
374680
2456
06:17
That's what we did.
138
377160
1256
์ €ํฌ๋Š” ์ด๋ฅผ ํ†ตํ•ด
06:18
So we basically figured out which bones are important for us
139
378440
3176
์–ด๋–ค ๋ผˆ๊ฐ€ ์ €ํฌ์—๊ฒŒ ์ค‘์š”ํ•œ์ง€๋ฅผ ์•Œ์•„๋‚ผ ์ˆ˜ ์žˆ์—ˆ๊ณ 
06:21
and collected their motion in 3D.
140
381640
3016
์ด ๋ผˆ๋“ค์˜ 3์ฐจ์› ์›€์ง์ž„ ์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
06:24
And what we did is collect a whole database of motions,
141
384680
2696
์ €ํฌ๋Š” ๋ชจ๋“  ๋™์ž‘์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์ˆ˜์ง‘ํ•ด ๋ฐ์ดํ„ฐ ๋ฒ ์ด์Šค๋ฅผ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
06:27
both on ground and in water,
142
387400
1656
๋•… ์œ„์—์„œ์™€ ๋ฌผ ์†์—์„œ ๋ชจ๋‘์š”.
06:29
to really collect a whole database of motor behaviors
143
389080
2484
์‹ค์ œ ๋™๋ฌผ์ด ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋“  ํ–‰๋™์— ๋Œ€ํ•œ ์šด๋™ ์ •๋ณด๋ฅผ
06:31
that a real animal can do.
144
391589
1244
์ˆ˜์ง‘ํ•˜๊ณ ์ž ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:32
And then our job as roboticists was to replicate that in our robot.
145
392858
3150
๊ทธ ๋‹ค์Œ ์ €ํฌ๋Š” ๋กœ๋ด‡ ๊ณตํ•™์ž๋กœ์„œ ์ €ํฌ ๋กœ๋ด‡์— ๊ทธ๊ฒƒ์„ ๋ชจ์‚ฌํ–ˆ์Šต๋‹ˆ๋‹ค.
์•Œ๋งž์€ ๊ตฌ์กฐ๋ฅผ ์•Œ์•„๋‚ด๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ ์ตœ์ ํ™” ๊ณผ์ •์„ ๊ฑฐ์ณค์Šต๋‹ˆ๋‹ค.
06:36
So we did a whole optimization process to find out the right structure,
146
396033
3383
06:39
where to place the motors, how to connect them together,
147
399440
2656
๋ชจํ„ฐ๋Š” ์–ด๋””์— ๋‘˜ ๊ฒƒ์ธ์ง€, ๊ฐ ๋ถ€๋ถ„์„ ์–ด๋–ป๊ฒŒ ์ฒด๊ฒฐํ•  ๊ฒƒ์ธ์ง€ ๋“ฑ์„ ๊ฒฐ์ •ํ–ˆ์ฃ .
์‹ค์ œ ์›€์ง์ž„์„ ๊ฐ€๋Šฅํ•œ ์ž˜ ์žฌํ˜„ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:42
to be able to replay these motions as well as possible.
148
402120
2880
06:45
And this is how Pleurobot came to life.
149
405680
2360
์ด๊ฒƒ์ด ํ”Œ๋กœ๋กœ๋ด‡์„ ๋งŒ๋“  ๊ณผ์ •์ž…๋‹ˆ๋‹ค.
๊ทธ๋Ÿฌ๋ฉด ์ด์ œ ์ด ๋กœ๋ด‡์ด ์–ผ๋งˆ๋‚˜ ์‹ค์ œ ๋™๋ฌผ๊ณผ ํก์‚ฌํ•œ์ง€๋ฅผ ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
06:49
So let's look at how close it is to the real animal.
150
409200
2416
06:52
So what you see here is almost a direct comparison
151
412960
2496
์—ฌ๋Ÿฌ๋ถ„์ด ๋ณด์‹œ๋Š”๊ฒƒ์€ ์‹ค์ œ ๋™๋ฌผ๊ณผ ํ”Œ๋กœ๋กœ๋ด‡์˜ ๋ณดํ–‰์„
06:55
between the walking of the real animal and the Pleurobot.
152
415480
2696
๊ฑฐ์˜ ์ง์ ‘์ ์œผ๋กœ ๋น„๊ตํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
๊ฑฐ์˜ ์ผ๋Œ€์ผ๋กœ ์ƒ์‘ํ•˜๋Š” ์ •ํ™•ํ•œ ๋ณดํ–‰ ๋ชจ์‚ฌ๊ฐ€ ์ด๋ฃจ์–ด์ง„ ๊ฒƒ์„
06:58
You can see that we have almost a one-to-one exact replay
153
418200
2736
07:00
of the walking gait.
154
420960
1256
ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:02
If you go backwards and slowly, you see it even better.
155
422240
2600
๋˜๊ฐ๊ธฐํ•ด์„œ ์ฒœ์ฒœํžˆ ๋ณด์‹œ๋ฉด ๋” ์ž˜ ๋ณด์‹ค ์ˆ˜ ์žˆ์ฃ .
07:07
But even better, we can do swimming.
156
427520
2376
๋”์šฑ์ด, ์ด ๋กœ๋ด‡์€ ํ—ค์—„๋„ ์น  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:09
So for that we have a dry suit that we put all over the robot --
157
429920
3016
๊ทธ๋ž˜์„œ ์ €ํฌ๋Š” ๋ฐฉ์ˆ˜๋ณต์„ ๋งŒ๋“ค์–ด์„œ ๋กœ๋ด‡์— ๋’ค์ง‘์–ด์”Œ์› ์Šต๋‹ˆ๋‹ค.
07:12
(Laughter)
158
432960
1096
(์›ƒ์Œ)
๋ฐฉ์ˆ˜๋ณต์„ ์ž…ํžŒ ์ฑ„ ๋ฌผ์— ๋„ฃ์œผ๋ฉด ํ—ค์—„์„ ์žฌํ˜„ํ•ด๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:14
and then we can go in water and start replaying the swimming gaits.
159
434080
3176
07:17
And here, we were very happy, because this is difficult to do.
160
437280
3336
๋งค์šฐ ์–ด๋ ค์šด ์ผ์„ ํ•ด๋‚ธ ๊ฒƒ์ด์–ด์„œ ์ €ํฌ๋Š” ์ •๋ง๋กœ ๊ธฐ์˜๊ฒŒ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
07:20
The physics of interaction are complex.
161
440640
2216
๋ฌผ์ฒด์™€ ์ฃผ๋ณ€ ์‚ฌ์ด์˜ ์ƒํ˜ธ ์ž‘์šฉ์— ์—ฐ๊ด€๋œ ๋ฌผ๋ฆฌํ•™์€ ๋งค์šฐ ๋ณต์žกํ•ฉ๋‹ˆ๋‹ค.
07:22
Our robot is much bigger than a small animal,
162
442880
2416
์ž‘์€ ๋™๋ฌผ์— ๋น„ํ•ด์„œ ์ €ํฌ ๋กœ๋ด‡์ด ๊ฝค ํฌ๊ธฐ ๋•Œ๋ฌธ์—
07:25
so we had to do what's called dynamic scaling of the frequencies
163
445320
3056
๋™์  ์ฃผํŒŒ์ˆ˜ ์กฐ์ •์ด๋ผ๋Š” ๊ณผ์ •์„ ํ†ตํ•˜์—ฌ
07:28
to make sure we had the same interaction physics.
164
448400
2336
์ƒํ˜ธ ์ž‘์šฉ์˜ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์ด ๋™์ผํ•˜๋„๋ก ํ–ˆ์Šต๋‹ˆ๋‹ค.
07:30
But you see at the end, we have a very close match,
165
450760
2416
๋ณด์‹œ๋‹ค์‹œํ”ผ ๋๋‚ด๋Š” ์•„์ฃผ ๊ทผ์ ‘ํ•œ ๋Œ€์‘ ๊ด€๊ณ„๋ฅผ ๋งŒ๋“ค์–ด๋‚ผ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
07:33
and we were very, very happy with this.
166
453200
1880
์ด์— ๋Œ€ํ•ด ๋งค์šฐ ๊ธฐ๋ปค์ฃ .
07:35
So let's go to the spinal cord.
167
455480
2216
๊ทธ๋Ÿผ ์ด์ œ ์ฒ™์ˆ˜์— ๋Œ€ํ•ด ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
07:37
So here what we did with Jean-Marie Cabelguen
168
457720
2296
์ €ํฌ๊ฐ€ ์ง„-๋งˆ๋ฆฌ ์นด๋ฒจ๊ฒ๊ณผ ํ•จ๊ป˜ ํ•œ ๊ฒƒ์€
07:40
is model the spinal cord circuits.
169
460040
2240
์ฒ™์ˆ˜์˜ ํšŒ๋กœ๋ฅผ ๋ชจ๋ธ๋งํ•˜๋Š” ์—ฐ๊ตฌ์˜€์Šต๋‹ˆ๋‹ค.
07:43
And what's interesting is that the salamander
170
463040
2136
ํฅ๋ฏธ๋กœ์šด ์ ์€ ๋„๋กฑ๋‡ฝ์ด
07:45
has kept a very primitive circuit,
171
465200
1620
์—ฌ์ „ํžˆ ๋งค์šฐ ์›์‹œ์ ์ธ ํšŒ๋กœ๋ฅผ ์œ ์ง€ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
07:46
which is very similar to the one we find in the lamprey,
172
466844
2652
์žฅ์–ด ์ข…๋ฅ˜์˜ ์›์‹œ ๋ฌผ๊ณ ๊ธฐ์ธ
07:49
this primitive eel-like fish,
173
469520
1976
์น ์„ฑ ์žฅ์–ด์™€ ํก์‚ฌํ•œ ํšŒ๋กœ์ฃ .
07:51
and it looks like during evolution,
174
471520
1736
๊ทธ๋ฆฌ๊ณ  ์ง„ํ™” ๊ณผ์ •์—์„œ
07:53
new neural oscillators have been added to control the limbs,
175
473280
2936
๋ณดํ–‰์„ ์œ„ํ•ด ๋‹ค๋ฆฌ๋ฅผ ์ œ์–ดํ•˜๋Š”
์ƒˆ๋กœ์šด ์‹ ๊ฒฝ ์ง„๋™์ž๊ฐ€ ์ถ”๊ฐ€๋œ ๊ฒƒ์œผ๋กœ ๋ณด์ž…๋‹ˆ๋‹ค.
07:56
to do the leg locomotion.
176
476240
1416
07:57
And we know where these neural oscillators are
177
477680
2176
์ด๋Ÿฌํ•œ ์‹ ๊ฒฝ ์ง„๋™์ž๊ฐ€ ์žˆ๋‹ค๋Š” ๊ฒƒ์€ ์ด๋ฏธ ์•Œ๋ ค์ ธ์žˆ์ง€๋งŒ
07:59
but what we did was to make a mathematical model
178
479880
2256
์ €ํฌ๊ฐ€ ํ•œ ์ผ์€ ์ˆ˜ํ•™์  ๋ชจ๋ธ์„ ๋งŒ๋“ค์–ด์„œ
์ด๋“ค์ด ์–ด๋–ป๊ฒŒ ๊ฒฐํ•ฉ๋˜์–ด์•ผ ๋‘ ๊ฐ€์ง€ ๋งค์šฐ ๋‹ค๋ฅธ ์›€์ง์ž„์ด
08:02
to see how they should be coupled
179
482160
1616
08:03
to allow this transition between the two very different gaits.
180
483800
2936
์„œ๋กœ ์ „ํ™˜๋  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ์•Œ์•„๋‚ด๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
08:06
And we tested that on board of a robot.
181
486760
2560
์ €ํฌ๋Š” ๋กœ๋ด‡์„ ์ด์šฉํ•ด ๋ชจ๋ธ์„ ๊ฒ€์ฆํ–ˆ์Šต๋‹ˆ๋‹ค.
08:09
And this is how it looks.
182
489680
1200
์ €ํฌ๊ฐ€ ๋งŒ๋“  ๋กœ๋ด‡์€ ์ด์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.
08:18
So what you see here is a previous version of Pleurobot
183
498920
3016
์ง€๊ธˆ ๋ณด์‹œ๋Š” ๊ฒƒ์€ ํ”Œ๋กœ๋กœ๋ด‡์˜ ์˜ˆ์ „ ๋ฒ„์ „์ž…๋‹ˆ๋‹ค.
08:21
that's completely controlled by our spinal cord model
184
501960
3096
๋กœ๋ด‡ ๋ณด๋“œ์— ํ”„๋กœ๊ทธ๋žจ๋œ ์ €ํฌ์˜ ์ฒ™์ˆ˜ ๋ชจ๋ธ์— ์˜ํ•ด์„œ
08:25
programmed on board of the robot.
185
505080
1600
์™„์ „ํžˆ ์ œ์–ด๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
08:27
And the only thing we do
186
507280
1216
์ €ํฌ๊ฐ€ ํ•œ ๊ฒƒ์€ ๋‹ค๋งŒ
08:28
is send to the robot through a remote control
187
508520
2176
์›๊ฒฉ ์กฐ์ข…์„ ํ†ตํ•ด ๋กœ๋ด‡์—๊ฒŒ
08:30
the two descending signals it normally should receive
188
510720
2496
๋‘ ๊ฐ€์ง€ ์‹ ํ˜ธ๋ฅผ ๋ณด๋‚ธ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
์›๋ž˜๋ผ๋ฉด ๋‡Œ์˜ ์ƒ์œ„ ๋ถ€๋ถ„์—์„œ ๋‚ด๋ ค์™”์„ ์‹ ํ˜ธ์ฃ .
08:33
from the upper part of the brain.
189
513240
1600
08:35
And what's interesting is, by playing with these signals,
190
515480
2696
ํฅ๋ฏธ๋กœ์šด ์ ์€, ์ด๋Ÿฌํ•œ ์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•ด์„œ
๋ณดํ–‰์˜ ์†๋„, ๋ฐฉํ–ฅ, ์ข…๋ฅ˜๋ฅผ ๋ชจ๋‘ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
08:38
we can completely control speed, heading and type of gait.
191
518200
2800
08:41
For instance,
192
521600
1216
์˜ˆ๋ฅผ ๋“ค์–ด
08:42
when we stimulate at a low level, we have the walking gait,
193
522840
3576
๋‚ฎ์€ ์ •๋„์˜ ์ž๊ทน์„ ๊ฐ€ํ•˜๋ฉด ๋ณดํ–‰์ด ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค.
08:46
and at some point, if we stimulate a lot,
194
526440
1976
์–ด๋Š ์ˆœ๊ฐ„ ์ž๊ทน์„ ์ฆ๊ฐ€์‹œํ‚ค๋‹ค ๋ณด๋ฉด
08:48
very rapidly it switches to the swimming gait.
195
528440
2160
๋กœ๋ด‡์€ ํ—ค์—„์น˜๋Š” ๋™์ž‘์œผ๋กœ ๋น ๋ฅด๊ฒŒ ์›€์ง์ž„์„ ์ „ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
08:51
And finally, we can also do turning very nicely
196
531480
2216
๋˜ํ•œ ๋ฐฉํ–ฅ ์ „ํ™˜๋„ ์ž˜ ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ
08:53
by just stimulating more one side of the spinal cord than the other.
197
533720
3520
์ด๋ฅผ ์œ„ํ•ด ์ฒ™์ˆ˜์˜ ํ•œ์ชฝ์„ ๋‹ค๋ฅธ ์ชฝ๋ณด๋‹ค ๋” ์ž๊ทนํ•˜๊ธฐ๋งŒ ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.
08:58
And I think it's really beautiful
198
538200
1616
์ž์—ฐ์ด ์–ด๋–ป๊ฒŒ ๋ชธ์˜ ์ œ์–ด๋ฅผ ๋ถ„์‚ฐํ–ˆ๋Š”์ง€๋ฅผ ์ƒ๊ฐํ•˜๋ฉด
08:59
how nature has distributed control
199
539840
2256
๋ชน์‹œ ์•„๋ฆ„๋‹ต๋‹ค๋Š” ์ƒ๊ฐ์ด ๋“ญ๋‹ˆ๋‹ค.
09:02
to really give a lot of responsibility to the spinal cord
200
542120
2856
์ œ์–ด๋ฅผ ๋ถ„์‚ฐํ•ด์„œ ์ฒ™์ˆ˜๊ฐ€ ๋งŽ์€ ์—ญํ• ์„ ๋งก๋„๋ก ํ•˜๊ณ ,
๋”ฐ๋ผ์„œ ๋‡Œ์˜ ์ƒ์œ„ ๋ถ€๋ถ„์ด ๊ทผ์œก ํ•˜๋‚˜ํ•˜๋‚˜์— ์‹ ๊ฒฝ์“ธ ํ•„์š”๊ฐ€ ์—†๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
09:05
so that the upper part of the brain doesn't need to worry about every muscle.
201
545000
3656
09:08
It just has to worry about this high-level modulation,
202
548680
2536
๊ณ ์ฐจ์›์ ์ธ ์กฐ์ •๋งŒ์„ ์‹ ๊ฒฝ์“ฐ๋ฉด ๋˜๊ณ ,
๋ชจ๋“  ๊ทผ์œก์„ ์กฐ์ •ํ•˜๋Š” ๊ฒƒ์€ ์ฒ™์ˆ˜์˜ ์—ญํ• ์ด ๋ฉ๋‹ˆ๋‹ค.
09:11
and it's really the job of the spinal cord to coordinate all the muscles.
203
551240
3576
09:14
So now let's go to cat locomotion and the importance of biomechanics.
204
554840
3520
์ด์ œ ๊ณ ์–‘์ด์˜ ๋ณดํ–‰๊ณผ ์ƒ์ฒด ์—ญํ•™์˜ ์ค‘์š”์„ฑ์— ๋Œ€ํ•ด ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
๋‹ค๋ฅธ ํ”„๋กœ์ ํŠธ๋ฅผ ์†Œ๊ฐœํ•ด ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
09:19
So this is another project
205
559080
1256
09:20
where we studied cat biomechanics,
206
560360
2416
๊ณ ์–‘์ด์˜ ์ƒ์ฒด ์—ญํ•™์„ ์—ฐ๊ตฌํ•ด์„œ
09:22
and we wanted to see how much the morphology helps locomotion.
207
562800
3896
ํ˜•ํƒœํ•™์ด ๋ณดํ–‰์— ์–ผ๋งˆ๋‚˜ ๋„์›€์„ ์ฃผ๋Š”์ง€ ์•Œ์•„๋ณด๋ ค๋Š” ์—ฐ๊ตฌ์ž…๋‹ˆ๋‹ค.
09:26
And we found three important criteria in the properties,
208
566720
3616
์ €ํฌ๋Š” ๋‹ค๋ฆฌ์— ๊ด€ํ•œ
์„ธ ๊ฐ€์ง€ ์ค‘์š”ํ•œ ํŠน์„ฑ์„ ์ฐพ์•„๋ƒˆ์Šต๋‹ˆ๋‹ค.
09:30
basically, of the limbs.
209
570360
1320
09:32
The first one is that a cat limb
210
572320
1976
์ฒซ ๋ฒˆ์งธ๋Š” ๊ณ ์–‘์ด์˜ ๋‹ค๋ฆฌ๊ฐ€
09:34
more or less looks like a pantograph-like structure.
211
574320
2696
๊ฑฐ์˜ ํŒฌํ„ฐ๊ทธ๋ž˜ํ”„์™€ ํก์‚ฌํ•œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
09:37
So a pantograph is a mechanical structure
212
577040
2216
ํŒฌํ„ฐ๊ทธ๋ž˜ํ”„๋Š” ๊ธฐ๊ณ„์  ๊ตฌ์กฐ๋กœ,
09:39
which keeps the upper segment and the lower segments always parallel.
213
579280
3400
์œ„์ชฝ ๋ถ„์ ˆ๊ณผ ์•„๋ž˜์ชฝ ๋ถ„์ ˆ์ด ํ•ญ์ƒ ํ‰ํ–‰ํ•˜๊ฒŒ ์œ ์ง€๋ฉ๋‹ˆ๋‹ค.
09:43
So a simple geometrical system that kind of coordinates a bit
214
583600
3096
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ๊ฐ ๋ถ„์ ˆ์˜ ๋‚ด๋ถ€ ์›€์ง์ž„์„
์ž˜ ์กฐ์ ˆํ•ด ์ฃผ๋Š” ๊ฐ„๋‹จํ•œ ๊ธฐํ•˜ํ•™์  ์‹œ์Šคํ…œ์ž…๋‹ˆ๋‹ค.
09:46
the internal movement of the segments.
215
586720
1816
09:48
A second property of cat limbs is that they are very lightweight.
216
588560
3056
๊ณ ์–‘์ด ๋‹ค๋ฆฌ์˜ ๋‘ ๋ฒˆ์งธ ํŠน์„ฑ์€ ๋งค์šฐ ๊ฐ€๋ณ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
09:51
Most of the muscles are in the trunk,
217
591640
1856
๋Œ€๋ถ€๋ถ„์˜ ๊ทผ์œก์€ ๋ชธํ†ต์— ์žˆ๋Š”๋ฐ,
09:53
which is a good idea, because then the limbs have low inertia
218
593520
2896
๋‹ค๋ฆฌ์˜ ๊ด€์„ฑ์„ ์ค„์ž„์œผ๋กœ์จ ๋น ๋ฅด๊ฒŒ ์›€์ง์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์—์„œ
09:56
and can be moved very rapidly.
219
596440
1776
ํ›Œ๋ฅญํ•œ ๊ตฌ์กฐ์ž…๋‹ˆ๋‹ค.
09:58
The last final important property is this very elastic behavior of the cat limb,
220
598240
3816
๋งˆ์ง€๋ง‰ ์ค‘์š”ํ•œ ํŠน์„ฑ์€ ๊ณ ์–‘์ด ๋‹ค๋ฆฌ๊ฐ€ ๋งค์šฐ ํƒ„์„ฑ ์žˆ๋Š” ํŠน์„ฑ์ด ์žˆ์–ด์„œ
10:02
so to handle impacts and forces.
221
602080
2656
์ถฉ๊ฒฉ๊ณผ ํž˜์— ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
10:04
And this is how we designed Cheetah-Cub.
222
604760
2336
์ด ๋ฐฉ๋ฒ•์œผ๋กœ ์ €ํฌ๋Š” ์น˜ํƒ€-์ปค๋ธŒ๋ฅผ ์„ค๊ณ„ํ–ˆ์Šต๋‹ˆ๋‹ค.
์น˜ํƒ€-์ปค๋ธŒ๋ฅผ ๋ฌด๋Œ€๋กœ ๋ถˆ๋Ÿฌ ๋ด…์‹œ๋‹ค.
10:07
So let's invite Cheetah-Cub onstage.
223
607120
2200
10:14
So this is Peter Eckert, who does his PhD on this robot,
224
614160
3656
์ด ํ•™์ƒ์€ ์ด ๋กœ๋ด‡์œผ๋กœ ๋ฐ•์‚ฌ ์—ฐ๊ตฌ๋ฅผ ํ•˜๊ณ  ์žˆ๋Š” ํ”ผํ„ฐ ์—์ผ€๋ฅดํŠธ์ž…๋‹ˆ๋‹ค.
10:17
and as you see, it's a cute little robot.
225
617840
2056
๋ณด์‹œ๋‹ค์‹œํ”ผ ๊ท€์—ฝ๊ณ  ์ž‘์€ ๋กœ๋ด‡์ž…๋‹ˆ๋‹ค.
10:19
It looks a bit like a toy,
226
619920
1256
๊ผญ ์žฅ๋‚œ๊ฐ ๊ฐ™์•„ ๋ณด์ด๊ธฐ๋„ ํ•˜์ง€๋งŒ
10:21
but it was really used as a scientific tool
227
621200
2056
์‹ค์ œ๋กœ ๊ณผํ•™์  ๋„๊ตฌ๋กœ์จ
10:23
to investigate these properties of the legs of the cat.
228
623280
3296
๊ณ ์–‘์ด ๋‹ค๋ฆฌ์˜ ์›€์ง์ž„์„ ์—ฐ๊ตฌํ•˜๋Š” ๋ฐ์— ์‚ฌ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
10:26
So you see, it's very compliant, very lightweight,
229
626600
2616
๋ณด์‹œ๋‹ค์‹œํ”ผ ์œ ์—ฐํ•˜๊ณ  ๊ฐ€๋ฒผ์šฐ๋ฉฐ ํƒ„์„ฑ์ด ๊ฐ•ํ•ฉ๋‹ˆ๋‹ค.
10:29
and also very elastic,
230
629240
1256
10:30
so you can easily press it down and it will not break.
231
630520
2776
๊ทธ๋ž˜์„œ ์‰ฝ๊ฒŒ ๋ˆ„๋ฅผ ์ˆ˜ ์žˆ์ง€๋งŒ ๋ง๊ฐ€์ง€์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
10:33
It will just jump, in fact.
232
633320
1456
์‚ฌ์‹ค์€ ๊ทธ์ € ๋›ฐ์–ด์˜ค๋ฅด์ฃ .
10:34
And this very elastic property is also very important.
233
634800
2880
์ด๋Ÿฐ ๊ฐ•ํ•œ ํƒ„์„ฑ์€ ๋งค์šฐ ์ค‘์š”ํ•œ ํŠน์„ฑ์ž…๋‹ˆ๋‹ค.
10:39
And you also see a bit these properties
234
639160
1896
๊ทธ๋ฆฌ๊ณ  ๋‹ค๋ฆฌ์˜ ์„ธ ๋ถ„์ ˆ์ด ํŒฌํ„ฐ๊ทธ๋ž˜ํ”„ ์—ญํ• ์„ ํ•˜๋Š”
10:41
of these three segments of the leg as pantograph.
235
641080
2400
ํŠน์„ฑ๋„ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:44
Now, what's interesting is that this quite dynamic gait
236
644280
2776
์—ฌ๊ธฐ์„œ ํฅ๋ฏธ๋กœ์šด ์ ์€, ์ด ๋กœ๋ด‡์˜ ๊ฝค ์—ญ๋™์ ์ธ ๋ณดํ–‰์ด
10:47
is obtained purely in open loop,
237
647080
1896
๊ฐœํšŒ๋กœ๋ฅผ ํ†ตํ•ด ์ œ์–ด๋œ๋‹ค๋Š” ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค.
10:49
meaning no sensors, no complex feedback loops.
238
649000
3136
์„ผ์„œ ์—†์ด, ๋ณต์žกํ•œ ํ”ผ๋“œ๋ฐฑ ํšŒ๋กœ ์—†์ด ์ œ์–ด๊ฐ€ ์ด๋ฃจ์–ด์ง„๋‹ค๋Š” ๋œป์ž…๋‹ˆ๋‹ค.
10:52
And that's interesting, because it means
239
652160
2416
์ด ์ ์ด ํฅ๋ฏธ๋กœ์šด๋ฐ, ๊ธฐ๊ตฌํ•™์  ๊ตฌ์กฐ๋งŒ์œผ๋กœ
10:54
that just the mechanics already stabilized this quite rapid gait,
240
654600
4016
๊ฝค ๋น ๋ฅธ ๋ณดํ–‰์—์„œ์˜ ์•ˆ์ •์„ฑ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๋œป์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
10:58
and that really good mechanics already basically simplify locomotion.
241
658640
4176
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋Ÿฌํ•œ ๊ตฌ์กฐ๊ฐ€ ์ด๋ฏธ ๋ณดํ–‰์„ ๋‹จ์ˆœํ™”ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๋œป์ž…๋‹ˆ๋‹ค.
11:02
To the extent that we can even disturb a bit locomotion,
242
662840
3296
์‹ฌ์ง€์–ด ๋ณดํ–‰์— ์•ฝ๊ฐ„์˜ ์™ธ๋ž€์„ ๊ฐ€ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
11:06
as you will see in the next video,
243
666160
1656
๋‹ค์Œ ์˜์ƒ์—์„œ ๋ณด์‹ค ํ…๋ฐ,
11:07
where we can for instance do some exercise where we have the robot go down a step,
244
667840
3896
์˜ˆ๋ฅผ ๋“ค์–ด ํ„ฑ์„ ๋‚ด๋ ค๊ฐ€๋Š” ๋กœ๋ด‡์˜ ์˜ˆ์‹œ๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:11
and the robot will not fall over,
245
671760
1616
์ด ์ƒํ™ฉ์—์„œ ๋กœ๋ด‡์ด ๋„˜์–ด์ง€์ง€ ์•Š๋Š”๋ฐ,
11:13
which was a surprise for us.
246
673400
1576
์ €ํฌ์—๊ฒŒ๋Š” ๋†€๋ผ์šด ๊ฒฐ๊ณผ์˜€์ฃ .
ํ‰์ง€ ๋ณดํ–‰๊ณผ ๋น„๊ตํ•˜๋ฉด ์ž‘์€ ์ฐจ์ด์ง€๋งŒ
11:15
This is a small perturbation.
247
675000
1416
11:16
I was expecting the robot to immediately fall over,
248
676440
2416
์ €๋Š” ๋กœ๋ด‡์ด ์ฆ‰์‹œ ๊ท ํ˜•์„ ์žƒ์„ ๊ฒƒ์ด๋ผ๊ณ  ์˜ˆ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค.
11:18
because there are no sensors, no fast feedback loop.
249
678880
2436
์™œ๋ƒํ•˜๋ฉด ์„ผ์„œ๋„ ์—†๊ณ  ๋น ๋ฅธ ํ”ผ๋“œ๋ฐฑ ํšŒ๋กœ๋„ ์—†๋Š” ๋กœ๋ด‡์ด๋‹ˆ๊นŒ์š”.
ํ•˜์ง€๋งŒ ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹ค. ๊ธฐ๊ตฌํ•™์  ๊ตฌ์กฐ๋งŒ์œผ๋กœ ์•ˆ์ •๋œ ๋ณดํ–‰์„ ์–ป์—ˆ๊ณ 
11:21
But no, just the mechanics stabilized the gait,
250
681340
2196
11:23
and the robot doesn't fall over.
251
683560
1576
๋กœ๋ด‡์€ ๊ท ํ˜•์„ ์žƒ์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
11:25
Obviously, if you make the step bigger, and if you have obstacles,
252
685160
3136
๋ฌผ๋ก  ํ„ฑ์ด ๋” ์ปค์ง€๊ฑฐ๋‚˜ ์žฅ์• ๋ฌผ์ด ์žˆ๋‹ค๋ฉด
11:28
you need the full control loops and reflexes and everything.
253
688320
3656
์™„์ „ํ•œ ์ œ์–ด ํšŒ๋กœ์™€ ๋ฐ˜์‚ฌ ๋ฐ˜์‘ ๋“ฑ ๋ชจ๋“  ๊ฒƒ์ด ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
11:32
But what's important here is that just for small perturbation,
254
692000
2936
ํ•˜์ง€๋งŒ ์—ฌ๊ธฐ์„œ ์ค‘์š”ํ•œ ๊ฒƒ์€, ์ž‘์€ ๋ณ€ํ™”์— ๋Œ€ํ•ด์„œ๋Š”
11:34
the mechanics are right.
255
694960
1496
๊ธฐ๊ตฌํ•™์  ๊ตฌ์กฐ๋งŒ์œผ๋กœ๋„ ์ถฉ๋ถ„ํžˆ ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
11:36
And I think this is a very important message
256
696480
2096
์ €๋Š” ์ด๊ฒƒ์ด ์ƒ์ฒด์—ญํ•™๊ณผ ๋กœ๋ด‡๊ณตํ•™์—์„œ ์‹ ๊ฒฝ๊ณผํ•™ ๋ถ„์•ผ์— ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๋Š”
11:38
from biomechanics and robotics to neuroscience,
257
698600
2191
์ค‘์š”ํ•œ ๋ฉ”์‹œ์ง€๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
11:40
saying don't underestimate to what extent the body already helps locomotion.
258
700815
4680
๋ชธ ์ž์ฒด๊ฐ€ ๋ณดํ–‰์— ์–ผ๋งˆ๋‚˜ ํฐ ์—ญํ• ์„ ํ•˜๋Š”์ง€ ๊ณผ์†Œํ‰๊ฐ€ํ•ด์„œ๋Š” ์•ˆ ๋œ๋‹ค๋Š” ๊ฑฐ์ฃ .
11:47
Now, how does this relate to human locomotion?
259
707440
2160
๊ทธ๋ ‡๋‹ค๋ฉด ์ด๊ฒƒ์ด ์‚ฌ๋žŒ์˜ ๋ณดํ–‰๊ณผ๋Š” ์–ด๋–ค ๊ด€๊ณ„๊ฐ€ ์žˆ์„๊นŒ์š”?
11:49
Clearly, human locomotion is more complex than cat and salamander locomotion,
260
709960
3640
์‚ฌ๋žŒ์˜ ๋ณดํ–‰์€ ๋ช…๋ฐฑํžˆ ๊ณ ์–‘์ด๋‚˜ ๋„๋กฑ๋‡ฝ์˜ ๋ณดํ–‰๋ณด๋‹ค ๋ณต์žกํ•ฉ๋‹ˆ๋‹ค.
11:54
but at the same time, the nervous system of humans is very similar
261
714360
3136
ํ•˜์ง€๋งŒ ๋™์‹œ์—, ์‚ฌ๋žŒ์˜ ์‹ ๊ฒฝ๊ณ„๋Š”
๋‹ค๋ฅธ ์ฒ™์ถ” ๋™๋ฌผ์˜ ์‹ ๊ฒฝ๊ณ„์™€ ๋งค์šฐ ์œ ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
11:57
to that of other vertebrates.
262
717520
1576
11:59
And especially the spinal cord
263
719120
1456
ํŠนํžˆ ์ฒ™์ˆ˜๋Š”
12:00
is also the key controller for locomotion in humans.
264
720600
2640
์‚ฌ๋žŒ์˜ ๋ณดํ–‰์—์„œ๋„ ์ฃผ์š”ํ•œ ์ œ์–ด๊ธฐ์ž…๋‹ˆ๋‹ค.
12:03
That's why, if there's a lesion of the spinal cord,
265
723760
2416
๊ทธ๊ฒƒ์ด ๋ฐ”๋กœ ์ฒ™์ˆ˜์— ์†์ƒ์ด ์žˆ์„ ๋•Œ
12:06
this has dramatic effects.
266
726200
1496
์‹ฌ๊ฐํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ์ด์œ ์ž…๋‹ˆ๋‹ค.
12:07
The person can become paraplegic or tetraplegic.
267
727720
2776
์ฒ™์ˆ˜์— ์†์ƒ์„ ์ž…์€ ์‚ฌ๋žŒ์€ ํ•˜๋ฐ˜์‹ ์ด๋‚˜ ์‚ฌ์ง€ ๋งˆ๋น„ ์ฆ์ƒ์„ ๊ฒช์„ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
12:10
This is because the brain loses this communication
268
730520
2376
์ด๊ฒƒ์€ ๋‡Œ๊ฐ€ ์ฒ™์ˆ˜์™€ ์„œ๋กœ ์‹ ํ˜ธ๋ฅผ
์ „๋‹ฌํ•  ์ˆ˜ ์—†๊ฒŒ ๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
12:12
with the spinal cord.
269
732920
1256
ํŠนํžˆ, ๋ณดํ–‰์„ ์‹œ์ž‘ํ•˜๊ณ  ์กฐ์ •ํ•˜๊ฒŒ ํ•˜๋Š” ์‹ ํ˜ธ๋ฅผ
12:14
Especially, it loses this descending modulation
270
734200
2216
12:16
to initiate and modulate locomotion.
271
736440
1920
๋‡Œ์—์„œ ์ „๋‹ฌํ•  ์ˆ˜ ์—†๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
12:19
So a big goal of neuroprosthetics
272
739640
1696
๊ทธ๋ž˜์„œ ์‹ ๊ฒฝ ๊ณผํ•™์˜ ํฐ ๋ชฉํ‘œ ์ค‘ ํ•˜๋‚˜๋Š”
12:21
is to be able to reactivate that communication
273
741360
2376
์ „๊ธฐ์ ์ด๋‚˜ ํ™”ํ•™์  ์ž๊ทน์„ ํ†ตํ•˜์—ฌ
12:23
using electrical or chemical stimulations.
274
743760
2440
์ด๋Ÿฌํ•œ ์‹ ํ˜ธ๋ฅผ ๋‹ค์‹œ ์ฃผ๊ณ ๋ฐ›์„ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
12:26
And there are several teams in the world that do exactly that,
275
746840
2936
์„ธ๊ณ„์—๋Š” ๋ฐ”๋กœ ๊ทธ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ๋Š” ํŒ€์ด ๋ช‡ ์žˆ๊ณ 
12:29
especially at EPFL.
276
749800
1216
ํŠนํžˆ ๋กœ์ž” ๊ณต๊ณผ๋Œ€ํ•™์—์„œ๋Š”
์ €์™€ ๊ณต๋™ ์—ฐ๊ตฌ๋ฅผ ํ•˜๊ณ  ์žˆ๋Š” ๋™๋ฃŒ ๊ทธ๋ ˆ๊ทธ์™€๋ฅด ์ฟ ๋ฅดํ‹ด๊ณผ
12:31
My colleagues Grรฉgoire Courtine and Silvestro Micera,
277
751040
2496
์‹ค๋ฒ ์ŠคํŠธ๋กœ ๋ฏธ์„ธ๋ผ๊ฐ€ ์—ฐ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
12:33
with whom I collaborate.
278
753560
1240
12:35
But to do this properly, it's very important to understand
279
755960
3096
ํ•˜์ง€๋งŒ ์ด ์ผ์„ ์ œ๋Œ€๋กœ ํ•ด๋‚ด๊ธฐ ์œ„ํ•ด์„œ๋Š”
์ฒ™์ˆ˜๊ฐ€ ์–ด๋–ป๊ฒŒ ๊ธฐ๋Šฅํ•˜๋Š”์ง€,
12:39
how the spinal cord works,
280
759080
1736
12:40
how it interacts with the body,
281
760840
1696
๋ชธ๊ณผ๋Š” ์–ด๋–ป๊ฒŒ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š”์ง€,
12:42
and how the brain communicates with the spinal cord.
282
762560
2480
๋‡Œ๋Š” ์–ด๋–ป๊ฒŒ ์ฒ™์ˆ˜์™€ ์‹ ํ˜ธ๋ฅผ ์ฃผ๊ณ ๋ฐ›๋Š”์ง€ ๋“ฑ์— ๊ด€ํ•˜์—ฌ ์ž˜ ์ดํ•ดํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
12:45
This is where the robots and models that I've presented today
283
765800
2896
์ด ์ ์ด ์˜ค๋Š˜ ์ œ๊ฐ€ ๋ง์”€๋“œ๋ฆฐ ๋กœ๋ด‡๊ณผ ๋ชจ๋ธ์ด
12:48
will hopefully play a key role
284
768720
1896
๊ทธ๋Ÿฌํ•œ ์ค‘์š”ํ•œ ๋ชฉํ‘œ๋ฅผ ํ–ฅํ•ด ๊ฐ€๋Š” ๋ฐ์—
12:50
towards these very important goals.
285
770640
2656
์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋ฆฌ๋ผ๊ณ  ๊ธฐ๋Œ€๋˜๋Š” ๋ถ€๋ถ„์ž…๋‹ˆ๋‹ค.
12:53
Thank you.
286
773320
1216
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
12:54
(Applause)
287
774560
4560
(๋ฐ•์ˆ˜)
๋ธŒ๋ฃจ๋…ธ ๊ธฐ์‚ฌ๋‹ˆ: ์•„์šฐ์ผ€, ๋‹น์‹ ์˜ ์—ฐ๊ตฌ์‹ค์—์„œ ๋งŒ๋“  ๋‹ค๋ฅธ ๋กœ๋ด‡์„ ๋ดค๋Š”๋ฐ
13:04
Bruno Giussani: Auke, I've seen in your lab other robots
288
784100
2636
13:06
that do things like swim in pollution
289
786760
2456
์˜ค์—ผ๋œ ๋ฌผ์—์„œ ํ—ค์—„์น˜๋ฉด์„œ
13:09
and measure the pollution while they swim.
290
789240
2456
์˜ค์—ผ์˜ ์ •๋„๋ฅผ ์ธก์ •ํ•˜๋”๊ตฐ์š”.
13:11
But for this one,
291
791720
1216
๊ทธ๋Ÿฐ๋ฐ ์ด ๋กœ๋ด‡์— ๋Œ€ํ•ด์„œ๋Š”,
13:12
you mentioned in your talk, like a side project,
292
792960
3480
์•„๊นŒ ๊ฐ•์—ฐ์—์„œ ๋ถ€์ฐจ์ ์ธ ํ”„๋กœ์ ํŠธ๋กœ
์ˆ˜์ƒ‰๊ณผ ๊ตฌ์กฐ์— ๋Œ€ํ•ด ์–ธ๊ธ‰ํ•˜์…จ์ฃ .
13:17
search and rescue,
293
797640
1216
13:18
and it does have a camera on its nose.
294
798880
2176
๊ทธ๋ฆฌ๊ณ  ์ด ๋กœ๋ด‡์€ ์ฝ”์— ์นด๋ฉ”๋ผ๊ฐ€ ๋‹ฌ๋ ค์žˆ๋„ค์š”.
์•„์šฐ์ผ€ ์ด์ŠคํŽ˜์—๋ฅดํŠธ: ๋งž์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์ด ๋กœ๋ด‡๊ณผ ๊ด€๋ จํ•ด
13:21
Auke Ijspeert: Absolutely. So the robot --
295
801080
2496
13:23
We have some spin-off projects
296
803600
1429
์ผ์ข…์˜ ํŒŒ์ƒ ํ”„๋กœ์ ํŠธ๊ฐ€ ์žˆ๋Š”๋ฐ,
์ด ๋กœ๋ด‡์„ ์ด์šฉํ•ด ํƒ์ƒ‰๊ณผ ๊ตฌ์กฐ, ์กฐ์‚ฌ ์ž‘์—…์„ ํ•˜๋ ค๋Š” ํ”„๋กœ์ ํŠธ์ž…๋‹ˆ๋‹ค.
13:25
where we would like to use the robots to do search and rescue inspection,
297
805053
3443
์ง€๊ธˆ ๋กœ๋ด‡์ด ์—ฌ๋Ÿฌ๋ถ„์„ ๋ณด๊ณ  ์žˆ์ฃ .
13:28
so this robot is now seeing you.
298
808520
1576
ํฐ ๋ชฉํ‘œ๋กœ๋Š”, ๋งŒ์•ฝ ๋ˆ„๊ตฐ๊ฐ€ ์–ด๋ ค์šด ์ƒํ™ฉ์— ์ฒ˜ํ•ด์žˆ๋‹ค๋ฉด
13:30
And the big dream is to, if you have a difficult situation
299
810120
3176
13:33
like a collapsed building or a building that is flooded,
300
813320
3616
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์˜ˆ๋ฅผ ๋“ค์–ด ๋ฌด๋„ˆ์ง€๊ฑฐ๋‚˜ ๋ฌผ์— ์ž ๊ธด ๊ฑด๋ฌผ์— ์žˆ๋‹ค๊ณ  ํ•˜๋ฉด
13:36
and this is very dangerous for a rescue team or even rescue dogs,
301
816960
3336
๊ตฌ์กฐ ํŒ€์ด๋‚˜ ๊ตฌ์กฐ๊ฒฌ์—๊ฒŒ๋„ ๋ชน์‹œ ์œ„ํ—˜ํ•œ ์ƒํ™ฉ์ด๊ฑฐ๋“ ์š”.
13:40
why not send in a robot that can crawl around, swim, walk,
302
820320
2896
๊ทธ๋ ‡๋‹ค๋ฉด ๊ธฐ์–ด๊ฐ€๊ณ  ํ—ค์—„์น˜๋ฉฐ, ๊ฑธ์„ ์ˆ˜ ์žˆ๋Š” ๋กœ๋ด‡์„ ๋ณด๋‚ด์„œ
13:43
with a camera onboard to do inspection and identify survivors
303
823240
3176
์žฅ์ฐฉ๋œ ์นด๋ฉ”๋ผ๋กœ ์ƒํ™ฉ์„ ์‚ดํŽด๋ณด๊ณ  ์ƒ์กด์ž๋ฅผ ์‹๋ณ„ํ•  ์ˆ˜๋„ ์žˆ์ง€ ์•Š์„๊นŒ์š”?
13:46
and possibly create a communication link with the survivor.
304
826440
2776
๊ทธ๋ฆฌ๊ณ  ์–ด์ฉŒ๋ฉด ์ƒ์กด์ž์™€ ํ†ต์‹ ํ•  ์ˆ˜๋„ ์žˆ๊ฒ ์ฃ .
๋ธŒ๋ฃจ๋…ธ: ๋ฌผ๋ก ์ž…๋‹ˆ๋‹ค. ์ƒ์กด์ž๊ฐ€ ๋กœ๋ด‡์˜ ๋ชจ์–‘์ƒˆ์— ๊ฒ๋จน์ง€๋งŒ ์•Š๋Š”๋‹ค๋ฉด์š”.
13:49
BG: Of course, assuming the survivors don't get scared by the shape of this.
305
829240
3576
13:52
AI: Yeah, we should probably change the appearance quite a bit,
306
832840
3296
์•„์šฐ์ผ€: ๋„ค, ์•„๋งˆ๋„ ๋ชจ์–‘์„ ์กฐ๊ธˆ ๋ฐ”๊พธ๋Š” ๊ฒƒ์ด ์ข‹์„ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.
13:56
because here I guess a survivor might die of a heart attack
307
836160
2816
์ด ๋กœ๋ด‡์ด ์ž์‹ ์„ ์žก์•„๋จน์„๊นŒ๋ด ๊ฒ์„ ๋จน์€ ์ƒ์กด์ž๊ฐ€
13:59
just of being worried that this would feed on you.
308
839000
2536
์‹ฌ์žฅ ๋งˆ๋น„๋กœ ์ฃฝ์„ ์ˆ˜๋„ ์žˆ์œผ๋‹ˆ๊นŒ์š”
14:01
But by changing the appearance and it making it more robust,
309
841560
2856
ํ•˜์ง€๋งŒ ๋ชจ์–‘์„ ์กฐ๊ธˆ ๋ฐ”๊พธ๊ณ  ๋” ๊ฒฌ๊ณ ํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค๋ฉด
14:04
I'm sure we can make a good tool out of it.
310
844440
2056
์ด๋ฅผ ํ›Œ๋ฅญํ•˜๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ๊ณ  ํ™•์‹ ํ•ฉ๋‹ˆ๋‹ค.
14:06
BG: Thank you very much. Thank you and your team.
311
846520
2286
๋ธŒ๋ฃจ๋…ธ: ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ๊ต์ˆ˜๋‹˜๊ณผ ํŒ€ ๋ชจ๋‘์—๊ฒŒ ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค.
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7