Finding life we can't imagine | Christoph Adami

44,042 views ใƒป 2011-10-04

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yubal Masalker ืžื‘ืงืจ: Ido Dekkers
00:15
So, I have a strange career.
0
15600
2041
ื™ืฉ ืœื™ ืงืจื™ื™ืจื” ืžื•ื–ืจื”.
00:17
I know it because people come up to me, like colleagues, and say,
1
17665
3116
ืื ื™ ื™ื•ื“ืข ื–ืืช ื›ื™ ืื ืฉื™ื, ื“ื•ื’ืžืช ืขืžื™ืชื™ื™, ื ื™ื’ืฉื™ื ืืœื™ื™,
00:20
"Chris, you have a strange career."
2
20805
1866
ื•ืื•ืžืจื™ื, "ื›ืจื™ืก, ื™ืฉ ืœืš ืงืจื™ื™ืจื” ืžื•ื–ืจื”."
00:22
(Laughter)
3
22695
1643
(ืฆื—ื•ืง)
00:24
And I can see their point,
4
24362
1319
ืื ื™ ืžื‘ื™ืŸ ืื•ืชื,
00:25
because I started my career as a theoretical nuclear physicist.
5
25705
4531
ื›ื™ ื”ืชื—ืœืชื™ ืืช ื”ืงืจื™ื™ืจื” ืฉืœื™
ื‘ืชื•ืจ ืคื™ื–ื™ืงืื™ ื’ืจืขื™ืŸ ืชื™ืื•ืจื˜ื™.
00:30
And I was thinking about quarks and gluons and heavy ion collisions,
6
30260
4164
ื ื”ื’ืชื™ ืœื—ืฉื•ื‘ ืขืœ ืงื•ื•ืืจืงื™ื ื•ื’ืœื•ืื•ื ื™ื
ื•ื”ืชื ื’ืฉื•ื™ื•ืช ื‘ื™ืŸ ื™ื•ื ื™ื ื›ื‘ื“ื™ื,
00:34
and I was only 14 years old --
7
34448
1788
ื•ื”ื™ื™ืชื™ ืจืง ื‘ืŸ 14.
00:36
No, no, I wasn't 14 years old.
8
36853
2687
ืœื, ืœื ื”ื™ื™ืชื™ ื‘ืŸ 14.
00:40
But after that,
9
40497
1739
ืื‘ืœ ืœืื—ืจ-ืžื›ืŸ,
ื”ื™ืชื” ืœื™ ืžืžืฉ ืžืขื‘ื“ื” ืžืฉืœื™
00:43
I actually had my own lab
10
43056
1941
ื‘ืžื—ืœืงืช ื”ืžื—ืฉื‘ื™ื ืฉืœ ืžื“ืขื™ ื”ืขืฆื‘,
00:45
in the Computational Neuroscience department,
11
45021
2115
ื•ืืคื™ืœื• ืœื ืขืกืงืชื™ ื‘ืžื“ืขื™ ื”ืขืฆื‘.
00:47
and I wasn't doing any neuroscience.
12
47160
1728
00:48
Later, I would work on evolutionary genetics,
13
48912
2932
ื™ื•ืชืจ ืžืื•ื—ืจ, ืขื‘ื“ืชื™ ื‘ืชื•ืจืฉื” ืื‘ื•ืœื•ืฆื™ื•ื ื™ืช,
00:51
and I would work on systems biology.
14
51868
1950
ื•ื‘ื‘ื™ื•ืœื•ื’ื™ื” ืฉืœ ืžืขืจื›ื•ืช.
00:53
But I'm going to tell you about something else today.
15
53842
2665
ืื‘ืœ ื”ื™ื•ื ืื ื™ ืขื•ืžื“ ืœืกืคืจ ืœื›ื ืžืฉื”ื• ืื—ืจ.
00:56
I'm going to tell you about how I learned something about life.
16
56531
4262
ืืกืคืจ ืœื›ื ืขืœ
ื›ื™ืฆื“ ืœืžื“ืชื™ ืžืฉื”ื• ืื•ื“ื•ืช ื—ื™ื™ื.
01:00
And I was actually a rocket scientist.
17
60817
3481
ืœืžืขืฉื” ื”ื™ื™ืชื™ ืžื“ืขืŸ ื˜ื™ืœื™ื.
01:04
I wasn't really a rocket scientist,
18
64322
2303
ืœื ื”ื™ื™ืชื™ ืžืžืฉ ืžื“ืขืŸ ื˜ื™ืœื™ื,
01:06
but I was working at the Jet Propulsion Laboratory
19
66649
4356
ืื‘ืœ ืขื‘ื“ืชื™
ื‘ืžืขื‘ื“ืช ื”ื ืขื” ืกื™ืœื•ื ื™ืช
ื‘ืงืœื™ืคื•ืจื ื™ื” ื”ื—ืžื™ืžื” ื•ืฉื˜ื•ืคืช ื”ืฉืžืฉ;
01:11
in sunny California, where it's warm;
20
71029
2635
01:13
whereas now I am in the mid-West, and it's cold.
21
73688
3848
ื‘ืขื•ื“ ืฉื›ืจื’ืข ืื ื™ ื‘ืžืขืจื‘ ื”ืชื™ื›ื•ืŸ,
ื•ื–ื” ืงืจ.
01:17
But it was an exciting experience.
22
77560
2676
ืื‘ืœ ื–ื• ื”ื™ืชื” ื—ื•ื•ื™ื” ืžืขื ื™ื™ื ืช.
01:20
One day, a NASA manager comes into my office,
23
80260
3443
ื™ื•ื ืื—ื“ ืžื ื”ืœ ืžื ืืกื ื ื›ื ืก ืœืžืฉืจื“ื™,
01:23
sits down and says,
24
83727
2509
ื”ืชื™ื™ืฉื‘ ื•ืืžืจ,
01:26
"Can you please tell us, how do we look for life outside Earth?"
25
86862
3801
"ืชื•ื›ืœ ื‘ื‘ืงืฉื” ืœืกืคืจ ืœื ื•,
ื›ื™ืฆื“ ืืคืฉืจ ืœื—ืคืฉ ื—ื™ื™ื ืžื—ื•ืฅ ืœื›ื“ื•ืจ-ื”ืืจืฅ?"
ื–ื” ื‘ื ื›ื”ืคืชืขื” ื‘ืฉื‘ื™ืœื™,
01:31
And that came as a surprise to me,
26
91621
1678
ืžืื—ืจ ื•ื”ื•ืขืกืงืชื™
01:33
because I was actually hired to work on quantum computation.
27
93323
3634
ื‘ืฉื‘ื™ืœ ืœืขื‘ื•ื“ ื‘ื—ื™ืฉื•ื‘ื™ื ืงื•ื•ืื ื˜ื™ื™ื.
ื‘ื›ืœ ื–ืืช ื”ื™ืชื” ืœื™ ืชืฉื•ื‘ื” ื˜ื•ื‘ื”.
01:37
Yet, I had a very good answer.
28
97473
1501
01:38
I said, "I have no idea."
29
98998
1426
ืืžืจืชื™, "ืื™ืŸ ืœื™ ืžื•ืฉื’."
01:40
(Laughter)
30
100799
1150
01:41
And he told me, "Biosignatures, we need to look for a biosignature."
31
101973
5342
ื•ื”ื•ื ืืžืจ, "ื—ืชื™ืžื” ื‘ื™ื•ืœื•ื’ื™ืช,
ืขืœื™ื ื• ืœื—ืคืฉ ื—ืชื™ืžื” ื‘ื™ื•ืœื•ื’ื™ืช."
ืฉืืœืชื™, "ืžื” ื–ื” ืื•ืžืจ?"
01:47
And I said, "What is that?"
32
107339
1364
01:48
And he said, "It's any measurable phenomenon
33
108727
2597
ื”ื•ื ืขื ื”, "ื–ื• ื›ืœ ืชื•ืคืขื” ืžื“ื™ื“ื”
ื”ืžืืคืฉืจืช ืœื ื• ืœื”ืฆื‘ื™ืข
01:51
that allows us to indicate the presence of life."
34
111348
2845
ืขืœ ื”ื™ืžืฆืื•ืช ื—ื™ื™ื."
01:54
And I said, "Really?
35
114788
1150
ืืžืจืชื™, "ื‘ืืžืช?
01:56
Because isn't that easy?
36
116433
1947
ื›ื™ ื–ื” ืœื ื›ืœ-ื›ืš ืงืœ.
01:58
I mean, we have life.
37
118404
1831
ื›ืœื•ืžืจ, ื™ืฉ ื‘ื ื• ื—ื™ื™ื.
02:00
Can't you apply a definition,
38
120259
1972
ื”ืื ืœื ื ื™ืชืŸ ืœื‘ืงืฉ ื”ื’ื“ืจื”,
02:02
for example, a Supreme Court-like definition of life?"
39
122255
4174
ื›ืžื• ืœื“ื•ื’ืžื, ื”ื’ื“ืจืช ื—ื™ื™ื ืžื˜ืขื ื‘ื™ืช-ื”ืžืฉืคื˜ ื”ืขืœื™ื•ืŸ?"
ื—ืฉื‘ืชื™ ืขืœ ื–ื” ืขื•ื“ ืงืฆืช ื•ืืžืจืชื™,
02:07
And then I thought about it a little bit, and I said,
40
127191
2542
"ื”ืื ื–ื” ื‘ืืžืช ื›ืœ-ื›ืš ืงืœ?
02:09
"Well, is it really that easy?
41
129757
1475
ื ื›ื•ืŸ, ืื ืจื•ืื™ื ืžืฉื”ื• ื›ื–ื”,
02:11
Because, yes, if you see something like this,
42
131256
2193
02:13
then all right, fine, I'm going to call it life --
43
133473
2344
ืื– ื‘ืกื“ืจ, ืืคืฉืจ ืœืงืจื•ื ืœื–ื” ื—ื™ื™ื --
02:15
no doubt about it.
44
135841
1150
ืื™ืŸ ื‘ื›ืœืœ ืกืคืง.
02:17
But here's something."
45
137517
1640
ืื‘ืœ ื”ื ื” ืžืฉื”ื•."
02:19
And he goes, "Right, that's life too. I know that."
46
139181
3055
ื•ื”ื•ื ื›ื–ื”, "ื ื›ื•ืŸ, ื–ื” ื’ื ื—ื™ื™ื. ืื ื™ ื™ื•ื“ืข."
02:22
Except, if you think that life is also defined by things that die,
47
142260
4592
ืืœื ืฉืื ืžืชื—ืฉื‘ื™ื ื‘ื–ื” ืฉื—ื™ื™ื
ื’ื ืžื•ื’ื“ืจื™ื ืขืœ-ื™ื“ื™ ืžื•ืชื,
02:26
you're not in luck with this thing,
48
146876
1753
ืื– ืื™ืŸ ืื ื• ื‘ืจื™-ืžื–ืœ ืขื ื“ื‘ืจ ื›ื–ื”,
02:28
because that's actually a very strange organism.
49
148653
2262
ืžื›ื™ื•ื•ืŸ ืฉื™ืฆื•ืจ ื–ื” ื”ื•ื ืžื•ื–ืจ.
02:30
It grows up into the adult stage like that
50
150939
2047
ื”ื•ื ื’ื“ืœ ืœืžืฆื‘ ื”ื‘ื•ื’ืจ ืฉืœื• ื›ืžื• ื–ื”
ื•ืื– ืขื•ื‘ืจ ื“ืจืš ืžื™ืŸ ืžืฆื‘ ืฉืœ ื‘ื ื’'ืžื™ืŸ ื‘ืื˜ืŸ,
02:33
and then goes through a Benjamin Button phase,
51
153010
2226
02:35
and actually goes backwards and backwards until it's like a little embryo again,
52
155260
4935
ื•ื‘ืขืฆื ื ืกื•ื’ ืื—ื•ืจื” ื™ื•ืชืจ ื•ื™ื•ืชืจ
ืขื“ ืœืžืฆื‘ ืขื•ื‘ืจื™ ื—ื•ื–ืจ,
ื•ืื– ืฉื•ื‘ ื’ื“ืœ ื‘ื—ื–ืจื” ื•ืื– ืฉื•ื‘ ื ืกื•ื’ ื•ืฉื•ื‘ ื’ื“ืœ -- ืžื™ืŸ ื™ื• ื™ื• ื›ื–ื” --
02:40
and then actually grows back up, and back down and back up --
53
160219
2914
ื•ื”ื•ื ืืฃ ืคืขื ืœื ืžืช.
02:43
sort of yo-yo -- and it never dies.
54
163157
1779
02:44
So it's actually life,
55
164960
2226
ื›ืš ืฉืœืžืขืฉื” ืืœื” ื—ื™ื™ื,
ืื‘ืœ ื‘ืขืฆื ืœื
02:47
but it's actually not as we thought life would be.
56
167210
4025
ื›ืžื• ืฉื—ืฉื‘ื ื• ืฉื—ื™ื™ื ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช.
02:51
And then you see something like that.
57
171751
1911
ื•ืื– ืจื•ืื™ื ื“ื‘ืจ ื›ื–ื”.
02:53
And he was like, "My God, what kind of a life form is that?"
58
173686
2873
ื”ื•ื ืคืœื˜, "ื™ื ืืœืœื”, ืžื” ื”ืฆื•ืจืช ื”ื—ื™ื™ื ื”ื–ื•?"
ืžื™ืฉื”ื• ื™ื•ื“ืข?
02:56
Anyone know?
59
176583
1419
ื–ื” ืœื ื—ื™ื™ื, ื–ื”ื• ื’ื‘ื™ืฉ.
02:58
It's actually not life, it's a crystal.
60
178026
3002
ื›ืš ืฉื‘ืจื’ืข ืฉืžืชื—ื™ืœื™ื ืœื‘ื—ื•ืŸ ืžืงืจื•ื‘
03:01
So once you start looking and looking at smaller and smaller things --
61
181542
3301
ื“ื‘ืจื™ื ื™ื•ืชืจ ื•ื™ื•ืชืจ ืงื˜ื ื™ื --
03:04
so this particular person wrote a whole article and said,
62
184867
3162
ื•ืื“ื ืžืกื•ื™ื™ื ื–ื” ื›ืชื‘
ืžืืžืจ ืฉืœื ื•ื˜ืขืŸ, "ืืœื• ื”ืŸ ื‘ืงื˜ืจื™ื•ืช".
03:08
"Hey, these are bacteria."
63
188053
1481
03:09
Except, if you look a little bit closer,
64
189558
1971
ืืœื ืฉืื ื‘ื•ื—ื ื™ื ืžืžืฉ ืžืงืจื•ื‘,
03:11
you see, in fact, that this thing is way too small to be anything like that.
65
191553
3636
ืจื•ืื™ื ื‘ืขืฆื ืฉื“ื‘ืจื™ื ื”ืœืœื• ืžืžืฉ ืงื˜ื ื™ื ืžื›ื“ื™ ืœื”ื™ื•ืช ื›ืืœื•.
ื”ื•ื ื”ื™ื” ืžืฉื•ื›ื ืข,
03:15
So he was convinced, but, in fact, most people aren't.
66
195213
3158
ืื‘ืœ ืœืžืขืฉื” ืจื•ื‘ ื”ืื ืฉื™ื ืœื ื”ื™ื•.
ื‘ื–ืžื ื• ื›ืžื•ื‘ืŸ,
03:19
And then, of course, NASA also had a big announcement,
67
199052
3184
ื’ื ืœื ืืกื ื”ื™ืชื” ื”ื›ืจื–ื” ื’ื“ื•ืœื”
03:22
and President Clinton gave a press conference,
68
202260
2865
ื•ื”ื ืฉื™ื ืงืœื™ื ื˜ื•ืŸ ืขืฉื” ืžืกื™ื‘ืช ืขื™ืชื•ื ืื™ื,
ืขืœ ืชื’ืœื™ืช ืžื“ื”ื™ืžื” ื–ื•
03:25
about this amazing discovery of life in a Martian meteorite.
69
205149
4861
ืื•ื“ื•ืช ื—ื™ื™ื ื‘ืžื˜ืื•ืจื™ื˜ ืžืžืื“ื™ื.
ืืœื ืฉื‘ื™ืžื™ื ื• ื™ืฉ ืขืœ ื–ื” ืžื—ืœื•ืงืช ืงืฉื”.
03:30
Except that nowadays, it's heavily disputed.
70
210660
2961
ื”ืœืงื— ืฉืœื•ืžื“ื™ื ืžื›ืœ ื”ืชืžื•ื ื•ืช ื”ืœืœื•
03:34
If you take the lesson of all these pictures,
71
214066
2435
03:36
then you realize, well, actually, maybe it's not that easy.
72
216525
2894
ื”ื•ื ืฉืื•ืœื™ ื–ื” ืœื ื›ืœ-ื›ืš ืงืœ.
ืื•ืœื™ ืื ื™ ื›ืŸ ื–ืงื•ืง
03:39
Maybe I do need a definition of life
73
219443
3399
ืœื”ื’ื“ืจื” ืฉืœ ื—ื™ื™ื
03:42
in order to make that kind of distinction.
74
222866
2278
ื›ื“ื™ ืœืขืฉื•ืช ืืช ื”ื”ื‘ื—ื ื”.
ืื– ื”ืื ื ื™ืชืŸ ืœื”ื’ื“ื™ืจ ื—ื™ื™ื?
03:45
So can life be defined?
75
225168
2531
ื›ื™ืฆื“ ืืชื ื”ื™ื™ืชื ื ื•ื”ื’ื™ื?
03:47
Well how would you go about it?
76
227723
1507
ื˜ื•ื‘, ื”ื™ื™ืชื ื ื™ื’ืฉื™ื
03:49
Well of course, you'd go to Encyclopedia Britannica and open at L.
77
229254
4007
ืœืื ืฆื™ืงืœื•ืคื“ื™ื” ื‘ืจื™ื˜ื ื™ืงื” ื•ืคื•ืชื—ื™ื ื‘ืขืจืš 'ื—'.
ืœื, ื‘ืจื•ืจ ืฉืื™ื ื›ื ืขื•ืฉื™ื ื–ืืช; ืžืงืœื™ื“ื™ื ืืช ื–ื” ื‘ื’ื•ื’ืœ.
03:53
No, of course you don't do that; you put it somewhere in Google.
78
233285
3012
ืื– ืื•ืœื™ ืชืงื‘ืœื• ืžืฉื”ื•.
03:56
And then you might get something.
79
236321
1591
03:57
(Laughter)
80
237936
1024
03:58
And what you might get --
81
238984
1218
ื•ืžื” ืฉืื•ืœื™ ืชืงื‘ืœื• --
04:00
and anything that actually refers to things that we are used to,
82
240226
3779
ื›ืœ ื“ื‘ืจ ืฉื“ื•ืžื” ืœื“ื‘ืจื™ื ืฉืื ื• ืžื›ื™ืจื™ื,
ืืชื ืชื–ืจืงื•.
04:04
you throw away.
83
244029
1222
ืขื“ ืฉืชื’ื™ืขื• ืœืžืฉื”ื• ื›ื–ื”.
04:05
And then you might come up with something like this.
84
245275
2498
ื–ื” ืื•ืžืจ ื“ื‘ืจื™ื ืžืกื•ื‘ื›ื™ื
04:07
And it says something complicated with lots and lots of concepts.
85
247797
3257
ื”ื›ื•ืœืœื™ื ื”ืžื•ืŸ ืจืขื™ื•ื ื•ืช.
ืžื™ ื‘ื›ืœืœ ื›ื•ืชื‘ ื“ื‘ืจ ื›ื–ื”
04:11
Who on Earth would write something as convoluted and complex and inane?
86
251078
5360
ืžืคื•ืชืœ ื•ืžืกื•ื‘ืš
ื•ื—ืœื•ืœ?
ืื‘ืœ ืืœื” ื”ื ืจืขื™ื•ื ื•ืช ืžืžืฉ ื—ืฉื•ื‘ื™ื.
04:18
Oh, it's actually a really, really, important set of concepts.
87
258212
3901
ืœื›ืŸ ืื ื™ ืžื“ื’ื™ืฉ ื›ืžื” ืžื™ืœื™ื
04:22
So I'm highlighting just a few words
88
262137
2099
04:24
and saying definitions like that rely on things
89
264260
3924
ื•ื˜ื•ืขืŸ ืฉื”ื’ื“ืจื•ืช ื›ืืœื•
ื ืกืžื›ื•ืช ืขืœ ื“ื‘ืจื™ื ืฉืื™ื ื ืžืชื‘ืกืกื™ื
04:28
that are not based on amino acids or leaves or anything that we are used to,
90
268208
6149
ืขืœ ื—ื•ืžืฆื•ืช ืืžื™ื ื™ื•ืช ืื• ืขืœื™ื
ืื• ื›ืœ ื“ื‘ืจ ืฉืื ื• ืžื›ื™ืจื™ื,
ืืœื ื‘ืขืฆื ืจืง ืขืœ ืชื”ืœื™ื›ื™ื.
04:34
but in fact on processes only.
91
274381
1751
ื•ืื ื ืชื‘ื•ื ืŸ ืžืงืจื•ื‘,
04:36
And if you take a look at that,
92
276156
1871
ื–ื” ื”ื•ืคื™ืข ื‘ืกืคืจ ืฉื›ืชื‘ืชื™ ืขืœ ื—ื™ื™ื ืžืœืื›ื•ืชื™ื™ื.
04:38
this was actually in a book that I wrote that deals with artificial life.
93
278051
3457
ื–ื” ืžืกื‘ื™ืจ ืžื“ื•ืข
04:41
And that explains why that NASA manager was actually in my office to begin with.
94
281532
4227
ืžื ื”ืœ ื ืืกื ื ื›ื ืก ืœืžืฉืจื“ื™ ืžื”ืชื—ืœื”.
04:45
Because the idea was that, with concepts like that,
95
285783
3087
ื›ื™ ื”ืจืขื™ื•ืŸ ื”ื•ื ืฉืขื ืžื•ืฉื’ื™ื ื›ืืœื”
04:48
maybe we can actually manufacture a form of life.
96
288894
4020
ืื•ืœื™ ื ื•ื›ืœ ืœื™ื™ืฆืจ
ืฆื•ืจืช ื—ื™ื™ื.
04:52
And so if you go and ask yourself, "What on Earth is artificial life?",
97
292938
4797
ืœื›ืŸ ืื ืืชื ืฉื•ืืœื™ื, "ืžื” ื–ื” ืœื›ืœ ื”ืจื•ื—ื•ืช
ื—ื™ื™ื ืžืœืื›ื•ืชื™ื™ื?",
04:57
let me give you a whirlwind tour of how all this stuff came about.
98
297759
3669
ืืขืฉื” ืœื›ื ืกื™ื•ืจ ื–ืจื™ื–
ืขืœ ื›ื™ืฆื“ ื›ืœ ื–ื” ื ื•ืฆืจ.
05:01
And it started out quite a while ago,
99
301452
3135
ื–ื” ื”ื—ืœ ืœืคื ื™ ื“ื™ ื”ืจื‘ื” ื–ืžืŸ
05:04
when someone wrote one of the first successful computer viruses.
100
304611
4325
ื›ืืฉืจ ืžื™ืฉื”ื• ื›ืชื‘
ืืช ืื—ื“ ืžื•ื™ืจื•ืกื™ ืžื—ืฉื‘ ื”ืจืืฉื•ื ื™ื.
ื•ืืœื” ืžื›ื ืฉืื™ื ื ืžืกืคื™ืง ืžื‘ื•ื’ืจื™ื,
05:09
And for those of you who aren't old enough,
101
309245
2173
05:11
you have no idea how this infection was working --
102
311442
2583
ืื™ืŸ ืœื›ื ืžื•ืฉื’ ื›ื™ืฆื“ ื•ื™ืจื•ืก ื–ื” ืคืขืœ --
05:14
namely, through these floppy disks.
103
314049
2260
ื›ืœื•ืžืจ, ื‘ืืžืฆืขื•ืช ื“ื™ืกืงื˜ื™ื ื›ืืœื”.
05:16
But the interesting thing about these computer virus infections
104
316333
3887
ืื‘ืœ ืžื” ืฉืžืขื ื™ื™ืŸ ื‘ืงืฉืจ ืœื•ื™ืจื•ืกื™ ืžื—ืฉื‘ ืืœื”
ื”ื•ื ืฉืื ืžืกืชื›ืœื™ื
05:20
was that, if you look at the rate at which the infection worked,
105
320244
3452
ืขืœ ืงืฆื‘ ืคืขื•ืœืชื,
05:23
they show this spiky behavior that you're used to from a flu virus.
106
323720
4150
ืžืชื’ืœื” ื”ืชื ื”ื’ื•ืช ื–ื™ื’ื–ื’ื™ืช
ืฉืื ื• ืžื›ื™ืจื™ื ืžื•ื™ืจื•ืก ืฉืคืขืช.
05:27
And it is in fact due to this arms race
107
327894
2342
ื–ื” ื ื•ื‘ืข ืžืžืจื•ืฅ ื”ื—ื™ืžื•ืฉ
05:30
between hackers and operating system designers
108
330260
3456
ื‘ื™ืŸ ืคื•ืจืฆื™ ืžื—ืฉื‘ื™ื ืœื‘ื™ืŸ ืžืชื›ื ื ื™ ืžืขืจื›ื•ืช ื”ืคืขืœื”,
05:33
that things go back and forth.
109
333740
1600
ืฉื”ืขื ื™ื™ื ื™ื ืขื•ืœื™ื ื•ื™ื•ืจื“ื™ื.
05:35
And the result is kind of a tree of life of these viruses,
110
335364
4511
ื•ื”ืชื•ืฆืื” ื”ื™ื ืžื™ืŸ ืขืฅ-ื—ื™ื™ื
ืฉืœ ื”ื•ื™ืจื•ืกื™ื ื”ืœืœื•,
05:39
a phylogeny that looks very much like the type of life
111
339899
3605
ืชื•ืœื“ื•ืช ื”ื’ื–ืข ื”ื ืจืื™ื ืžืื•ื“ ื“ื•ืžื” ืœื—ื™ื™ื
ืฉืื ื• ืžื›ื™ืจื™ื, ืœืคื—ื•ืช ื‘ืจืžืช ื”ื•ื™ืจื•ืกื™ื.
05:43
that we're used to, at least on the viral level.
112
343528
2429
05:45
So is that life?
113
345981
1330
ื”ืื ื–ื” ื—ื™ื™ื? ืœื ืื ื–ื” ืชืœื•ื™ ื‘ื™.
05:47
Not as far as I'm concerned.
114
347526
1616
ืžื“ื•ืข? ื›ื™ ื“ื‘ืจื™ื ื”ืœืœื• ืื™ื ื ืžืชืคืชื—ื™ื ื‘ื›ื•ื—ื•ืช ืขืฆืžื,
05:49
Why? Because these things don't evolve by themselves.
115
349166
2842
ืืœื ืคื•ืจืฆื™ ืžื—ืฉื‘ื™ื ื›ื•ืชื‘ื™ื ืื•ืชื.
05:52
In fact, they have hackers writing them.
116
352032
1953
ืื‘ืœ ื‘ืžื”ืจื” ื”ืจืขื™ื•ืŸ ื ืœืงื— ื˜ื™ืคื” ื™ื•ืชืจ ืจื—ื•ืง
05:54
But the idea was taken very quickly a little bit further,
117
354009
3330
05:57
when a scientist working at the Santa Fe Institute decided,
118
357363
3311
ื›ืฉืžื“ืขืŸ ื”ืขื•ื‘ื“ ื‘ืžื›ื•ืŸ ืกื ื˜ื” ืคื”, ื—ืฉื‘,
06:00
"Why don't we try to package these little viruses
119
360698
3133
"ืžื“ื•ืข ืฉืœื ื ื ืกื” ืœืฉื™ื ืืช ื”ื•ื™ืจื•ืกื™ื ื”ืœืœื• ื™ื—ื“
06:03
in artificial worlds inside of the computer
120
363855
2215
ื‘ืขื•ืœื ื”ืžืœืื›ื•ืชื™ ืฉื‘ืชื•ืš ื”ืžื—ืฉื‘
ื•ื ืืคืฉืจ ืœื”ื ืœื”ืชืคืชื—?"
06:06
and let them evolve?"
121
366094
1271
06:07
And this was Steen Rasmussen.
122
367389
1594
ื”ื™ื” ื–ื” ืกื˜ื™ืŸ ืจืืกืžื•ืกืŸ.
06:09
And he designed this system, but it really didn't work,
123
369007
2692
ื”ื•ื ืชื›ื ืŸ ืืช ื”ืžืขืจื›ืช ืื‘ืœ ื–ื” ืœื ืขื‘ื“,
06:11
because his viruses were constantly destroying each other.
124
371723
2884
ื›ื™ ื”ื•ื™ืจื•ืกื™ื ืฉืœื• ื”ืฉืžื™ื“ื• ื›ืœ ื”ื–ืžืŸ ืื—ื“ ืืช ื”ืฉื ื™.
06:14
But there was another scientist who had been watching this, an ecologist.
125
374631
3517
ืื‘ืœ ื”ื™ื” ืžื“ืขืŸ ืื—ืจ, ืืงื•ืœื•ื’ ื‘ืžืงืฆื•ืขื•, ืฉืขืงื‘ ืื—ืจื™ ื–ื”.
ื”ื•ื ื—ืฉื‘ ืฉื™ื•ื›ืœ ืœืชืงืŸ ืืช ื–ื”.
06:18
And he went home and says, "I know how to fix this."
126
378172
2492
06:20
And he wrote the Tierra system,
127
380688
1644
ื”ื•ื ื›ืชื‘ ืืช ืžืขืจื›ืช ื˜ื™ืืจื”,
06:22
and, in my book,
128
382356
1205
ื•ื‘ืกืคืจ ืฉืœื™, ื™ืฉ ืœืžืขืฉื” ืื—ืช ืžืฆื•ืจื•ืช ื”ื—ื™ื™ื
06:23
is in fact one of the first truly artificial living systems --
129
383585
3824
ื”ืžืœืื›ื•ืชื™ื•ืช ื”ืืžื™ืชื™ื•ืช ื”ืจืืฉื•ื ื•ืช --
06:27
except for the fact that these programs didn't really grow in complexity.
130
387433
3462
ืืœื ืฉืชื•ื›ื ื™ื•ืช ื”ืœืœื• ืื™ื ืŸ ื’ื“ืœื•ืช ื‘ืชื ืื™ื ืžื•ืจื›ื‘ื™ื.
06:30
So having seen this work, worked a little bit on this,
131
390919
2864
ืœืื—ืจ ืฉืจืื™ืชื™ ืืช ื–ื” ืขื•ื‘ื“ ื•ืงืฆืช ืขื‘ื“ืชื™ ืขืœ ื–ื”,
06:33
this is where I came in.
132
393807
1658
ื ื›ื ืกืชื™ ืœืชืžื•ื ื”.
06:35
And I decided to create a system that has all the properties
133
395489
3643
ื”ื—ืœื˜ืชื™ ืœื™ืฆื•ืจ ืžืขืจื›ืช ืฉื™ืฉ ื‘ื”
ืืช ื›ืœ ื”ืชื›ื•ื ื•ืช ื”ื“ืจื•ืฉื•ืช
06:39
that are necessary to see, in fact, the evolution of complexity,
134
399156
3846
ื›ื“ื™ ืœืจืื•ืช ืืช ื”ืชืคืชื—ื•ืช ื”ืžื•ืจื›ื‘ื•ืช,
ื‘ืขื™ื•ืช ื™ื•ืชืจ ื•ื™ื•ืชืจ ืžื•ืจื›ื‘ื•ืช ื”ืžืชืคืชื—ื•ืช ื›ืœ ื”ื–ืžืŸ.
06:43
more and more complex problems constantly evolving.
135
403026
3302
ื•ืžืื—ืจ ื•ืื™ื ื™ ื™ื•ื“ืข ืœื›ืชื•ื‘ ืชื•ื›ื ื™ื•ืช ืžื—ืฉื‘, ืงื™ื‘ืœืชื™ ืขื–ืจื” ื‘ื ื•ืฉื.
06:46
And of course, since I really don't know how to write code, I had help in this.
136
406352
3784
ื”ื™ื• ืœื™ ืฉื ื™ ืกื˜ื•ื“ื ื˜ื™ื ืœืžื—ืงืจ
06:50
I had two undergraduate students
137
410160
1548
ื‘ืžื›ื•ืŸ ื”ื˜ื›ื ื•ืœื•ื’ื™ ืฉืœ ืงืœื™ืคื•ืจื ื™ื” ืฉืขื‘ื“ื• ืื™ืชื™.
06:51
at California Institute of Technology that worked with me.
138
411732
2729
ืžืฉืžืืœ ื–ื” ืฆ'ืจืœืก ืื•ืคืจื™ื” ื•ืžื™ืžื™ืŸ ื–ื” ื˜ื™ื˜ื•ืก ื‘ืจืื•ืŸ.
06:54
That's Charles Ofria on the left, Titus Brown on the right.
139
414485
2852
ื›ื™ื•ื ื”ื ืคืจื•ืคืกื•ืจื™ื ืžื›ื•ื‘ื“ื™ื
06:57
They are now, actually, respectable professors
140
417361
2335
06:59
at Michigan State University,
141
419720
1742
ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ืžื™ืฉื™ื’ืŸ,
07:01
but I can assure you, back in the day, we were not a respectable team.
142
421486
4501
ืื‘ืœ ืื ื™ ืžื‘ื˜ื™ื—ื›ื, ืฉื‘ืื•ืชื ื”ื™ืžื™ื
ืœื ื ื—ืฉื‘ื ื• ืœืฆื•ื•ืช ืžื›ื•ื‘ื“.
ื•ืื ื™ ื‘ืืžืช ืฉืžื— ืฉืœื ืฉืจื“ื• ืชืžื•ื ื•ืช
07:06
And I'm really happy that no photo survives
143
426011
2049
ืฉืœ ืฉืœื•ืฉืชื ื• ื”ื ืžืฆืื™ื ื‘ื™ื—ื“.
07:08
of the three of us anywhere close together.
144
428084
2523
ืื‘ืœ ืžื”ื™ ื‘ื“ื™ื•ืง ื”ืžืขืจื›ืช ื”ื–ื•?
07:11
But what is this system like?
145
431352
1875
ืื™ื ื™ ื™ื›ื•ืœ ืœื”ื™ื›ื ืก ืžืžืฉ ืœืคืจื˜ื™ื,
07:13
Well I can't really go into the details,
146
433251
2189
07:15
but what you see here is some of the entrails.
147
435464
2653
ืื‘ืœ ืžื” ืฉืจื•ืื™ื ื›ืืŸ ื–ื” ืžืขื˜ ืžืžื” ืฉื”ื™ื” ื‘ืคื ื™ื.
ืžื” ืฉืจืฆื™ืชื™ ืœื”ืชืจื›ื– ื‘ื•
07:18
But what I wanted to focus on is this type of population structure.
148
438141
4085
ื”ื•ื ืžื‘ื ื” ืื•ื›ืœื•ืกื™ืŸ ื–ื”.
ื ืžืฆืื•ืช ื›ืืŸ ื›-10,000 ืชื•ื›ื ื™ื•ืช
07:22
There's about 10,000 programs sitting here.
149
442250
2472
07:24
And all different strains are colored in different colors.
150
444746
2919
ื•ื›ืœ ืžื™ื ื™ ืžืงื˜ืขื™ื ื”ืฆื‘ื•ืขื™ื ื‘ืฆื‘ืขื™ื ืฉื•ื ื™ื.
07:27
And as you see here, there are groups that are growing on top of each other,
151
447689
3604
ื›ืคื™ ืฉืจื•ืื™ื, ื™ืฉ ืงื‘ื•ืฆื•ืช ื”ืฆื•ืžื—ื•ืช ืขืœ-ื’ื‘ื™ ืื—ืจื•ืช,
ืžื›ื™ื•ื•ืŸ ืฉื”ืŸ ืžืชืคืฉื˜ื•ืช.
07:31
because they are spreading.
152
451317
1341
07:32
Any time there is a program that's better at surviving in this world,
153
452682
4104
ื‘ื›ืœ ืจื’ืข ื™ืฉ ืชื•ื›ื ื™ืช ื”ืขื“ื™ืคื”
ื‘ื™ื›ื•ืœืช ื”ื™ืฉืจื“ื•ืชื” ื‘ืขื•ืœื ื–ื”,
07:36
due to whatever mutation it has acquired,
154
456810
1968
ื‘ื’ืœืœ ืžื•ื˜ืืฆื™ื” ื›ืœืฉื”ื™ ืฉื”ื™ื ืขื‘ืจื”,
07:38
it is going to spread over the others and drive the others to extinction.
155
458802
3470
ื•ื”ื™ื ืชืชืคืฉื˜ ืขืœ-ืคื ื™ ื”ืื—ืจื•ืช ื•ืชื’ืจื•ื ืœื”ื›ื—ื“ืช ื”ืื—ืจื•ืช.
ืืจืื” ืœื›ื ืกืจื˜ื•ืŸ ื‘ื• ืชืจืื• ืžื™ืŸ ื“ื™ื ืžื™ืงื” ื›ื–ื•.
07:42
So I'm going to show you a movie
156
462296
1555
07:43
where you're going to see that kind of dynamic.
157
463875
2227
ื ื™ืกื•ื™ื™ื ื›ืืœื” ื”ื—ืœื• ืขื ืชื•ื›ื ื™ื•ืช
07:46
And these kinds of experiments are started with programs that we wrote ourselves.
158
466126
4276
ืฉื›ืชื‘ื ื• ื‘ืขืฆืžื ื•.
ืื ื• ื›ื•ืชื‘ื™ื ืืช ื”ืงื•ื“ ื•ืžืฉื›ืคืœื™ื ืื•ืชื•,
07:50
We write our own stuff, replicate it, and are very proud of ourselves.
159
470426
3337
ื•ืื ื• ืžืื•ื“ ื’ืื™ื ื‘ื–ื”.
07:53
And we put them in, and what you see immediately
160
473787
2776
ืื ื• ืžื›ื ื™ืกื™ื ืื•ืชืŸ ื•ืžื” ืฉืจื•ืื™ื ืžื™ื™ื“
07:56
is that there are waves and waves of innovation.
161
476587
3066
ืฉื™ืฉ ื’ืœื™ื, ื’ืœื™ื ืฉืœ ื”ืชื—ื“ืฉื•ื™ื•ืช.
07:59
By the way, this is highly accelerated,
162
479677
1894
ื›ืœ ื–ื” ื›ืขืช ืžื•ืืฅ ื‘ืžื™ื“ื” ืจื‘ื”,
08:01
so it's like a 1000 generations a second.
163
481595
2197
ืžืฉื”ื• ื›ืžื• ืืœืฃ ื“ื•ืจื•ืช ื‘ืฉื ื™ื”.
08:03
But immediately, the system goes like, "What kind of dumb piece of code was this?
164
483816
3967
ืื‘ืœ ืžื™ื™ื“ ื”ืžืขืจื›ืช ื›ืื™ืœื• ืื•ืžืจืช,
"ืื™ื–ื” ืžื™ืŸ ืงื•ื“ ื˜ื™ืคืฉื™ ื–ื” ื”ื™ื”?
08:07
This can be improved upon in so many ways, so quickly."
165
487807
3721
ื ื™ืชืŸ ืœืฉืคืจ ื–ืืช ื‘ื”ืžื•ืŸ ื“ืจื›ื™ื
ื•ื‘ืžื”ื™ืจื•ืช."
08:11
So you see waves of new types taking over the other types.
166
491552
3748
ืื– ืจื•ืื™ื ื’ืœื™ื ืžืกื•ื’ ื—ื“ืฉ
ื”ืชื•ืคืกื™ื ืืช ืžืงื•ืžื ืฉืœ ืื—ืจื™ื.
08:15
And this type of activity goes on for quite a while,
167
495324
2562
ื•ืกื•ื’ ื›ื–ื” ืฉืœ ืคืขื™ืœื•ืช ืžืชืจื—ืฉ ื“ื™ ื”ืจื‘ื” ื–ืžืŸ,
08:17
until the main easy things have been acquired by these programs.
168
497910
4821
ืขื“ ืืฉืจ ืชื•ื›ื ื™ื•ืช ืืœื• ืžืฉื™ื’ื•ืช ืœืขืฆืžืŸ ืืช ื”ื“ื‘ืจื™ื ื”ืงืœื™ื ื”ืขื™ืงืจื™ื™ื.
08:22
And then, you see sort of like a stasis coming on
169
502755
3481
ืื– ืจื•ืื™ื ืžื™ืŸ ืงื™ืคืื•ืŸ ืฉืžืฉืชืœื˜, ื‘ื• ื”ืžืขืจื›ืช
08:26
where the system essentially waits
170
506260
1976
ื‘ืขื™ืงืจื•ืŸ ืžืžืชื™ื ื”
08:28
for a new type of innovation, like this one,
171
508260
3183
ืœื”ืชื—ื“ืฉื•ืช ืžืกื•ื’ ื—ื“ืฉ, ื›ืžื• ื–ื•,
08:31
which is going to spread over all the other innovations that were before
172
511467
4282
ืฉืชืชืคืฉื˜ ืขืœ-ืคื ื™ ื›ืœ
ื”ื”ืชื—ื“ืฉื•ื™ื•ืช ื”ืื—ืจื•ืช ื”ืงื™ื™ืžื•ืช
08:35
and is erasing the genes that it had before,
173
515773
2463
ื•ืชืžื—ืง ืืช ื”ื’ื ื™ื ืฉื”ื™ื• ืงื•ื“ื,
08:38
until a new type of higher level of complexity has been achieved.
174
518260
3976
ืขื“ ืฉืžืชืงื‘ืœืช ืžื•ืจื›ื‘ื•ืช ืžืกื•ื’ ื—ื“ืฉ ื‘ื“ืจื’ื” ื™ื•ืชืจ ื’ื‘ื•ื”ื”.
08:42
And this process goes on and on and on.
175
522260
2976
ืชื”ืœื™ืš ื–ื” ืžืžืฉื™ืš ืขื•ื“ ื•ืขื•ื“.
08:45
So what we see here
176
525727
1315
ื›ืš ืฉืžื” ืฉืจื•ืื™ื ื›ืืŸ
08:47
is a system that lives in very much the way we're used to how life goes.
177
527066
4163
ื–ื• ืžืขืจื›ืช ืฉื—ื™ื” ื‘ืื•ืคืŸ ื”ืžืื•ื“ ื“ื•ืžื”
ืœืžื” ืฉืื ื• ืžื›ื™ืจื™ื ืขืœ ื—ื™ื™ื.
08:51
But what the NASA people had asked me really was,
178
531948
4120
ืื‘ืœ ืžื” ืฉืื ืฉื™ ื ืืกื ื‘ื™ืงืฉื• ืžืžื ื™ ื”ื™ื”,
"ื”ืื ื™ืฉ ืœื™ืฆื•ืจื™ื ืืœื”
08:56
"Do these guys have a biosignature?
179
536473
2762
ื—ืชื™ืžื” ื‘ื™ื•ืœื•ื’ื™ืช?
08:59
Can we measure this type of life?
180
539840
1813
ื”ืื ื ื•ื›ืœ ืœืžื“ื•ื“ ื—ื™ื™ื ื›ืืœื”?
09:01
Because if we can,
181
541677
1192
ื›ื™ ืื ื ื•ื›ืœ,
09:02
maybe we have a chance of actually discovering life somewhere else
182
542893
3849
ืื•ืœื™ ื™ื”ื™ื” ืœื ื• ืกื™ื›ื•ื™ ืœื’ืœื•ืช ื—ื™ื™ื ื‘ืžืงื•ื ืื—ืจ
09:06
without being biased by things like amino acids."
183
546766
3154
ืžื‘ืœื™ ืœื”ื™ื•ืช ืžื•ืฉืคืขื™ื
ืžื“ื‘ืจื™ื ื›ืžื• ื—ื•ืžืฆื•ืช ืืžื™ื ื™ื•ืช."
09:10
So I said, "Well, perhaps we should construct a biosignature
184
550481
4533
ืœื›ืŸ ื—ืฉื‘ืชื™ ืฉืขืœื™ื ื• ืœื™ืฆื•ืจ
ื—ืชื™ืžื” ื‘ื™ื•ืœื•ื’ื™ืช
09:15
based on life as a universal process.
185
555038
3198
ื”ืžื‘ื•ืกืกืช ืขืœ ื—ื™ื™ื ื‘ืžื•ื ื—ื™ ืชื”ืœื™ืš ืื•ื ื™ื‘ืจืกืœื™.
09:18
In fact, it should perhaps make use of the concepts that I developed
186
558260
4864
ืื•ืœื™ ืขืœื™ื” ืœืขืฉื•ืช ืฉื™ืžื•ืฉ
ื‘ืจืขื™ื•ื ื•ืช ืฉืคื™ืชื—ืชื™
ืจืง ื›ื“ื™ ืœืงื‘ืœ ืžื•ืฉื’
09:23
just in order to sort of capture what a simple living system might be."
187
563148
4087
ืื™ืš ืขืฉื•ื™ื” ืœื”ื™ื•ืช ืฆื•ืจืช ื—ื™ื™ื ืคืฉื•ื˜ื”.
ื•ืžื” ืฉืขืœื” ื‘ืจืืฉื™ --
09:27
And the thing I came up with --
188
567259
1519
09:28
I have to first give you an introduction about the idea,
189
568802
3982
ืื‘ืœ ืชื—ื™ืœื” ื›ื“ืื™ ืฉืืฆื™ื’ ืœื›ื ืืช ื”ืจืขื™ื•ืŸ ื”ืื•ืžืจ
09:32
and maybe that would be a meaning detector,
190
572808
3539
ืฉื–ื” ื™ื”ื™ื” ืžื™ืŸ ื’ืœืื™ ืฉืœ ืžืฉืžืขื•ืช,
ื™ื•ืชืจ ืžืืฉืจ ื’ืœืื™ ืฉืœ ื—ื™ื™ื.
09:36
rather than a life detector.
191
576371
1547
09:38
And the way we would do that --
192
578486
1750
ื•ื”ื“ืจืš ืœื‘ืฆืข ื–ืืช ื‘ืขื™ืงืจื•ืŸ --
09:40
I would like to find out how I can distinguish text
193
580260
2636
ื”ื™ื™ืชื™ ืจื•ืฆื” ืœื“ืขืช ืื™ืš ืœื”ื‘ื—ื™ืŸ ื‘ื˜ืงืกื˜
09:42
that was written by a million monkeys, as opposed to text that is in our books.
194
582920
4647
ืฉื ื›ืชื‘ ืขืœ-ื™ื“ื™ ืžื™ืœื™ื•ืŸ ืงื•ืคื™ื,
ืœืขื•ืžืช ื”ื˜ืงืกื˜ ืฉืžื•ืคื™ืข ื‘ืกืคืจื™ื ืฉืœื ื•.
09:47
And I would like to do it in such a way
195
587905
1877
ื”ื™ื™ืชื™ ืจื•ืฆื” ืœื‘ืฆืข ื–ืืช ื‘ื“ืจืš ื›ื–ื•
09:49
that I don't actually have to be able to read the language,
196
589806
2878
ืฉืœื ืืฆื˜ืจืš ืœืงืจื•ื ืืช ื”ืฉืคื”,
ืžื›ื™ื•ื•ืŸ ืฉืื ื™ ื‘ื˜ื•ื— ืฉืื™ืŸ ืื ื™ ืžืกื•ื’ืœ ืœื–ื”,
09:52
because I'm sure I won't be able to.
197
592708
1770
ืื‘ืœ ืื ื™ ื™ื•ื“ืข ืฉื™ืฉ ืื™ื–ื” ืกื•ื’ ืฉืœ ืืœืฃ-ื‘ื™ืช.
09:54
As long as I know that there's some sort of alphabet.
198
594502
2500
ื–ื” ื™ื”ื™ื” ืชืจืฉื™ื ืฉืœ ืชื“ื™ืจื•ืช
09:57
So here would be a frequency plot
199
597026
2330
ื”ื•ืคืขืช ื›ืœ ืื—ืช
09:59
of how often you find each of the 26 letters of the alphabet
200
599380
3382
ืž-26 ื”ืื•ืชื™ื•ืช
10:02
in a text written by random monkeys.
201
602786
2219
ื‘ื˜ืงืกื˜ ืฉื ื›ืชื‘ ืขืœ-ื™ื“ื™ ืงื•ืคื™ื.
10:05
And obviously, each of these letters comes off about roughly equally frequent.
202
605455
4554
ื‘ืจื•ืจ ืฉื›ืœ ืื—ืช ืžื”ืื•ืชื™ื•ืช
ืชื•ืคื™ืข ื‘ืขืจืš ื‘ืชื“ื™ืจื•ืช ื›ืžื• ื”ืื—ืจื•ืช.
ืœืขื•ืžืช ื–ื”, ืื ืžืกืชื›ืœื™ื ืขืœ ืคื™ืœื•ื’ ืฉืœ ื”ืื•ืชื™ื•ืช ื‘ื˜ืงืกื˜ื™ื ื‘ืื ื’ืœื™ืช,
10:10
But if you now look at the same distribution in English texts,
203
610033
3592
10:13
it looks like that.
204
613649
1248
ื–ื” ื ืจืื” ื›ืš.
10:15
And I'm telling you, this is very robust across English texts.
205
615462
3548
ื•ื–ื” ืžืื•ื“ ืงื‘ื•ืข ื‘ื›ืœ ื”ื˜ืงืกื˜ื™ื ื‘ืื ื’ืœื™ืช.
ืื ืžืกืชื›ืœื™ื ื‘ื˜ืงืกื˜ื™ื ื‘ืฆืจืคืชื™ืช, ืื• ืื™ื˜ืœืงื™ืช, ืื• ื’ืจืžื ื™ืช,
10:19
And if I look at French texts, it looks a little bit different,
206
619034
2984
ื–ื” ื ืจืื” ืงืฆืช ืื—ืจืช.
10:22
or Italian or German.
207
622042
1178
ืœื›ืœ ืื—ืช ื™ืฉ ืืช ืคื™ืœื•ื’ ื”ืื•ืชื™ื•ืช ืžืฉืœื”,
10:23
They all have their own type of frequency distribution,
208
623244
3416
ืื‘ืœ ื–ื” ืงื‘ื•ืข.
10:26
but it's robust.
209
626684
1433
ื–ื” ืœื ืžืฉื ื” ืื ื”ื˜ืงืกื˜ ื”ื•ื ืขืœ ืคื•ืœื™ื˜ื™ืงื” ืื• ืžื“ืข.
10:28
It doesn't matter whether it writes about politics or about science.
210
628141
3207
ืœื ืžืฉื ื” ืื ื–ื• ืฉื™ืจื”
10:31
It doesn't matter whether it's a poem or whether it's a mathematical text.
211
631372
5780
ืื• ื˜ืงืกื˜ ืขืœ ืžืชืžื˜ื™ืงื”.
ื™ืฉ ืœื”ื ื—ืชื™ืžื” ืงื‘ื•ืขื”,
10:37
It's a robust signature,
212
637176
1837
ื•ื”ื™ื ืžืื•ื“ ื™ืฆื™ื‘ื”.
10:39
and it's very stable.
213
639037
1820
10:40
As long as our books are written in English --
214
640881
2157
ื›ืœ ืขื•ื“ ืกืคืจื™ื ื• ื ื›ืชื‘ื™ื ื‘ืื ื’ืœื™ืช --
ืžื›ื™ื•ื•ืŸ ืฉืื ืฉื™ื ืžืฉื›ืชื‘ื™ื ืื•ืชื ื•ืžืขืชื™ืงื™ื ืžื—ื“ืฉ --
10:43
because people are rewriting them and recopying them --
215
643062
2791
10:45
it's going to be there.
216
645877
1359
ื–ื” ื™ืชืงื™ื™ื.
10:47
So that inspired me to think about, well, what if I try to use this idea
217
647260
5761
ื–ื” ื ืชืŸ ืœื™ ื”ืฉืจืื” ืœื—ืฉื•ื‘ ืขืœ
ืžื” ื™ืงืจื” ืื ืื ืกื” ืจืขื™ื•ืŸ ื–ื”
ื›ื“ื™ ืœื’ืœื•ืช, ืœื ื˜ืงืกื˜ื™ื ืืงืจืื™ื™ื
10:53
in order, not to detect random texts from texts with meaning,
218
653045
3755
ืœืขื•ืžืช ื˜ืงืกื˜ื™ื ื‘ืขืœื™ ืžืฉืžืขื•ืช,
10:56
but rather detect the fact that there is meaning
219
656824
3729
ืืœื ื›ื“ื™ ืœื—ื–ื•ืช ื‘ืขื•ื‘ื“ื” ืฉื™ืฉ ืกื“ืจ ื‘ืžื•ืœืงื•ืœื•ืช ื”ื‘ื™ื•ืœื•ื’ื™ื•ืช
11:00
in the biomolecules that make up life.
220
660577
2527
ืืฉืจ ื™ื•ืฆืจื•ืช ื—ื™ื™ื.
ืื‘ืœ ืชื—ื™ืœื” ืขืœื™ื™ ืœืฉืื•ืœ:
11:03
But first I have to ask:
221
663128
1168
11:04
what are these building blocks,
222
664320
1488
ืžื”ืŸ ืื‘ื ื™-ื‘ื ื™ื™ืŸ ื”ืœืœื•, ื›ืžื• ื”ืืœืฃ-ื‘ื™ืช, ืฉื”ืจืืชื™ ืœื›ื?
11:05
like the alphabet, elements that I showed you?
223
665832
2296
ืžืชื‘ืจืจ ืฉื™ืฉ ืœื ื• ื”ืจื‘ื” ืืคืฉืจื•ื™ื•ืช
11:08
Well it turns out, we have many different alternatives
224
668152
2873
ืœืžืขืจื›ื™ื ื›ืืœื” ืฉืœ ืื‘ื ื™-ื‘ื ื™ื™ืŸ.
11:11
for such a set of building blocks.
225
671049
2314
ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื—ื•ืžืฆื•ืช ืืžื™ื ื™ื•ืช,
11:13
We could use amino acids,
226
673387
1248
11:14
we could use nucleic acids, carboxylic acids, fatty acids.
227
674659
3202
ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื—ื•ืžืฆื•ืช ื’ืจืขื™ืŸ (ื”ืชื), ื—ื•ืžืฆื•ืช ืฉื•ืžืŸ, ื—ื•ืžืฆื•ืช ืงืจื‘ื•ืงืกื™ืœื™ื•ืช.
11:17
In fact, chemistry's extremely rich, and our body uses a lot of them.
228
677885
3438
ืœืžืขืฉื”, ื”ื›ื™ืžื™ื” ืžืื•ื“ ืขืฉื™ืจื” ื•ื’ื•ืคื™ื ื• ืžืฉืชืžืฉ ื‘ืจื‘ื•ืช ืžื”ืŸ.
ืœื›ืŸ ืื ื—ื ื•, ื›ื“ื™ ืœื ืกื•ืช ืืช ื”ืจืขื™ื•ืŸ,
11:21
So that we actually, to test this idea,
229
681347
2306
11:23
first took a look at amino acids and some other carboxylic acids.
230
683677
3547
ืชื—ื™ืœื” ื”ืกืชื›ืœื ื• ื‘ื—ื•ืžืฆื•ืช ืืžื™ื ื™ื•ืช ื•ื—ื•ืžืฆื•ืช ืงืจื‘ื•ืงืกื™ืœื™ื•ืช.
ื•ื”ื ื” ื”ืชื•ืฆืื”.
11:27
And here's the result.
231
687248
1471
11:28
Here is, in fact, what you get
232
688743
3166
ื–ื” ืžื” ืฉืžืงื‘ืœื™ื
11:31
if you, for example, look at the distribution of amino acids
233
691933
3023
ืื ื‘ื•ื“ืงื™ื ืืช ืคื™ืœื•ื’ ื”ื—ื•ืžืฆื•ืช ื”ืืžื™ื ื™ื•ืช
11:34
on a comet or in interstellar space or, in fact, in a laboratory,
234
694980
4735
ืขืœ ื›ื•ื›ื‘-ืฉื‘ื™ื˜ ืื• ื‘ื—ืœืœ ื‘ื™ืŸ-ื›ื•ื›ื‘ื™
ืื• ืืคื™ืœื• ื‘ืžืขื‘ื“ื”,
11:39
where you made very sure that in your primordial soup,
235
699739
2659
ื‘ื” ืžื•ื•ื“ืื™ื ืฉื‘ืžืจืง ื”ืงื“ืžื•ื ื™
ืื™ืŸ ื—ื•ืžืจื™ื ืžืŸ ื”ื—ื™.
11:42
there is no living stuff in there.
236
702422
1918
ืžื” ืฉืžื•ืฆืื™ื ื‘ืขื™ืงืจ ื–ื” ื’ืœื™ืฆื™ืŸ ื•ืืœื ื™ืŸ (ื—ื•ืžืฆื•ืช ืืžื™ื ื™ื•ืช)
11:44
What you find is mostly glycine and then alanine
237
704364
2879
ื•ืขืงื‘ื•ืช ืฉืœ ื›ืžื” ื—ื•ืžืฆื•ืช ืื—ืจื•ืช.
11:47
and there's some trace elements of the other ones.
238
707267
2359
11:49
That is also very robust --
239
709650
2429
ื’ื ื–ื” ืžืื•ื“ ืงื‘ื•ืข --
11:52
what you find in systems like Earth
240
712103
3832
ืžื” ืฉืžื•ืฆืื™ื ื‘ืžืงื•ืžื•ืช ืขืœ ื›ื“ื•ืจ-ื”ืืจืฅ
11:55
where there are amino acids, but there is no life.
241
715959
3145
ืฉืฉื ื™ืฉ ื—ื•ืžืฆื•ืช ืืžื™ื ื™ื•ืช,
ืื‘ืœ ืื™ืŸ ื—ื™ื™ื.
11:59
But suppose you take some dirt and dig through it
242
719128
4630
ืื‘ืœ ืื ื ื•ื˜ืœื™ื ืงืฆืช ืขืคืจ
ื•ื—ื•ืคืจื™ื ื‘ื•
12:03
and then put it into these spectrometers,
243
723782
2960
ื•ืื– ืžื ื™ื—ื™ื ืื•ืชื• ื‘ืกืคืงื˜ืจื•ืžื˜ืจ,
12:06
because there's bacteria all over the place;
244
726766
2098
ืžืคื ื™ ืฉื™ืฉ ื‘ืงื˜ืจื™ื•ืช ื‘ื›ืœ ืžืงื•ื;
12:08
or you take water anywhere on Earth,
245
728888
2231
ืื• ืฉื ื•ื˜ืœื™ื ืžื™ื ืžืžืงื•ื ื›ืœืฉื”ื• ื‘ื›ื“ื•ืจ-ื”ืืจืฅ,
ืžืื—ืจ ื•ื”ื ื”ื•ืœื›ื™ื ื™ื—ื“ ืขื ื—ื™ื™ื,
12:11
because it's teaming with life,
246
731143
1517
12:12
and you make the same analysis;
247
732684
1750
ื•ืžื‘ืฆืขื™ื ืื•ืชื” ื‘ื“ื™ืงื”;
12:14
the spectrum looks completely different.
248
734458
2577
ื”ืกืคืงื˜ืจื•ื ื ืจืื” ืœื’ืžืจื™ ืื—ืจืช.
ื‘ืจื•ืจ ืฉืขื“ื™ื™ืŸ ื™ืฉื ืŸ ื’ืœื™ืฆื™ืŸ ื•ืืœื ื™ืŸ, ืื‘ืœ, ื™ืฉื ื ื’ื ืืช
12:17
Of course, there is still glycine and alanine,
249
737059
3375
12:20
but in fact, there are these heavy elements, these heavy amino acids,
250
740458
3320
ื”ื™ืกื•ื“ื•ืช ื”ื›ื‘ื“ื™ื, ืืช ื”ื—ื•ืžืฆื•ืช ื”ืืžื™ื ื™ื•ืช ื”ื›ื‘ื“ื•ืช,
12:23
that are being produced because they are valuable to the organism.
251
743802
3395
ืืฉืจ ื ื•ืฆืจื™ื ื›ื™ ื”ื
ื‘ืขืœื™-ืขืจืš ืขื‘ื•ืจ ื™ืฆื•ืจื™ื ื—ื™ื™ื.
ื•ืขื•ื“ ื›ืžื” ืื—ืจื™ื
12:28
And some other ones that are not used in the set of 20,
252
748327
3938
ืฉืื™ื ื ื‘ืฉื™ืžื•ืฉ ื‘ืงื‘ื•ืฆื” ืฉืœ ื”-20,
ืฉืœื ื™ื•ืคื™ืขื• ื›ืœืœ
12:32
they will not appear at all in any type of concentration.
253
752289
2898
ื‘ืจื™ื›ื•ื– ืžืกื•ื’ ื›ืœืฉื”ื•.
12:35
So this also turns out to be extremely robust.
254
755211
2705
ื›ืš ืฉื’ื ื–ื” ื“ื‘ืจ ืžืื•ื“ ืงื‘ื•ืข.
12:37
It doesn't matter what kind of sediment you're using to grind up,
255
757940
3118
ืœื ืžืฉื ื” ืื™ื–ื” ืžืฉืงืข ื˜ื•ื—ื ื™ื,
ืื ื–ื” ืฉืœ ื‘ืงื˜ืจื™ื•ืช ืื• ืฆืžื—ื™ื ืื• ื—ื™ื•ืช.
12:41
whether it's bacteria or any other plants or animals.
256
761082
3279
ื‘ื›ืœ ืžืงื•ื ืฉื™ืฉ ื—ื™ื™ื,
12:44
Anywhere there's life,
257
764385
1424
12:45
you're going to have this distribution,
258
765833
1951
ื ืงื‘ืœ ืคื™ืœื•ื’ ื›ื–ื”,
12:47
as opposed to that distribution.
259
767808
1817
ื‘ื ื™ื’ื•ื“ ืœืคื™ืœื•ื’ ื”ื”ื•ื.
12:49
And it is detectable not just in amino acids.
260
769649
3237
ื–ื” ืžืชื’ืœื” ืœื ืจืง ื‘ื—ื•ืžืฆื•ืช ืืžื™ื ื™ื•ืช.
12:52
Now you could ask:
261
772910
1217
ื ื™ืชืŸ ืœืฉืื•ืœ:
12:54
Well, what about these Avidians?
262
774151
3159
ืžื” ืœื’ื‘ื™ ื”-ืื•ื•ื™ื“ื™ืื ื™ื ื”ืœืœื•?
ื”-ืื•ื•ื™ื“ื™ืื ื™ื ื”ื ืฉื•ื›ื ื™ ืขื•ืœื ื”ืžื—ืฉื‘ื™ื
12:57
The Avidians being the denizens of this computer world
263
777334
3051
13:00
where they are perfectly happy replicating and growing in complexity.
264
780409
3445
ื‘ื• ื”ื ืœื’ืžืจื™ ืžืื•ืฉืจื™ื ื‘ื”ืชืจื‘ื•ืชื ื•ื’ื“ื™ืœืชื.
13:03
So this is the distribution that you get if, in fact, there is no life.
265
783878
5017
ื–ื” ื”ืคื™ืœื•ื’ ืฉืžืชืงื‘ืœ
ื›ืืฉืจ ืื™ืŸ ื—ื™ื™ื ืœืžืขืฉื”.
13:08
They have about 28 of these instructions.
266
788919
2718
ื™ืฉื ืŸ 28 ื”ื•ืจืื•ืช ื›ืืœื•.
13:11
And if you have a system where they're being replaced one by the other,
267
791661
3352
ืื ื™ืฉ ืžืขืจื›ืช ื‘ื” ื”ื ืžืชื—ืœืคื™ื ื–ื” ืขื ื–ื”,
ื–ื” ื›ืžื• ืฉืงื•ืคื™ื ืžืงืœื™ื“ื™ื ืขืœ ืžื›ื•ื ืช-ื›ืชื™ื‘ื”.
13:15
it's like the monkeys writing on a typewriter.
268
795037
2185
ื‘ื’ื“ื•ืœ, ื›ืœ ืื—ืช ืžื”ื”ื•ืจืื•ืช ืžื•ืคื™ืขื”
13:17
Each of these instructions appears with roughly the equal frequency.
269
797246
4220
ื‘ืื•ืชื” ืชื“ื™ืจื•ืช ื›ืžื• ื”ืื—ืจื•ืช.
13:22
But if you now take a set of replicating guys
270
802375
4780
ืื‘ืœ ืื ื ื•ื˜ืœื™ื ืืช ืงื‘ื•ืฆืช ื”ื™ืฆื•ืจื™ื ื”ืžืฉืชื›ืคืœื™ื
ื›ืžื• ื‘ืกืจื˜ื•ืŸ ืฉืจืื™ืชื,
13:27
like in the video that you saw,
271
807179
1950
ื–ื” ื ืจืื” ื›ืš.
13:29
it looks like this.
272
809153
1519
ื›ืœื•ืžืจ ื™ืฉ ื›ืžื” ื”ื•ืจืื•ืช
13:31
So there are some instructions
273
811459
1473
13:32
that are extremely valuable to these organisms,
274
812956
2433
ืฉื”ืŸ ืžืื•ื“ ื—ืฉื•ื‘ื•ืช ืœื™ืฆื•ืจื™ื ื”ืœืœื•,
ื•ืชื“ื™ืจื•ืช ื”ื•ืคืขืชืŸ ืชื”ื™ื” ื™ื•ืชืจ ื’ื‘ื•ื”ื”.
13:35
and their frequency is going to be high.
275
815413
1970
13:37
And there's actually some instructions that you only use once, if ever.
276
817407
4041
ื™ืฉื ืŸ ื›ืžื” ื”ื•ืจืื•ืช
ื”ืžืฉืžืฉื•ืช ืจืง ืคืขื ืื—ืช, ืื ื‘ื›ืœืœ.
13:41
So they are either poisonous
277
821472
1523
ืื– ืื• ืฉื”ืŸ ืจืขื™ืœื•ืช
13:43
or really should be used at less of a level than random.
278
823019
4505
ืื• ืฉื™ืฉ ืœื”ืฉืชืžืฉ ื‘ื”ืŸ ืคื—ื•ืช ืžืืฉืจ ื”ืจืžื” ื”ืืงืจืื™ืช ืฉืœื”ืŸ.
13:47
In this case, the frequency is lower.
279
827548
2688
ื‘ืžืงืจื” ื›ื–ื”, ืชื“ื™ืจื•ืชืŸ ื ืžื•ื›ื” ื™ื•ืชืจ.
ื›ืขืช ื ื™ืชืŸ ืœื‘ื“ื•ืง, ื”ืื ื–ื• ื‘ืืžืช ื—ืชื™ืžื” ืงื‘ื•ืขื”?
13:51
And so now we can see, is that really a robust signature?
280
831192
2671
13:53
I can tell you indeed it is,
281
833887
1357
ืื ื™ ื™ื›ื•ืœ ืœื•ืžืจ ืฉื”ื™ื ืื›ืŸ ื›ืŸ,
13:55
because this type of spectrum, just like what you've seen in books,
282
835268
3248
ืžื›ื™ื•ื•ืŸ ืฉืกื•ื’ ื—ืชื™ืžื” ื–ื”, ื‘ื“ื™ื•ืง ื›ืคื™ ืฉืจื•ืื™ื ื‘ืกืคืจื™ื,
13:58
and just like what you've seen in amino acids,
283
838540
2153
ื•ื‘ื“ื™ื•ืง ื›ืžื• ืฉืจื•ืื™ื ื‘ื—ื•ืžืฆื•ืช ืืžื™ื ื™ื•ืช,
14:00
it doesn't really matter how you change the environment,
284
840717
2642
ื–ื” ืœื ืžืฉื ื” ืื™ืš ื”ืกื‘ื™ื‘ื” ืžืฉืชื ื™ืช, ื”ื™ื ืžืื•ื“ ืงื‘ื•ืขื”;
14:03
it's very robust, it's going to reflect the environment.
285
843383
2624
ื”ื™ื ืชืฉืงืฃ ืืช ื”ืกื‘ื™ื‘ื”.
ื›ืขืช ืืจืื” ืœื›ื ื ื™ืกื•ื™ ืงื˜ืŸ ืฉื‘ื™ืฆืขื ื•.
14:06
So I'm going to show you now a little experiment that we did.
286
846031
2949
ืขืœื™ื™ ืœื”ืกื‘ื™ืจ
14:09
And I have to explain to you,
287
849004
1384
ืฉืจืืฉ ื”ื’ืจืฃ
14:10
the top of this graph
288
850412
1182
14:11
shows you that frequency distribution that I talked about.
289
851618
2744
ืžืจืื” ืืช ืชื“ื™ืจื•ืช ื”ืคื™ืœื•ื’ ืฉื“ื™ื‘ืจืชื™ ืขืœื™ื”.
14:14
Here, that's the lifeless environment
290
854386
3807
ื›ืืŸ ื‘ืขืฆื ื–ื•ื”ื™ ื”ืกื‘ื™ื‘ื” ืœืœื ื—ื™ื™ื
ื‘ื” ื›ืœ ื”ื•ืจืื” ืžื•ืคื™ืขื”
14:18
where each instruction occurs at an equal frequency.
291
858217
3412
ื‘ืชื“ื™ืจื•ืช ืฉื•ื•ื” ืœืื—ืจื•ืช.
ื•ืฉื ืœืžื˜ื”, ืžื•ืคื™ืข ืงืฆื‘
14:22
And below there, I show, in fact, the mutation rate in the environment.
292
862564
4993
ื”ืžื•ื˜ืืฆื™ื” ื‘ืื•ืชื” ืกื‘ื™ื‘ื”.
14:27
And I'm starting this at a mutation rate that is so high
293
867581
3303
ื”ืชื—ืœืชื™ ื‘ืงืฆื‘ ืžื•ื˜ืืฆื™ื” ื›ื” ื’ื‘ื•ื”
14:30
that even if you would drop a replicating program
294
870908
3966
ืฉืืคื™ืœื• ืื ื ื–ืจื•ืง
ืชื•ื›ื ื™ืช ืฉื™ื›ืคื•ืœ "ืžืฉื•ื’ืขืช"
14:34
that would otherwise happily grow up to fill the entire world,
295
874898
4125
ืฉื”ื™ืชื” ื™ื›ื•ืœื” ืœื”ืชืจื‘ื•ืช ื‘ืงืœื•ืช
ืขื“ ืœื”ืฉืชืœื˜ื•ืช ืขืœ ื›ืœ ื”ืขื•ืœื,
ืื ื ืฉืœื™ื›ื” ืคื ื™ืžื”, ื”ื™ื ืชืžื•ืช ืžื™ื™ื“ ื‘ื’ืœืœ ืžื•ื˜ืืฆื™ื” ืžื•ื’ื–ืžืช.
14:39
if you drop it in, it gets mutated to death immediately.
296
879047
3010
14:42
So there is no life possible at that type of mutation rate.
297
882081
5346
ื›ืœื•ืžืจ, ืื™ืŸ ืืคืฉืจื•ืช ืฉื—ื™ื™ื
ื™ืชืงื™ื™ืžื• ื‘ืงืฆื‘ ืžื•ื˜ืืฆื™ื” ื›ื–ื”.
14:47
But then I'm going to slowly turn down the heat, so to speak,
298
887451
4036
ื‘ื”ืžืฉืš ืื ื™ ืžื•ืจื™ื“ ื‘ื”ื“ืจื’ื” ืืช ื”"ื—ื•ื" ื•ืื– ืžื•ืคื™ืข
14:51
and then there's this viability threshold
299
891511
2185
ืกืฃ ื™ื›ื•ืœืช ื”ืงื™ื•ื
14:53
where now it would be possible for a replicator to actually live.
300
893720
3892
ืฉื‘ื• ื–ื” ื™ื”ื™ื” ืืคืฉืจื™
ืœืชื•ื›ื ื™ืช ืฉื™ื›ืคื•ืœ ืœื”ืชืงื™ื™ื.
14:57
And indeed, we're going to be dropping these guys into that soup all the time.
301
897636
5345
ื•ืื›ืŸ, ื ืžืฉื™ืš ืœื”ืฉืœื™ืš ืืช ื”ื™ืฆื•ืจื™ื ื”ืืœื”
ืœืื•ืชื• ืžืจืง ื›ืœ ื”ื–ืžืŸ.
ืขื›ืฉื™ื• ื ื‘ื™ื˜ ืื™ืš ื–ื” ื ืจืื”.
15:03
So let's see what that looks like.
302
903419
1636
ืชื—ื™ืœื”, ืื™ืŸ ื›ืœื•ื, ื›ืœื•ื.
15:05
So first, nothing, nothing, nothing.
303
905079
2998
ื™ื•ืชืจ ืžื“ื™ื™ "ื—ื".
15:08
Too hot, too hot.
304
908101
1815
15:09
Now the viability threshold is reached,
305
909940
2296
ื›ืขืช ืžื’ื™ืขื™ื ืœืกืฃ ื™ื›ื•ืœืช ื”ืงื™ื•ื,
15:12
and the frequency distribution has dramatically changed
306
912260
4492
ื•ืคื™ืœื•ื’ ื”ืชื“ื™ืจื•ื™ื•ืช
ืžืฉืชื ื” ื‘ืื•ืคืŸ ื“ืจืžื˜ื™ ื•ืœืžืขืฉื” ืžืชื™ื™ืฆื‘.
15:16
and, in fact, stabilizes.
307
916776
1476
ื•ืื– ืžื” ืฉืขืฉื™ืชื™ ื›ืืŸ ื–ื”,
15:18
And now what I did there
308
918276
1510
15:19
is, I was being nasty, I just turned up the heat again and again.
309
919810
3598
ืฉืคืฉื•ื˜ ื”ื™ื™ืชื™ ืจืข ื•ืฉื•ื‘ ื”ืขืœืชื™ ืืช ื”"ื—ื•ื".
ื›ืžื•ื‘ืŸ ื–ื” ืžื’ื™ืข ืœืกืฃ ื™ื›ื•ืœืช ื”ืงื™ื•ื.
15:23
And of course, it reaches the viability threshold.
310
923432
2346
15:25
And I'm just showing this to you again because it's so nice.
311
925802
2868
ืื ื™ ืคืฉื•ื˜ ืžืจืื” ืœื›ื ื–ืืช ืฉื•ื‘ ื›ื™ ื–ื” ื›ืœ-ื›ืš ื™ืคื”.
15:28
You hit the viability threshold.
312
928694
1542
ื ื•ื’ืขื™ื ื‘ืกืฃ ื™ื›ื•ืœืช ื”ืงื™ื•ื.
15:30
The distribution changes to "alive!"
313
930260
1976
ื”ืคื™ืœื•ื’ ืžืฉืชื ื” ืœ"ื—ื™!"
15:32
And then, once you hit the threshold
314
932691
3217
ื•ืื– ืฉื•ื‘ ื ื•ื’ืขื™ื ื‘ืกืฃ ืฉืžืขืœื™ื•
15:35
where the mutation rate is so high that you cannot self-reproduce,
315
935932
4049
ืฉื‘ื• ืงืฆื‘ ื”ืฉื™ื›ืคื•ืœ ื›ื” ื’ื‘ื•ื”
ืฉืœื ื ื™ืชืŸ ืœื”ืฉืชื›ืคืœ,
ืœื ื ื™ืชืŸ ืœื”ืขืชื™ืง ืžื™ื“ืข
15:40
you cannot copy the information forward to your offspring
316
940005
4921
ื›ื“ื™ ืœื”ืขื‘ื™ืจื• ืœืฆืืฆืื™ื
15:44
without making so many mistakes that your ability to replicate vanishes.
317
944950
4730
ืžื‘ืœื™ ืœืขืฉื•ืช ื‘ื• ื”ืจื‘ื” ืฉื’ื™ืื•ืช
ื›ืš ืฉื”ื™ื›ื•ืœืช ืœื”ืฉืชื›ืคืœ ืžืชื—ืกืœืช.
15:49
And then, that signature is lost.
318
949704
1859
ืื– ืื•ืชื” ื—ืชื™ืžื” ื”ื•ืœื›ืช ืœืื™ื‘ื•ื“.
ืžื” ื ื™ืชืŸ ืœืœืžื•ื“ ืžื›ืš?
15:53
What do we learn from that?
319
953216
1706
15:54
Well, I think we learn a number of things from that.
320
954946
3796
ืœื“ืขืชื™, ื ื™ืชืŸ ืœืœืžื•ื“ ืžืกืคืจ ื“ื‘ืจื™ื.
15:58
One of them is,
321
958766
1470
ืื—ื“ ืžื”ื ื”ื•ื
16:00
if we are able to think about life in abstract terms --
322
960260
5224
ืฉืื ืื ื• ืžืกื•ื’ืœื™ื ืœื—ืฉื•ื‘ ืขืœ ื—ื™ื™ื
ื‘ืžื•ื ื—ื™ื ืžื•ืคืฉื˜ื™ื --
16:05
and we're not talking about things like plants,
323
965508
2631
ื•ืื ื• ืœื ืžื“ื‘ืจื™ื ืขืœ ื“ื‘ืจื™ื ื›ืžื• ืฆืžื—ื™ื,
ื•ืœื ืžื“ื‘ืจื™ื ืขืœ ื—ื•ืžืฆื•ืช ืืžื™ื ื™ื•ืช,
16:08
and we're not talking about amino acids,
324
968163
1925
ื•ืœื ืžื“ื‘ืจื™ื ืขืœ ื‘ืงื˜ืจื™ื•ืช,
16:10
and we're not talking about bacteria,
325
970112
1764
16:11
but we think in terms of processes --
326
971900
2110
ืืœื ืื ื• ื—ื•ืฉื‘ื™ื ื‘ืžื•ื ื—ื™ื ืฉืœ ืชื”ืœื™ื›ื™ื --
ืื– ื ื™ืชืŸ ืœื”ืชื—ื™ืœ ืœื—ืฉื•ื‘ ืขืœ ื—ื™ื™ื,
16:14
then we could start to think about life
327
974034
2202
16:16
not as something that is so special to Earth,
328
976260
2619
ืœื ื›ืขืœ ืžืฉื”ื• ืฉื™ื™ื—ื•ื“ื™ ืจืง ืœืขื•ืœืžื ื•,
16:18
but that, in fact, could exist anywhere.
329
978903
2510
ืืœื ื›ืขืœ ืžืฉื”ื• ืฉื™ื›ื•ืœ ืœื”ืชืงื™ื™ื ื‘ื›ืœ ืžืงื•ื.
16:21
Because it really only has to do with these concepts of information,
330
981437
4313
ื›ื™ ื›ืœ ืžื” ืฉืขืœื™ื”ื ืœืขืฉื•ืช ื‘ืžืกื’ืจืช
ืžื•ืฉื’ื™ื ื›ืืœื” ืฉืœ ืžื™ื“ืข,
16:25
of storing information within physical substrates --
331
985774
4058
ืžื•ืฉื’ื™ื ืฉืœ ืื™ื—ืกื•ืŸ ืžื™ื“ืข
ื‘ืชื•ืš ืžืฆืขื™ ื—ื•ืžืจ --
16:29
anything: bits, nucleic acids, anything that's an alphabet --
332
989856
4016
ื›ืœ ื“ื‘ืจ: ืกื™ื‘ื™ื•ืช (ื‘ืžื—ืฉื‘ื™ื), ื—ื•ืžืฆื•ืช ืืžื™ื ื™ื•ืช,
ื›ืœ ื“ื‘ืจ ืฉื™ื›ื•ืœ ืœืฉืžืฉ ื‘ืชื•ืจ ืืœืฃ-ื‘ื™ืช --
16:33
and make sure that there's some process
333
993896
1879
ื•ืœื”ื‘ื˜ื™ื— ืฉื™ืฉื ื• ืชื”ืœื™ืš ืžืกื•ื™ื™ื
16:35
so that this information can be stored for much longer than you would expect --
334
995799
3715
ื”ืžืืคืฉืจ ืืช ืฉืžื™ืจืช ื”ืžื™ื“ืข
ืœื˜ื•ื•ื— ื”ืืจื•ืš ื‘ื”ืจื‘ื”
ืžืžื” ืฉื”ื™ื™ื ื• ืžืฆืคื™ื ืฉื™ื™ื“ืจืฉ ืœื”ื™ืขืœืžื•ืช ื”ืžื™ื“ืข.
16:40
the time scales for the deterioration of information.
335
1000076
4336
ืื ื ื™ืชืŸ ืœืขืฉื•ืช ื–ืืช,
16:44
And if you can do that, then you have life.
336
1004436
3168
ืื– ื™ืฉ ืœื ื• ื—ื™ื™ื.
16:47
So the first thing that we learn
337
1007628
2254
ืœื›ืŸ ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉืœื•ืžื“ื™ื
16:49
is that it is possible to define life in terms of processes alone,
338
1009906
5212
ื”ื•ื ืฉื ื™ืชืŸ ืœื”ื’ื“ื™ืจ ื—ื™ื™ื
ืืš ื•ืจืง ืขืœ ืกืžืš ืชื”ืœื™ื›ื™ื,
16:55
without referring at all to the type of things that we hold dear,
339
1015142
4977
ืœืœื ื”ื™ื–ื“ืงืงื•ืช ืœืื•ืชื ื“ื‘ืจื™ื
ื”ื ื—ืฉื‘ื™ื ืืฆืœื ื• ืœื—ืฉื•ื‘ื™ื,
ื›ื›ืœ ืฉื–ื” ื ื•ื’ืข ืœื—ื™ื™ื ืขืœ ื›ื“ื•ืจ-ื”ืืจืฅ.
17:00
as far as the type of life on Earth is.
340
1020143
2671
17:02
And that, in a sense, removes us again,
341
1022838
2641
ื–ื” ื‘ืžื•ื‘ืŸ ืžืกื•ื™ื™ื ืžื‘ื˜ืœ ืื•ืชื ื• ืฉื•ื‘,
17:05
like all of our scientific discoveries, or many of them --
342
1025503
2831
ื›ืžื• ื‘ื›ืœ ื”ืชื’ืœื™ื•ืช ื”ืžื“ืขื™ื•ืช, ืื• ืจื•ื‘ืŸ --
17:08
it's this continuous dethroning of man --
343
1028358
2771
ื–ื•ื”ื™ ื”ื“ื—ื” ืžืชืžืฉื›ืช ืฉืœ ื”ืื“ื ืžื›ืชืจื• --
ืžืื™ืš ืฉื ื“ืžื” ืœื ื• ืฉืื ื• ืžื™ื•ื—ื“ื™ื ื‘ื’ืœืœ ืฉืื ื• ื—ื™ื™ื.
17:11
of how we think we're special because we're alive.
344
1031153
2727
17:13
Well, we can make life; we can make life in the computer.
345
1033904
3056
ืื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ื—ื™ื™ื. ืื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ื—ื™ื™ื ื‘ืžื—ืฉื‘.
17:16
Granted, it's limited,
346
1036984
1817
ื ื›ื•ืŸ, ื–ื” ืžื•ื’ื‘ืœ,
17:18
but we have learned what it takes in order to actually construct it.
347
1038825
5117
ืื‘ืœ ืœืžื“ื ื• ืžื” ื“ืจื•ืฉ
ื›ื“ื™ ืœื‘ื ื•ืชื.
17:23
And once we have that,
348
1043966
2788
ื•ื‘ืจื’ืข ืฉื”ืฉื’ื ื• ื–ืืช,
17:26
then it is not such a difficult task anymore
349
1046778
2647
ื–ื• ื›ื‘ืจ ืœื ืžืฉื™ืžื” ื›ื” ืงืฉื”,
17:29
to say, if we understand the fundamental processes
350
1049449
4152
ื›ืœื•ืžืจ, ืื ืื ื• ืžื‘ื™ื ื™ื ืืช ื”ืชื”ืœื™ื›ื™ื ื”ื‘ืกื™ืกื™ื™ื
17:33
that do not refer to any particular substrate,
351
1053625
3342
ืฉืื™ื ื ืงืฉื•ืจื™ื ืœืžืฆืข ืžืกื•ื™ื™ื,
17:36
then we can go out and try other worlds,
352
1056991
3768
ืื– ืื ื• ื™ื›ื•ืœื™ื ืœื”ืชื—ื™ืœ
ื•ืœื ืกื•ืชื ื‘ืขื•ืœืžื•ืช ืื—ืจื™ื,
17:40
figure out what kind of chemical alphabets might there be,
353
1060783
3781
ืœื’ืœื•ืช ืืช ืกื•ื’ ื”ืืœืฃ-ื‘ื™ืช ื”ื›ื™ืžื™ ืฉืขืฉื•ื™ ืœื”ื™ืžืฆื ืฉื,
ืœื’ืœื•ืช ืžืกืคื™ืง ืขืœ ื”ื›ื™ืžื™ื” ื”ืจื’ื™ืœื”,
17:45
figure enough about the normal chemistry, the geochemistry of the planet,
354
1065293
4725
ืขืœ ื”ื’ื™ืื•-ื›ื™ืžื™ื” ืฉืœ ืื•ืชื• ื›ื•ื›ื‘-ืœื›ืช,
ื›ืš ืฉื ื“ืข ื›ื™ืฆื“ ื™ื™ืจืื” ื”ืคื™ืœื•ื’ ืฉื
17:50
so that we know what this distribution would look like in the absence of life,
355
1070042
3774
ื‘ืžืงืจื” ืฉืื™ืŸ ืฉื ื—ื™ื™ื,
17:53
and then look for large deviations from this --
356
1073840
2971
ื•ืื– ืœื—ืคืฉ ืกื˜ื™ื•ืช ื’ื“ื•ืœื•ืช ืžืคื™ืœื•ื’ ื–ื” --
17:56
this thing sticking out, which says, "This chemical really shouldn't be there."
357
1076835
5112
ื“ื‘ืจ ืฉืžืชื‘ืœื˜ ื•ื”ืื•ืžืจ,
"ื›ื™ืžื™ืงืœ ื–ื” ืžืžืฉ ืœื ืฆืจื™ืš ืœื”ื™ืžืฆื ื›ืืŸ."
18:01
Now we don't know that there's life then,
358
1081971
1955
ืœื ื ื“ืข ืœื‘ื˜ื— ืฉื™ืฉ ืฉื ื—ื™ื™ื,
18:03
but we could say,
359
1083950
1207
ืื‘ืœ ื ื•ื›ืœ ืœื•ืžืจ ืœืคื—ื•ืช,
18:05
"Well at least I'm going to have to take a look very precisely at this chemical
360
1085181
3769
"ืฆืจื™ืš ืœื‘ื—ื•ืŸ ื‘ืงืคื“ื ื•ืช ืจื‘ื” ืืช ื”ื›ื™ืžื™ืงืœ ื”ื–ื”
18:08
and see where it comes from."
361
1088974
2045
ื•ืœืจืื•ืช ืžื”ื™ื›ืŸ ื”ื•ื ื”ื’ื™ืข."
ื–ื” ืขืฉื•ื™ ืœื”ื™ื•ืช ื”ืกื™ื›ื•ื™ ืฉืœื ื•
18:11
And that might be our chance of actually discovering life
362
1091043
3711
ืœื’ื™ืœื•ื™ ืžืžืฉื™ ืฉืœ ื—ื™ื™ื ื›ืืฉืจ
18:14
when we cannot visibly see it.
363
1094778
2119
ืื™ืŸ ืœื ื• ืืคืฉืจื•ืช ื—ื–ื•ืชื™ืช ืœืจืื•ืชื.
18:16
And so that's really the only take-home message that I have for you.
364
1096921
4564
ื•ื–ื” ื‘ืืžืช ื”ืžืกืจ ื”ื™ื—ื™ื“ ืฉืฉื•ื•ื” ืœืงื—ืชื• ื”ื‘ื™ืชื”
ื•ืฉืื•ืชื• ืื ื™ ืจื•ืฆื” ืœื”ืขื‘ื™ืจ.
18:21
Life can be less mysterious than we make it out to be
365
1101509
4231
ื—ื™ื™ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืคื—ื•ืช ืžืกืชื•ืจื™ื™ื
ืžืžื” ืฉืื ื• ืขื•ืฉื™ื ืžื”ื
18:25
when we try to think about how it would be on other planets.
366
1105764
3205
ื‘ื—ื•ืฉื‘ื ื• ื›ื™ืฆื“ ื”ื ืขืฉื•ื™ื™ื ืœื”ื™ืจืื•ืช ืขืœ ื›ื•ื›ื‘ื™-ืœื›ืช ืื—ืจื™ื.
18:29
And if we remove the mystery of life,
367
1109540
3387
ืื ืžืกื™ืจื™ื ืืช ื”ืžืกืชื•ืจื™ื•ืช ืžื”ื—ื™ื™ื,
18:32
then I think it is a little bit easier for us to think about how we live,
368
1112951
4685
ืื– ืื ื™ ืกื‘ื•ืจ ืฉื–ื” ืงืฆืช ื™ื•ืชืจ ืงืœ
ืขื‘ื•ืจื ื• ืœื—ืฉื•ื‘ ืขืœ ื›ื™ืฆื“ ืื ื• ื—ื™ื™ื,
18:37
and how perhaps we're not as special as we always think we are.
369
1117660
3058
ื•ืื•ืœื™ ืื™ืš ืื ื• ืœื ื›ืืœื” ืžื™ื•ื—ื“ื™ื ื›ืคื™ ืฉืชืžื™ื“ ื ื“ืžื” ืœื ื•.
18:40
And I'm going to leave you with that.
370
1120742
2246
ืขื ื—ื•ืžืจ ื–ื” ืœืžื—ืฉื‘ื” ืืขืฆื•ืจ.
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
18:43
And thank you very much.
371
1123012
1224
18:44
(Applause)
372
1124260
2174
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7