Mick Mountz: What happens inside those massive warehouses?

19,887 views ใƒป 2015-07-15

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Bob Prottas Reviewer: Nhu PHAM
0
0
7000
ืžืชืจื’ื: Roni Zoller ืžื‘ืงืจ: Shahar Kaiser
00:12
I want to talk to you about,
1
12000
3561
ืจืฆื™ืชื™ ืœื“ื‘ืจ ืื™ืชื›ื ืขืœ,
00:15
or share with you, a breakthrough new approach
2
15561
3561
ืื• ืœื—ืœื•ืง ืื™ืชื›ื, ื’ื™ืฉื” ืคื•ืจืฆืช ื“ืจืš
00:19
for managing items of inventory inside of a warehouse.
3
19122
3342
ืœื ื™ื”ื•ืœ ืคืจื™ื˜ื™ื ื‘ืžืœืื™ ื‘ืชื•ืš ืžื—ืกืŸ.
00:22
We're talking about a pick, pack and ship setting here.
4
22464
2558
ืื ื—ื ื• ืžื“ื‘ืจื™ื ืขืœ ืกื‘ื™ื‘ืช ืื™ืกื•ืฃ, ืืจื™ื–ื” ื•ืฉื™ืœื•ื—.
00:25
So as a hint,
5
25022
2823
ืื– ื›ืจืžื–,
00:27
this solution involves hundreds of mobile robots,
6
27845
4153
ื”ืคืชืจื•ืŸ ื”ื–ื” ื›ื•ืœืœ ืžืื•ืช ืจื•ื‘ื•ื˜ื™ื ื ื™ื™ื“ื™ื,
00:31
sometimes thousands of mobile robots,
7
31998
2424
ืœืคืขืžื™ื ืืœืคื™ ืจื•ื‘ื•ื˜ื™ื ื ื™ื™ื“ื™ื,
00:34
moving around a warehouse. And I'll get to the solution.
8
34422
2598
ืฉื ืขื™ื ื‘ืชื•ืš ื”ืžื—ืกืŸ. ื•ืื ื™ ืื’ื™ืข ืœืคืชืจื•ืŸ.
00:37
But for a moment, just think
9
37020
1220
ืื‘ืœ ืœืจื’ืข, ืจืง ื—ืฉื‘ื•
00:38
about the last time that you ordered something online.
10
38240
2526
ืขืœ ื”ืคืขื ื”ืื—ืจื•ื ื” ืฉื”ื–ืžื ืชื ืžืฉื”ื• ื‘ืจืฉืช.
00:40
You were sitting on your couch
11
40766
2064
ื™ืฉื‘ืชื ืขืœ ื”ืกืคื”
00:42
and you decided that you absolutely had to have this red t-shirt.
12
42830
4060
ื•ื”ื—ืœื˜ืชื ืฉืืชื ืžืžืฉ ื—ื™ื™ื‘ื™ื ืืช ื”ื—ื•ืœืฆื” ื”ืื“ื•ืžื” ื”ื–ื•.
00:46
So โ€” click! โ€” you put it into your shopping cart.
13
46890
2296
ืื– -- ืงืœื™ืง!-- ืืชื ืฉืžื™ื ืื•ืชื” ื‘ืขื’ืœืช ื”ืงื ื™ื•ืช ืฉืœื›ื.
00:49
And then you decided that green pair of pants
14
49186
1898
ื•ืื– ืืชื ืžื—ืœื™ื˜ื™ื ืฉื–ื•ื’ ืžื›ื ืกื™ื™ื ื™ืจื•ืงื™ื
00:51
looks pretty good too โ€” click!
15
51084
1898
ื ืจืื™ื ื’ื ืžืžืฉ ื˜ื•ื‘ -- ืงืœื™ืง!
00:52
And maybe a blue pair of shoes โ€” click!
16
52982
1900
ื•ืื•ืœื™ ื–ื•ื’ ื ืขืœื™ื™ื ื›ื—ื•ืœื•ืช -- ืงืœื™ืง!
00:54
So at this point you've assembled your order.
17
54882
2050
ืื– ื‘ื ืงื•ื“ื” ื”ื–ื• ื”ืจื›ื‘ืชื ื”ื–ืžื ื”.
00:56
You didn't stop to think for a moment that
18
56932
1768
ืœื ื”ืคืกืงืชื ืœื—ืฉื•ื‘ ืœืจื’ืข
00:58
that might not be a great outfit.
19
58700
1768
ืฉื–ื• ืื•ืœื™ ืœื ืชืœื‘ื•ืฉืช ืžืขื•ืœื”.
01:00
But you hit "submit order."
20
60468
1770
ืื‘ืœ ืืชื ืœื•ื—ืฆื™ื ืขืœ ื›ืคืชื•ืจ "ื”ื–ืžืŸ"
01:02
And two days later, this package shows up on your doorstep.
21
62238
4174
ื•ื™ื•ืžื™ื™ื ืžืื•ื—ืจ ื™ื•ืชืจ, ื”ื—ื‘ื™ืœื” ื”ื–ื• ืžื•ืคื™ืขื” ืขืœ ืžืคืชืŸ ื“ืœืชื›ื.
01:06
And you open the box and you're like, wow, there's my goo.
22
66412
2954
ื•ืืชื ืคื•ืชื—ื™ื ืืช ื”ืงื•ืคืกื” ื•ืืชื ื›ืื™ืœื•, ื•ื•ืื•, ื”ื ื” ื”ื’ื• ืฉืœื™.
01:09
Did you ever stop to think about how those items of inventory
23
69366
2961
ื”ืื ืื™ ืคืขื ืขืฆืจืชื ืœื—ืฉื•ื‘ ืขืœ ืื™ืš ื”ืžื•ืฆืจื™ื ื”ืืœื” ื‘ืžืœืื™
01:12
actually found their way inside that box in the warehouse?
24
72327
4213
ืžื•ืฆืื™ื ืืช ื“ืจื›ื ืœืžืขืฉื” ืœืชื•ืš ื”ืงื•ืคืกื” ื‘ืžื—ืกืŸ?
01:16
So I'm here to tell you it's that guy right there.
25
76540
3818
ืื– ืื ื™ ืคื” ื›ื“ื™ ืœืกืคืจ ืœื›ื ืฉื–ื” ื”ื‘ื—ื•ืจ ื”ื–ื” ืคื”.
01:20
So deep in the middle of that picture,
26
80358
3620
ืื– ืขืžื•ืง ื‘ืžืจื›ื– ื”ืชืžื•ื ื”,
01:23
you see a classic pick-pack worker
27
83978
2515
ืืชื ืจื•ืื™ื ืคื•ืขืœ ืœื™ืงื•ื˜ ืงืœืืกื™
01:26
in a distribution or order fulfillments setting.
28
86493
3225
ื‘ืกื‘ื™ื‘ืช ื”ืคืฆื” ืื• ืžื™ืœื•ื™ ื”ื–ืžื ื•ืช.
01:29
Classically these pick workers will spend 60 or 70 percent of their day
29
89718
3882
ื‘ืื•ืคืŸ ืงืœืืกื™ ืขื•ื‘ื“ื™ ื”ืœื™ืงื•ื˜ ื”ืืœื” ื™ื‘ืœื• 60 ืขื“ 70 ืื—ื•ื– ืžื”ื™ื•ื ืฉืœื”ื
01:33
wandering around the warehouse.
30
93600
1912
ืžืกืชื•ื‘ื‘ื™ื ื‘ืจื—ื‘ื™ ื”ืžื—ืกืŸ.
01:35
They'll often walk as much as 5 or 10 miles
31
95512
2711
ื”ื ื™ืœื›ื• ืคืขืžื™ื ืจื‘ื•ืช 8 ืื• 16 ืงื™ืœื•ืžื˜ืจ
01:38
in pursuit of those items of inventory.
32
98223
2661
ื‘ืžืจื“ืฃ ืื—ืจื™ ื”ืคืจื™ื˜ื™ื ื‘ืžืœืื™.
01:40
Not only is this an unproductive way to fill orders,
33
100884
4421
ืœื ืจืง ืฉื–ื• ื“ืจืš ืœื ืคืจื•ื“ื•ืงื˜ื™ื‘ื™ืช ืœืžืœื ื”ื–ืžื ื•ืช,
01:45
it also turns out to be an unfulfilling way to fill orders.
34
105305
4057
ืžืกืชื‘ืจ ืฉื–ื” ื’ื ื“ืจืš ืœื ืžืกืคืงืช ืœืžืœื ื”ื–ืžื ื•ืช.
01:49
So let me tell you where I first bumped into this problem.
35
109362
3631
ืื– ืชื ื• ืœื™ ืœืกืคืจ ืœื›ื ืื™ืคื” ื ืชืงืœืชื™ ืœืจืืฉื•ื ื” ื‘ื‘ืขื™ื” ื”ื–ื•.
01:52
I was out in the Bay area in '99, 2000, the dot com boom.
36
112993
4054
ื”ื™ื™ืชื™ ืื– ื‘ืื–ื•ืจ ื”ืžืคืจืฅ, ื‘-1999, 2000, ืขืœื™ื™ืช ื”ื“ื•ื˜.ืงื•ื.
01:57
I worked for a fabulously spectacular flame-out called Webvan.
37
117047
4062
ืขื‘ื“ืชื™ ืขื‘ื•ืจ ื—ื‘ืจื” ืžืงืกื™ืžื” ืฉืงืจืกื” ืฉื ืงืจืื” ื•ื•ื‘ื•ื•ืืŸ.
02:01
(Laughter)
38
121109
1821
(ืฆื—ื•ืง)
02:02
This company raised hundreds of millions of dollars with the notion that
39
122930
2730
ื”ื—ื‘ืจื” ื”ื–ื• ื’ื™ื™ืกื” ืžืื•ืช ืžืœื™ื•ื ื™ื ืฉืœ ื“ื•ืœืจื™ื ืขื ื”ื”ื ื—ื”
02:05
we will deliver grocery orders online.
40
125660
2782
ืฉื ืกืคืง ื”ื–ืžื ื•ืช ืžืฆืจื›ื™ื ื‘ืจืฉืช.
02:08
And it really came down to the fact that we couldn't do it cost effectively.
41
128442
4173
ื•ื–ื” ื‘ืืžืช ื”ื’ื™ืข ืœืžืฆื‘ ืฉืœื ื™ื›ื•ืœื ื• ืœืขืฉื•ืช ืืช ื–ื” ื‘ืฆื•ืจื” ืฉืชื›ืกื” ืืช ื”ืขืœื•ื™ื•ืช.
02:12
Turns out e-commerce was something that was very hard and very costly.
42
132615
3962
ืžืกืชื‘ืจ ืฉืžืกื—ืจ ื‘ืจืฉืช ื”ื™ื” ืžืฉื”ื• ืžืื•ื“ ืงืฉื” ื•ืžืื•ื“ ื™ืงืจ.
02:16
In this particular instance we were trying to assemble 30 items of inventory
43
136577
4251
ื‘ืžืงืจื” ื”ืกืคืฆื™ืคื™ ื”ื–ื” ื ื™ืกื™ื ื• ืœื”ืจื›ื™ื‘ 30 ืคืจื™ื˜ื™ ืžืœืื™
02:20
into a few totes, onto a van to deliver to the home.
44
140828
3972
ืœื›ืžื” ืกืœื™ื, ืœืชื•ืš ื•ืืŸ ื›ื“ื™ ืœืกืคืง ืœื‘ื™ืช.
02:24
And when you think about it, it was costing us 30 dollars.
45
144800
3800
ื•ื›ืฉืืชื ื—ื•ืฉื‘ื™ื ืขืœ ื–ื”, ื–ื” ืขืœื” ืœื ื• 30 ื“ื•ืœืจ.
02:28
Imagine, we had an 89ยข can of soup
46
148600
3086
ื“ืžื™ื™ื ื•, ื”ื™ืชื” ืœื ื• ืคื—ื™ืช ืžืจืง ื‘-89 ืกื ื˜
02:31
that was costing us one dollar to pick and pack into that tote.
47
151686
3676
ืฉืขืœืชื” ืœื ื• ื“ื•ืœืจ ืœืืกื•ืฃ ื•ืœืืจื•ื– ืœืกืœ.
02:35
And that's before we actually tried to deliver it to the home.
48
155362
3208
ื•ื–ื” ืœืคื ื™ ืฉื ื™ืกื™ื ื• ืœืกืคืง ืื•ืชื” ืœื‘ื™ืช.
02:38
So long story short, during my one year at Webvan,
49
158570
2787
ืื– ื‘ืงื™ืฆื•ืจ, ื‘ืžื”ืœืš ื”ืฉื ื” ืฉืœื™ ื‘ื•ื•ื‘ื•ื•ืืŸ,
02:41
what I realized by talking to all the material-handling providers
50
161357
3236
ืžื” ืฉื”ื‘ื ืชื™ ื‘ื“ื™ื‘ื•ืจ ืขื ืขื•ื‘ื“ื™ ื”ืžื—ืกืŸ
02:44
was that there was no solution designed specifically to solve each base picking.
51
164593
4638
ื”ื™ื” ืฉืœื ื”ื™ื” ืคืชืจื•ืŸ ืฉืชื•ื›ื ืŸ ื‘ืžื™ื•ื—ื“ ืœืคืชื•ืจ ื›ืœ ืื™ืกื•ืฃ ื‘ืกื™ืกื™.
02:49
Red item, green, blue, getting those three things in a box.
52
169231
4023
ืคืจื™ื˜ ืื“ื•ื, ื™ืจื•ืง, ื›ื—ื•ืœ, ืœืฉื™ื ืืช ื›ืœ ืืœื” ื‘ืงื•ืคืกื”.
02:53
So we said, there's just got to be a better way to do this.
53
173254
2985
ืื– ืืžืจืชื™, ื—ื™ื™ื‘ืช ืœื”ื™ื•ืช ื“ืจืš ื˜ื•ื‘ื” ื™ื•ืชืจ ืœืขืฉื•ืช ืืช ื–ื”.
02:56
Existing material handling was set up to pump
54
176239
2527
ื˜ื™ืคื•ืœ ื ื•ื›ื—ื™ ื‘ืฉื™ื ื•ืข ืกื—ื•ืจื•ืช ืชื•ื›ื ืŸ ืœืฉืื•ื‘
02:58
pallets and cases of goo to retail stores.
55
178766
3767
ืžืฉื˜ื—ื™ื ื•ืืจื’ื–ื™ื ืฉืœ ื’ื• ืœื—ื ื•ื™ื•ืช ืงืžืขื•ื ืื™ื•ืช.
03:02
Of course Webvan went out of business, and about a year and a half later,
56
182533
3797
ื›ืžื•ื‘ืŸ ืฉื•ื•ื‘ื•ื•ืืŸ ืคืฉื˜ื” ืืช ื”ืจื’ืœ, ื•ื‘ืขืจืš ืฉื ื” ื•ื—ืฆื™ ืžืื•ื—ืจ ื™ื•ืชืจ,
03:06
I was still noodling on this problem. It was still nagging at me.
57
186330
3580
ืขื“ื™ื™ืŸ ื—ืฉื‘ืชื™ ืขืœ ื”ื‘ืขื™ื” ื”ื–ื•. ื”ื™ื ืขื“ื™ื™ืŸ ื”ืฆื™ืงื” ืœื™.
03:09
And I started thinking about it again.
58
189910
1868
ื•ื”ืชื—ืœืชื™ ืœื—ืฉื•ื‘ ืขืœ ื–ื” ืฉื•ื‘.
03:11
And I said, let me just focus briefly on what I wanted as a pick worker,
59
191778
5127
ื•ืืžืจืชื™, ืชื ื• ืœื™ ืจืง ืœื”ืชืžืงื“ ืจื’ืข ื‘ืžื” ืฉืจืฆื™ืชื™ ืื ื™ ื›ืขื•ื‘ื“ ืœื™ืงื•ื˜,
03:16
or my vision for how it should work.
60
196905
2331
ืื• ื”ื—ื–ื•ืŸ ืฉืœื™ ืœืื™ืš ื–ื” ืฆืจื™ืš ืœืขื‘ื•ื“.
03:19
(Laughter)
61
199236
1414
(ืฆื—ื•ืง)
03:20
I said, let's focus on the problem.
62
200650
1922
ืืžืจืชื™, ื‘ื•ืื• ื ืชืžืงื“ ื‘ื‘ืขื™ื”.
03:22
I have an order here and what I want to do is I want to put
63
202572
3855
ื™ืฉ ืœื™ ื”ื–ืžื ื” ืคื” ื•ืžื” ืฉืื ื™ ืจื•ืฆื”, ื”ื•ื ืœืฉื™ื
03:26
red, green and blue in this box right here.
64
206427
2220
ืื“ื•ื, ื™ืจื•ืง ื•ื›ื—ื•ืœ ื‘ืงื•ืคืกื” ื”ื–ื• ืžืžืฉ ืคื”.
03:28
What I need is a system where I put out my hand and โ€” poof! โ€”
65
208647
2852
ืžื” ืฉืื ื™ ืฆืจื™ืš ื–ื• ืžืขืจื›ืช ื‘ื” ืื ื™ ืžื•ืฉื™ื˜ ืืช ื”ื™ื“ ื•ืคื•ืฃ --
03:31
the product shows up and I pack it into the order,
66
211499
2523
ื”ืžื•ืฆืจ ืžื•ืคื™ืข ื•ืื ื™ ืื•ืจื– ืื•ืชื• ื‘ื”ื–ืžื ื”,
03:34
and now we're thinking,
67
214022
1693
ื•ืขื›ืฉื™ื• ืื ื—ื ื• ื—ื•ืฉื‘ื™ื,
03:35
this would be a very operator-centric approach to solving the problem.
68
215715
4014
ื–ื• ืชื”ื™ื” ื’ื™ืฉื” ืžืื•ื“ ืžื•ื›ื•ื•ื ืช-ืžืคืขื™ืœ ืœืคื™ืชืจื•ืŸ ื”ื‘ืขื™ื”.
03:39
This is what I need. What technology is available to solve this problem?
69
219729
4227
ื–ื” ืžื” ืฉืื ื™ ืฆืจื™ืš. ืื™ื–ื• ื˜ื›ื ื•ืœื•ื’ื™ื” ื–ืžื™ื ื” ืœืคืชืจื•ืŸ ื”ื‘ืขื™ื” ื”ื–ื•?
03:43
But as you can see, orders can come and go, products can come and go.
70
223956
3941
ืื‘ืœ ื›ืžื• ืฉืืชื ืจื•ืื™ื, ื”ื–ืžื ื•ืช ื™ื›ื•ืœื•ืช ืœื‘ื•ื ื•ืœืœื›ืช, ืžื•ืฆืจื™ื ื™ื›ื•ืœื™ื ืœื‘ื•ื ื•ืœืœื›ืช.
03:47
It allows us to focus on making the pick worker the center of the problem,
71
227897
4683
ื–ื” ืžืืคืฉืจ ืœื ื• ืœื”ืชืžืงื“ ื‘ืœื”ืคื•ืš ืืช ืคื•ืขืœ ื”ืœื™ืงื•ื˜ ืžืจื›ื– ื”ื‘ืขื™ื”,
03:52
and providing them the tools to make them as productive as possible.
72
232580
4624
ื•ืœืกืคืง ืœื”ื ืืช ื”ื›ืœื™ื ืฉื™ื”ืคื›ื• ืื•ืชื ืœื”ื›ื™ ื™ืขืœื™ื ืฉื ื™ืชืŸ.
03:57
So how did I arrive at this notion?
73
237204
2100
ืื– ืื™ืš ื”ื’ืขืชื™ ืœืจืขื™ื•ืŸ ื”ื–ื”?
03:59
Well, actually it came from a brainstorming exercise,
74
239304
3533
ื•ื‘ื›ืŸ, ืœืžืขืฉื” ื”ื•ื ื”ื’ื™ืข ืžืชืจื’ื™ืœ ืกื™ืขื•ืจ ืžื•ื—ื•ืช,
04:02
probably a technique that many of you use,
75
242837
2840
ื›ื ืจืื” ื˜ื›ื ื™ืงื” ืฉืจื‘ื™ื ืžืื™ืชื ื• ืžืฉืชืžืฉื™ื ื‘ื”,
04:05
It's this notion of testing your ideas.
76
245677
2156
ื–ื” ื”ืจืขื™ื•ืŸ ืฉืœ ืœื‘ื“ื•ืง ืืช ื”ืจืขื™ื•ื ื•ืช ืฉืœื›ื.
04:07
Take a blank sheet, of course,
77
247833
1730
ืงื—ื• ื“ืฃ ื—ืœืง, ื›ืžื•ื‘ืŸ,
04:09
but then test your ideas at the limits โ€” infinity, zero.
78
249563
4030
ืื‘ืœ ืื– ืชื‘ื“ืงื• ืืช ื”ืจืขื™ื•ืŸ ืฉืœื›ื ื‘ืงืฆื•ื•ืช -- ืื™ืŸ ืกื•ืฃ ื•ืืคืก.
04:13
In this particular case, we challenged ourselves with the idea:
79
253593
3182
ื‘ืžืงืจื” ื”ืกืคืฆื™ืคื™ ื”ื–ื”, ืื™ืชื’ืจื ื• ืืช ืขืฆืžื ื• ืขื ื”ืจืขื™ื•ืŸ:
04:16
What if we had to build a distribution center in China,
80
256775
2976
ืžื” ืื ื”ื™ื™ื ื• ืฆืจื™ื›ื™ื ืœื‘ื ื•ืช ืžืจื›ื– ื—ืœื•ืงื” ื‘ืกื™ืŸ,
04:19
where it's a very, very low-cost market?
81
259751
2614
ืฉื ื–ื” ืฉื•ืง ื‘ืขืœื•ืช ืžืื•ื“ ืžืื•ื“ ื ืžื•ื›ื”?
04:22
And say, labor is cheap, land is cheap.
82
262365
3213
ื•ื ื’ื™ื“, ืขื‘ื•ื“ื” ื”ื™ื ื–ื•ืœื”, ืื“ืžื” ื”ื™ื ื–ื•ืœื”.
04:25
And we said specifically,
83
265578
1646
ื•ืืžืจื ื• ืกืคืฆื™ืคื™ืช,
04:27
"What if it was zero dollars an hour for direct labor
84
267224
3006
"ืžื” ืื ื–ื” ื”ื™ื” ืืคืก ื“ื•ืœืจื™ื ืœืฉืขื” ืœืขื‘ื•ื“ื” ื™ืฉื™ืจื”
04:30
and we could build a million- square-foot distribution center?"
85
270230
2716
ื•ื ื•ื›ืœ ืœื‘ื ื•ืช ืžืจื›ื– ื—ืœื•ืงื” ืฉืœ 30 ื“ื•ื ื?"
04:32
So naturally that led to ideas that said,
86
272946
2075
ืื– ื‘ืื•ืคืŸ ื˜ื‘ืขื™ ืœืจืขื™ื•ื ื•ืช ืฉืืžืจื•,
04:35
"Let's put lots of people in the warehouse."
87
275021
1808
"ื‘ื•ืื• ื ืฉื™ื ื”ืจื‘ื” ืื ืฉื™ื ื‘ืžื—ืกืŸ."
04:36
And I said, "Hold on, zero dollars per hour,
88
276829
2545
ื•ืืžืจืชื™, "ืจื’ืข, ืืคืก ื“ื•ืœืจ ืœืฉืขื”,
04:39
what I would do is 'hire'
89
279374
2857
ืžื” ืฉื”ื™ื™ืชื™ ืขื•ืฉื” ื–ื” "ืœืฉื›ื•ืจ"
04:42
10,000 workers to come to the warehouse every morning at 8 a.m.,
90
282231
4127
10,000 ืขื•ื‘ื“ื™ื ืœื‘ื•ื ืœืžื—ืกืŸ ื›ืœ ื‘ื•ืงืจ ื‘-8,
04:46
walk into the warehouse and pick up one item of inventory
91
286358
3119
ืœื”ื›ื ืก ืœืžื—ืกืŸ ื•ืœื”ืจื™ื ืคืจื™ื˜ ืžืœืื™ ืื—ื“
04:49
and then just stand there.
92
289477
1733
ื•ืื– ืคืฉื•ื˜ ืœืขืžื•ื“ ืฉื.
04:51
So you hold Captain Crunch, you hold the Mountain Dew,
93
291210
2539
ืื– ืืชื ืžื—ื–ื™ืงื™ื ืืช ืงืคื˜ืŸ ืงืจืื ืฅ', ืืชื ืžื—ื–ื™ืงื™ื ืžืื•ื ื˜ื™ื™ืŸ ื“ื™ื•,
04:53
you hold the Diet Coke.
94
293749
1423
ื•ืืชื ืžื—ื–ื™ืงื™ื ื“ื™ืื˜ ืงื•ืœื”.
04:55
If I need it, I'll call you, otherwise just stand there.
95
295172
2256
ืื ืื ื™ ืฆืจื™ืš ืืช ื–ื”, ืื ื™ ืืงืจื ืœื›ื. ืื—ืจืช ืืชื ืคืฉื•ื˜ ืขื•ืžื“ื™ื ืฉื.
04:57
But when I need Diet Coke and I call it, you guys talk amongst yourselves.
96
297428
3387
ืื‘ืœ ื›ืฉืื ื™ ืฆืจื™ืš ื“ื™ืื˜ ืงื•ืœื” ื•ืื ื™ ืงื•ืจื ืœื”, ืืชื ืžื“ื‘ืจื™ื ื‘ื™ื ื›ื.
05:00
Diet Coke walks up to the front โ€” pick it, put it in the tote, away it goes."
97
300815
4121
ื“ื™ืื˜ ืงื•ืœื” ืžื•ื‘ืืช ืœื—ื–ื™ืช -- ืžืจื™ื ืื•ืชื” ื•ืฉื ืื•ืชื” ื‘ืกืœ, ื•ื”ื™ื ืžืžืฉื™ื›ื”."
05:04
Wow, what if the products could walk and talk on their own?
98
304936
4652
ื•ื•ืื•, ืžื” ืื ื”ืžื•ืฆืจื™ื ื”ื™ื• ื™ื›ื•ืœื™ื ืœืœื›ืช ื•ืœื“ื‘ืจ ื‘ืขืฆืžื?
05:09
That's a very interesting, very powerful way
99
309588
2338
ื–ื• ื“ืจืš ืžืžืฉ ืžืขื ื™ื™ื ืช ื•ื—ื–ืงื”
05:11
that we could potentially organize this warehouse.
100
311926
2594
ืฉื ื•ื›ืœ ืคื•ื˜ื ืฆื™ืืœื™ืช ืœืืจื’ืŸ ื‘ื” ืืช ื”ืžื—ืกืŸ ื”ื–ื”.
05:14
So of course, labor isn't free,
101
314520
2348
ืื– ื›ืžื•ื‘ืŸ, ืขื‘ื•ื“ื” ื”ื™ื ืœื ื‘ื—ื™ื ื,
05:16
on that practical versus awesome spectrum.
102
316868
3308
ื‘ืื•ืชื• ืžื ืขื“ ืฉืœ ืคืจืงื˜ื™ ืžื•ืœ ืžื“ื”ื™ื
05:20
(Laughter)
103
320176
1690
(ืฆื—ื•ืง)
05:21
So we said mobile shelving โ€” We'll put them on mobile shelving.
104
321866
3117
ืื– ืืžืจื ื• ืžื“ืคื™ื ื ื™ื™ื“ื™ื -- ื ืฉื™ื ืื•ืชื ืขืœ ืžื“ืคื™ื ื ื™ื™ื“ื™ื.
05:24
We'll use mobile robots and we'll move the inventory around.
105
324983
4793
ื ืฉืชืžืฉ ื‘ืจื•ื‘ื•ื˜ื™ื ื ื™ื™ื“ื™ื ื•ื ื ื™ืข ืืช ื”ืกื—ื•ืจื”.
05:29
And so we got underway on that and then I'm sitting on my couch in 2008.
106
329776
4418
ืื– ื”ืชื—ืœื ื• ืขื ื–ื”, ื•ืื ื™ ื™ื•ืฉื‘ ืขืœ ื”ืกืคื” ืฉืœื™ ื‘-2008.
05:34
Did any of you see the Beijing Olympics, the opening ceremonies?
107
334194
3819
ื”ืื ืžื™ืฉื”ื• ืžื›ื ืจืื” ืืช ืื•ืœื™ืžืคื™ืื“ืช ื‘ื™ื™ื’'ื™ื ื’, ืืช ื˜ืงืก ื”ืคืชื™ื—ื”?
05:38
I about fell out of my couch when I saw this.
108
338013
3041
ืื ื™ ื›ืžืขื˜ ื ืคืœืชื™ ืžื”ื›ื•ืจืกื ื›ืฉืจืื™ืชื™ ืืช ื–ื”.
05:41
I'm like, that was the idea!
109
341054
1473
ืื ื™ ื›ืื™ืœื•, ื–ื” ื”ื™ื” ื”ืื™ื“ื™ืืœ
05:42
(Laughter and Applause)
110
342527
4499
(ืฆื—ื•ืง ื•ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
05:47
We'll put thousands of people on the warehouse floor, the stadium floor.
111
347026
3891
ื ืฉื™ื ืืœืคื™ ืื ืฉื™ื ืขืœ ืจืฆืคืช ื”ืžืคืขืœ, ืจืฆืคืช ื”ืื™ืฆื˜ื“ื™ื•ืŸ.
05:50
But interestingly enough, this actually relates to the idea
112
350917
4035
ืื‘ืœ ืžื” ืฉืžืขื ื™ื™ืŸ, ื”ื“ื‘ืจ ืžืชืงืฉืจ ืœืžืขืฉื” ืœืจืขื™ื•ืŸ
05:54
in that these guys were creating some incredibly powerful, impressive digital art,
113
354952
5412
ืฉื”ืื ืฉื™ื ื™ืฆืจื• ืืžื ื•ืช ื“ื™ื’ื™ื˜ืœื™ืช ื—ื–ืงื” ื•ืžืจืฉื™ืžื” ืœื”ืคืœื™ื,
06:00
all without computers, I'm told,
114
360364
2076
ื”ื›ืœ ื‘ืœื™ ืžื—ืฉื‘ื™ื , ื ืืžืจ ืœื™,
06:02
it was all peer-to-peer coordination and communication.
115
362440
2446
ื–ื” ื”ื™ื” ืชืื•ื ื•ืชืงืฉื•ืจืช ืขืžื™ืช ืœืขืžื™ืช.
06:04
You stand up, I'll squat down.
116
364886
1576
ืืชื ืขื•ืžื“ื™ื, ืื ื™ ืืชื›ื•ืคืฃ.
06:06
And they made some fabulous art.
117
366462
1645
ื•ื”ื ืขืฉื• ืืžื ื•ืช ื™ื•ืฆืืช ื“ื•ืคืŸ.
06:08
It speaks to the power of emergence
118
368107
2688
ื–ื” ืžืจืื” ืืช ื”ื›ื•ื— ืฉืœ ืขืœื™ื”
06:10
in systems when you let things start to talk with each other.
119
370795
3968
ื‘ืžืขืจื›ื•ืช ื›ืฉืืชื ื ื•ืชื ื™ื ืœื“ื‘ืจื™ื ืœื”ืชื—ื™ืœ ืœื“ื‘ืจ ืื—ื“ ืขื ื”ืฉื ื™.
06:14
So that was a little bit of the journey.
120
374763
3778
ืื– ื–ื” ื”ื™ื” ื—ืœืง ืงื˜ืŸ ืžื”ืžืกืข.
06:18
So of course, now what became the practical reality of this idea?
121
378541
4038
ืื– ื›ืžื•ื‘ืŸ, ืžื” ืขื›ืฉื™ื• ื”ืคืš ืœืžืฆื™ืื•ืช ื”ืคืจืงื˜ื™ืช ืฉืœ ื”ืจืขื™ื•ืŸ?
06:22
Here is a warehouse.
122
382579
1806
ื”ื ื” ืžื—ืกืŸ.
06:24
It's a pick, pack and ship center that has about 10,000 different SKUs.
123
384385
3776
ื–ื” ืžืจื›ื– ืื™ืกื•ืฃ, ืืจื™ื–ื” ื•ืฉื™ืœื•ื— ืฉื™ืฉ ืœื• ื‘ืขืจืš 10,000 ืคืจื™ื˜ื™ื ืฉื•ื ื™ื.
06:28
We'll call them red pens, green pens, yellow Post-It Notes.
124
388161
4137
ื ืงืจื ืœื”ื ืขื˜ื™ื ืื“ื•ืžื™ื, ืขื˜ื™ื ื™ืจื•ืงื™ื, ืคืชืงื™ื•ืช ืฆื”ื•ื‘ื•ืช.
06:32
We send the little orange robots out to pick up the blue shelving pods.
125
392298
3379
ืื ื—ื ื• ืฉื•ืœื—ื™ื ืจื•ื‘ื•ื˜ ื›ืชื•ื ืงื˜ืŸ ืœืืกื•ืฃ ืืช ืชืื™ ื”ืื›ืกื•ืŸ ื”ื›ื—ื•ืœื™ื.
06:35
And we deliver them to the side of the building.
126
395677
2168
ืื ื—ื ื• ืžืกืคืงื™ื ืื•ืชื ืœืฆื“ ื”ื‘ื ื™ื™ืŸ.
06:37
So all the pick workers now get to stay on the perimeter.
127
397845
3136
ืื– ื›ืœ ืขื•ื‘ื“ื™ ื”ืื™ืกื•ืฃ ืขื›ืฉื™ื• ื ืฉืืจื™ื ื‘ืžืชื—ื.
06:40
And the game here is to pick up the shelves,
128
400981
2342
ื•ื”ืžืฉื—ืง ืคื” ื”ื•ื ืœืืกื•ืฃ ืืช ื”ืžื“ืคื™ื,
06:43
take them down the highway and deliver them straight to the pick worker.
129
403323
3324
ืœืงื—ืช ืื•ืชื ื‘ืžื•ืจื“ ื”ื“ืจืš ื”ืžื”ื™ืจื”, ื•ืœืกืคืง ืื•ืชื ื™ืฉื™ืจื•ืช ืœืขื•ื‘ื“ ื”ืื™ืกื•ืฃ.
06:46
This pick worker's life is completely different.
130
406647
2137
ื—ื™ื™ื• ืฉืœ ืขื•ื‘ื“ ื”ืื™ืกื•ืฃ ื”ื–ื” ื”ื ืฉื•ื ื™ื ืœื’ืžืจื™.
06:48
Rather than wandering around the warehouse, she gets to stay still
131
408784
3417
ื‘ืžืงื•ื ื”ืฉื•ื˜ื˜ื•ืช ื‘ืจื—ื‘ื™ ื”ืžื—ืกืŸ, ื”ื™ื ื ืฉืืจืช ื‘ืžืงื•ื
06:52
in a pick station like this
132
412201
1588
ื‘ืชื—ื ืช ืื™ืกื•ืฃ ื›ื–ื•
06:53
and every product in the building can now come to her.
133
413789
3998
ื•ื›ืœ ืžื•ืฆืจ ื‘ื‘ื ื™ื™ืŸ ื™ื›ื•ืœ ืœื‘ื•ื ืืœื™ื” ืขื›ืฉื™ื•.
06:57
So the process is very productive.
134
417787
3278
ืื– ื”ืชื”ืœื™ืš ื”ื•ื ืžืื•ื“ ื™ืขื™ืœ,
07:01
Reach in, pick an item, scan the bar code, pack it out.
135
421065
4195
ืœื”ื’ื™ืข, ืœืงื—ืช ืžื•ืฆืจ, ืœืกืจื•ืง ืืช ื”ื‘ืจืงื•ื“, ืœืืจื•ื–.
07:05
By the time you turn around,
136
425260
1649
ื‘ื–ืžืŸ ืฉืืชื” ืžืกืชื•ื‘ื‘,
07:06
there's another product there ready to be picked and packed.
137
426909
3039
ื™ืฉ ืฉื ืžื•ืฆืจ ืื—ืจ, ืฉืžื—ื›ื” ืœื”ื™ืœืงื— ื•ืœื”ืืจื–.
07:09
So what we've done is take out all of the non-value added
138
429948
3010
ืžื” ืฉืขืฉื™ื ื• ื–ื” ืœืงื—ืช ืืช ื›ืœ ื”ืชื•ืกืคื•ืช ื—ืกืจื•ืช ื”ืขืจืš
07:12
walking, searching, wasting, waited time,
139
432958
2684
ื”ื”ืœื™ื›ื”, ื”ื—ื™ืคื•ืฉ, ื”ื‘ื–ื‘ื•ื–, ื‘ื–ื‘ื•ื–-ื”ื–ืžืŸ,
07:15
and we've developed a very high-fidelity way to pick these orders,
140
435642
4278
ื•ืคื™ืชื—ื ื• ื“ืจืš ืžืื•ื“ ืืžื™ื ื” ืœืงื—ืช ืืช ื”ื”ื–ืžื ื•ืช ื”ืœืœื•,
07:19
where you point at it with a laser, scan the UPC barcode,
141
439920
4164
ืฉืืชื” ืžื›ื•ื•ืŸ ืืช ื”ืœื™ื™ื–ืจ, ืกื•ืจืง ืืช ื”ื‘ืจืงื•ื“,
07:24
and then indicate with a light which box it needs to go into.
142
444084
3194
ื•ืื– ืžื–ื”ื” ื‘ืขื–ืจืช ื”ืื•ืจ ืœืื™ื–ื• ืงื•ืคืกื” ื”ืคืจื™ื˜ ืฉื™ื™ืš.
07:27
So more productive, more accurate and, it turns out,
143
447278
3486
ืื– ื™ื•ืชืจ ื™ืขื™ืœ, ื™ื•ืชืจ ืžื“ื•ื™ื™ืง, ื•ืžืกืชื‘ืจ
07:30
it's a more interesting office environment for these pick workers.
144
450764
4306
ืฉื–ื• ืกื‘ื™ื‘ืช ืขื‘ื•ื“ื” ื™ื•ืชืจ ืžืขื ื™ื™ื ืช ืœืคื•ืขืœื™ ื”ืœื™ืงื•ื˜ ื”ืœืœื•.
07:35
They actually complete the whole order.
145
455070
2437
ื”ื ืœืžืขืฉื” ืžืฉืœื™ืžื™ื ืืช ื”ื”ื–ืžื ื” ื”ืžืœืื”,
07:37
So they do red, green and blue, not just a part of the order.
146
457507
2527
ืื– ื”ื ืฉืžื™ื ืื“ื•ื, ื™ืจื•ืง ื•ื›ื—ื•ืœ ื•ืœื ืจืง ื—ืœืงื™ื ืžื”ื”ื–ืžื ื”.
07:40
And they feel a little bit more in control of their environment.
147
460034
3614
ื•ื”ื ืžืจื’ื™ืฉื™ื ื™ื•ืชืจ ื‘ืฉืœื™ื˜ื” ืขืœ ื”ืกื‘ื™ื‘ื” ืฉืœื”ื.
07:43
So the side effects of this approach
148
463648
3198
ืื– ืชื•ืคืขื•ืช ื”ืœื•ื•ืื™ ืฉืœ ื”ื’ื™ืฉื” ื”ื–ื•
07:46
are what really surprised us.
149
466846
1568
ื”ืคืชื™ืขื• ืื•ืชื ื• ืžืื•ื“.
07:48
We knew it was going to be more productive.
150
468414
1578
ื™ื“ืขื ื• ืฉื–ื” ื”ื•ืœืš ืœื”ื™ื•ืช ื™ื•ืชืจ ื™ืฆืจื ื™,
07:49
But we didn't realize just how pervasive this way of thinking
151
469992
4070
ืื‘ืœ ืœื ื”ื‘ื ื• ืขื“ ื›ืžื” ืขืžื•ืง ื“ืจืš ื”ื—ืฉื™ื‘ื” ื”ื–ื•
07:54
extended to other functions in the warehouse.
152
474062
5230
ืชืชืจื—ื‘ ืœืชื—ื•ืžื™ื ืื—ืจื™ื ื‘ืžื—ืกืŸ.
07:59
But what effectively this approach is doing inside of the DC
153
479292
4832
ืื‘ืœ ืœืžืขืฉื” ืžื” ืฉื”ื’ื™ืฉื” ื”ื–ื• ืขื•ืฉื” ื‘ืชื•ืš ื”ืžื—ืกืŸ
08:04
is turning it into a massively parallel processing engine.
154
484124
4464
ื–ื” ืœื”ืคื•ืš ืื•ืชื• ืœืžื ื•ืข ืขื‘ื•ื“ื•ืช-ืžืงื‘ื™ืœื•ืช ืžืืกื™ื‘ื™.
08:08
So this is again a cross-fertilization of ideas.
155
488588
2623
ืื– ื–ื• ืฉื•ื‘ ื”ืคืจื™ื™ื” ื”ื“ื“ื™ืช ืฉืœ ืจืขื™ื•ื ื•ืช.
08:11
Here's a warehouse and we're thinking about
156
491211
1939
ื”ื ื” ืžื—ืกืŸ, ื•ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืขืœ
08:13
parallel processing supercomputer architectures.
157
493150
3519
ืืจื›ื™ื˜ืงื˜ื•ืจื” ืฉืœ ืžื—ืฉื‘-ืขืœ ืœื‘ืฆืข ืคืขื•ืœื•ืช ื‘ื• ื–ืžื ื™ืช.
08:16
The notion here is that you have
158
496669
2397
ื”ืจืขื™ื•ืŸ ื›ืืŸ ื”ื•ื ืฉื™ืฉ ืœืš
08:19
10 workers on the right side of the screen
159
499066
2797
10 ืขื•ื‘ื“ื™ื ื‘ืฆื“ ื™ืžื™ืŸ ืฉืœ ื”ืžืกืš,
08:21
that are now all independent autonomous pick workers.
160
501863
4248
ืฉื›ื•ืœื ืขื›ืฉื™ื• ืขื•ื‘ื“ื™ื ืขืฆืžืื™ื™ื.
08:26
If the worker in station three decides to leave and go to the bathroom,
161
506111
3904
ืื ื”ืขื•ื‘ื“ ื‘ืชื—ื ื” 3 ืžื—ืœื™ื˜ ืœืขื–ื•ื‘ ื•ืœืœื›ืช ืœืฉื™ืจื•ืชื™ื,
08:30
it has no impact on the productivity of the other nine workers.
162
510015
3484
ืื™ืŸ ืœื›ืš ื”ืฉืคืขื” ืขืœ ื”ื™ื™ืฆื•ืจ ืฉืœ 9 ื”ืขื•ื‘ื“ื™ื ื”ืื—ืจื™ื.
08:33
Contrast that, for a moment, with the traditional method of using a conveyor.
163
513499
4370
ื ืฉื•ื•ื” ื–ืืช ืœืจื’ืข ืขื ื”ืฉื™ื˜ื” ื”ืžืกื•ืจืชื™ืช ืฉืœ ืฉื™ืžื•ืฉ ื‘ืคืก ื™ืฆื•ืจ.
08:37
When one person passes the order to you,
164
517869
2059
ื›ืฉืขื•ื‘ื“ ืžืกื•ื™ื™ื ืžืขื‘ื™ืจ ืœืš ืืช ื”ื”ื–ืžื ื”
08:39
you put something in and pass it downstream.
165
519928
2499
ืืชื” ืฉื ืžืฉื”ื• ื•ืžืขื‘ื™ืจ ืืช ื–ื” ื”ืœืื” ืœื”ืžืฉืš ื”ืคืก.
08:42
Everyone has to be in place for that serial process to work.
166
522427
3117
ื›ื•ืœื ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ื‘ืžืงื•ื ื‘ืฉื‘ื™ืœ ื”ืชื”ืœื™ืš ื”ืกื“ืจืชื™ ื”ื–ื”.
08:45
This becomes a more robust way to think about the warehouse.
167
525544
3177
ื–ื• ื”ื•ืคื›ืช ืœื”ื™ื•ืช ื“ืจืš ื—ื–ืงื” ื™ื•ืชืจ ืœื—ืฉื•ื‘ ืขืœ ื”ืžื—ืกืŸ.
08:48
And then underneath the hoods gets interesting in that we're tracking
168
528721
4544
ื•"ืžืชื—ืช ืœืžื›ืกื” ื”ืžื ื•ืข" ื ื”ื™ื™ื” ืžืขื ื™ื™ืŸ, ื›ื™ ื‘ืืคืฉืจื•ืชื ื• ืœืขืงื•ื‘ ืื—ืจ
08:53
the popularity of the products.
169
533265
1738
ื”ืคื•ืคื•ืœืืจื™ื•ืช ืฉืœ ื”ืžื•ืฆืจื™ื.
08:55
And we're using dynamic and adaptive algorithms
170
535003
2824
ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ืืœื’ื•ืจื™ืชืžื™ื ื“ื™ื ืžื™ื™ื ื•ืžื•ืชืื™ื
08:57
to tune the floor of the warehouse.
171
537827
4454
ืœืžื˜ื‘ ืืช ื”ืจืฆืคื” ืฉืœ ื”ืžื—ืกืŸ.
09:02
So what you see here potentially the week leading up to Valentine's Day.
172
542281
4884
ืื– ืžื” ืฉืื ื—ื ื• ืจื•ืื™ื ื›ืืŸ ืื•ืœื™ ื”ืฉื‘ื•ืข ืฉืœืคื ื™ ื™ื•ื ืื”ื‘ื”.
09:07
All that pink chalky candy has moved to the front of the building
173
547165
3843
ื›ืœ ื”ืกื•ื›ืจื™ื•ืช ื”ื•ืจื•ื“ื•ืช ื”ื•ืขื‘ืจื• ืœืงื“ืžืช ื”ื‘ื ื™ื™ืŸ
09:11
and is now being picked into a lot of orders in those pick stations.
174
551008
3893
ื•ืขื›ืฉื™ื• ืžืœื•ืงื˜ื•ืช ืœื”ื–ืžื ื•ืช ืจื‘ื•ืช ื‘ืขืžื“ื•ืช ื”ืœื™ืงื•ื˜.
09:14
Come in two days after Valentine's Day, and that candy, the leftover candy,
175
554901
4163
ื™ื•ืžื™ื™ื ืื—ืจื™ ื™ื•ื ื”ืื”ื‘ื”, ื”ืกื•ื›ืจื™ื•ืช ื”ืืœื”, ื”ืฉืืจื™ื•ืช ืฉืœ ื”ืกื•ื›ืจื™ื•ืช,
09:19
has all drifted to the back of the warehouse
176
559064
2273
ื›ื•ืœืŸ ื—ื–ืจื• ืœื™ืจื›ืชื™ ื”ืžื—ืกืŸ,
09:21
and is occupying the cooler zone on the thermal map there.
177
561337
4293
ื•ืžืื›ืœืกื•ืช ืืช ื”ืื–ื•ืจ ื”ืงืจ ื™ื•ืชืจ ืฉืœ ื–ืจื™ืžืช ื”ื—ื•ื ืฉื.
09:25
One other side effect of this approach using the parallel processing
178
565630
3483
ืขื•ื“ ืชื•ืฆืจ ืœื•ื•ืื™ ื‘ืขืงื‘ื•ืช ื’ื™ืฉื” ื–ื• ืฉืœ ืคืขื•ืœื•ืช-ืžืงื‘ื™ืœื•ืช ื‘ืžืคืขืœ,
09:29
is these things can scale to ginormous.
179
569113
2995
ื”ื•ื ืฉื”ื“ื‘ืจื™ื ื”ืœืœื• ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ื‘ืงื ื” ืžื™ื“ื” ืขืฆื•ื.
09:32
(Laughter)
180
572108
1527
(ืฆื—ื•ืง)
09:33
So whether you're doing two pick stations, 20 pick stations,
181
573635
2734
ืื– ื’ื ืื ื™ืฉื ืŸ ืฉืชื™ ืชื—ื ื•ืช ืœื™ืงื•ื˜, 20 ืชื—ื ื•ืช ืœื™ืงื•ื˜,
09:36
or 200 pick stations, the path planning algorithms
182
576369
3273
ืื• 200 ืชื—ื ื•ืช ืœื™ืงื•ื˜, ื™ืฉ ืชื›ื ื•ืŸ ืฉืœ ืืœื’ื•ืจื™ืชื
09:39
and all of the inventory algorithms just work.
183
579642
2543
ื•ื›ืœ ื”ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ ื”ืžืœืื™ ืคืฉื•ื˜ ืขื•ื‘ื“ื™ื.
09:42
In this example you see that the inventory
184
582185
4356
ื‘ื“ื•ื’ืžื ื”ื–ื• ืืชื ืจื•ืื™ื ืฉื”ืžืœืื™ ืขื›ืฉื™ื•
09:46
has now occupied all the perimeter of the building
185
586541
2326
ืžืžืœื ืืช ื›ืœ ื”ื”ื™ืงืฃ ืฉืœ ื”ื‘ื ื™ื™ืŸ,
09:48
because that's where the pick stations were.
186
588867
2346
ื‘ื’ืœืœ ืฉื–ื” ื”ื™ื›ืŸ ืฉื”ืชื—ื ื•ืช ื”ืœื™ืงื•ื˜ ื”ื™ื•.
09:51
They sorted it out for themselves.
187
591213
2018
ื”ื ืกื™ื“ืจื• ื–ืืช ื‘ืฉื‘ื™ืœ ืขืฆืžื.
09:53
So I'll conclude with just one final video
188
593231
2287
ืืกื›ื ืขื ื”ืกืจื˜ื•ืŸ ื”ืื—ืจื•ืŸ ื”ื–ื”
09:55
that shows how this comes to bear
189
595518
2984
ืฉืžืจืื” ืื™ืš ื›ืœ ื–ื” ืžืฉืชื™ื™ืš
09:58
on the pick worker's actual day in the life of.
190
598502
3594
ืœื—ื™ื™ื ื”ื™ื•ืžื™ื•ืžื™ื™ื ืฉืœ ื”ืขื•ื‘ื“ื™ื.
10:02
So as we mentioned, the process is to move inventory along the highway
191
602096
4336
ืื– ื›ืžื• ืฉื”ื–ื›ืจื ื•, ื”ืชื”ืœื™ืš ื”ื•ื ืœืฉื ืข ืžืœืื™ื ื‘ื“ืจืš ื”ืžื”ื™ืจื”
10:06
and then find your way into these pick stations.
192
606432
2652
ื•ืื– ืœืžืฆื•ื ืืช ื“ืจื›ืš ืœืชื—ื ื•ืช ื”ืœื™ืงื•ื˜ ื”ืœืœื•.
10:09
And our software in the background
193
609084
2471
ื•ื”ืชื•ื›ื ื” ืฉืœื ื• ื‘ืจืงืข
10:11
understands what's going on in each station,
194
611555
2751
ืžื‘ื™ื ื” ืžื” ืงื•ืจื” ื‘ื›ืœ ืื—ืช ืžื”ืชื—ื ื•ืช,
10:14
we direct the pods across the highway
195
614306
2611
ืื ื—ื ื• ืžื›ื•ื•ื ื™ื ืืช ื”ืขื’ืœื•ืช ื‘ื“ืจืš ื”ืžื”ื™ืจื”
10:16
and we're attempting to get into a queuing system
196
616917
2714
ื•ืื ื—ื ื• ืžื ืกื™ื ืœื™ืฆื•ืจ ืžืขืจื›ืช ืฉืขื•ื‘ื“ืช ืœืคื™ ืชื•ืจ
10:19
to present the work to the pick worker.
197
619631
2884
ื›ื“ื™ ืœื”ืฆื™ื’ ืืช ื”ืขื‘ื•ื“ื” ืœืคื•ืขืœ ื”ืœื™ืงื•ื˜.
10:22
What's interesting is we can even adapt the speed of the pick workers.
198
622515
3245
ืžื” ืฉืžืขื ื™ื™ืŸ ื”ื•ื ืฉืื ื• ื™ื›ื•ืœื™ื ืืคื™ืœื• ืœื”ืชืื™ื ืืช ื”ืžื”ื™ืจื•ืช ืฉืœ ืคื•ืขืœ ื”ืœื™ืงื•ื˜.
10:25
The faster pickers get more pods and the slower pickers get few.
199
625760
3926
ื”ืขื•ื‘ื“ื™ื ื”ืžื”ื™ืจื™ื ืžืงื‘ืœื™ื ื™ื•ืชืจ ืขื’ืœื•ืช, ื•ืื™ื˜ื™ื™ื ื™ืงื‘ืœื• ืคื—ื•ืช.
10:29
But this pick worker now is literally having that experience
200
629686
3138
ืื‘ืœ ื”ืขื•ื‘ื“ืช ื”ืกืคืฆื™ืคื™ืช ื”ื–ื• ื—ื•ื•ื” ืขื›ืฉื™ื• ื‘ื“ื™ื•ืง
10:32
that we described before.
201
632824
1853
ืืช ืžื” ืฉืชื™ืืจื• ืงื•ื“ื.
10:34
She puts out her hand. The product jumps into it.
202
634677
2544
ื”ื™ื ืžื•ืฉื™ื˜ื” ืืช ื”ื™ื“. ื”ืžื•ืฆืจ ืงื•ืคืฅ ืœื™ื“ื”.
10:37
Or she has to reach in and get it.
203
637221
2205
ืื• ืฉื”ื™ื ืฆืจื™ื›ื” ืœื”ืชื›ื•ืคืฃ ื•ืœื”ื‘ื™ื ืื•ืชื•.
10:39
She scans it and she puts it in the bucket.
204
639426
2445
ื”ื™ื ืกื•ืจืงืช ืื•ืชื• ื•ืฉืžื” ืื•ืชื• ื‘ืกืœ.
10:41
And all of the rest of the technology is kind of behind the scenes.
205
641871
3796
ื›ืœ ืฉืืจ ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื™ื ืกื•ื’ ืฉืœ ืžืื—ื•ืจื™ ื”ืงืœืขื™ื.
10:45
So she gets to now focus on the picking and packing portion of her job.
206
645667
3861
ืื– ื”ื™ื ืžืชืจื›ื–ืช ื›ืขืช ื‘ื—ืœืง ืฉืœ ื”ืœื™ืงื•ื˜ ื•ื”ืืจื™ื–ื” ืฉืœ ืขื‘ื•ื“ืชื”.
10:49
Never has any idle time, never has to leave her mat.
207
649528
3274
ืื™ืŸ ืœื” ืจื’ืข ื“ืœ, ื•ื”ื™ื ืœื ืฆืจื™ื›ื” ืœื–ื•ื– ืžื”ืชื—ื ื” ืฉืœื”.
10:52
And actually we think not only a more productive
208
652802
4140
ื•ืœืžืขืฉื” ืื ื• ื—ื•ืฉื‘ื™ื ืฉื–ื• ืœื ืจืง ื“ืจืš ื™ืขื™ืœื” ื™ื•ืชืจ
10:56
and more accurate way to fill orders.
209
656942
3270
ื•ืžื“ื•ื™ื™ืงืช ื•ื™ื•ืชืจ ืœื˜ืคืœ ื‘ื”ื–ืžื ื•ืช.
11:00
We think it's a more fulfilling way to fill orders.
210
660212
3410
ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื–ื• ื“ืจืš ื™ื•ืชืจ ืžืกืคืงืช ืœื˜ืคืœ ื‘ื”ื–ืžื ื•ืช.
11:03
The reason we can say that, though, is that workers
211
663622
3208
ื”ืกื™ื‘ื” ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื•ืžืจ ื–ืืช, ื”ื™ื ืฉื”ืขื•ื‘ื“ื™ื
11:06
in a lot of these buildings now compete
212
666830
2142
ื‘ื”ืจื‘ื” ืžื”ืžื‘ื ื™ื ื”ืืœื• ืžืชืžื•ื“ื“ื™ื ืขื›ืฉื™ื•
11:08
for the privilege of working in the Kiva zone that day.
213
668972
3182
ืขืœ ื”ื–ื›ื•ืช ืœืขื‘ื•ื“ ื‘ืกื‘ื™ื‘ืช ืดืงื™ื•ื•ื”ืด ื‘ื™ืžื™ื ืืœื•.
11:12
And sometimes we'll catch them on testimonial videos
214
672154
2663
ื•ืœืคืขืžื™ื ืื ื—ื ื• ื ืชืคื•ืก ืื•ืชื ื‘ืžื›ืชื‘ื™ ื”ืžืœืฆื” ืžืฆื•ืœืžื™ื
11:14
saying such things as,
215
674817
2117
ืื•ืžืจื™ื ื“ื‘ืจื™ื ื›ืžื•,
11:16
they have more energy after the day to play with their grandchildren,
216
676934
4246
ืฉื™ืฉ ืœื”ื ื™ื•ืชืจ ืื ืจื’ื™ื” ืื—ืจื™ ื™ื•ื ื”ืขื‘ื•ื“ื” ืœืฉื—ืง ืขื ื ื›ื“ื™ื”ื,
11:21
or in one case a guy said, "the Kiva zone is so stress-free
217
681180
4596
ืื• ืฉื‘ืžืงืจื” ืื—ืจ, ืžื™ืฉื”ื• ืืžืจ ืฉ-ืดืกื‘ื™ื‘ืช ื”"ืงื™ื•ื•ื”" ื”ื™ื ื›ืœ ื›ืš ื ื˜ื•ืœืช ืœื—ืฅ
11:25
that I've actually stopped taking my blood pressure medication."
218
685776
3115
ืฉืžืžืฉ ื”ืคืกืงืชื™ ืœืงื—ืช ืืช ื”ืชืจื•ืคื•ืช ื ื’ื“ ืœื—ืฅ ื”ื“ื ืฉืœื™ืด
11:28
(Laughter)
219
688891
1834
(ืฆื—ื•ืง)
11:30
That was at a pharmaceutical distributor, so they told us not to use that video.
220
690725
3999
ื–ื” ื”ื™ื” ื‘ื”ืคืฆื” ืฉืœ ื‘ืชื™ ืžืจืงื—ืช, ืื– ืืžืจื• ืœื ื• ืœื ืœื”ืฉืชืžืฉ ื‘ืกืจื˜ื•ืŸ.
11:34
(Laughter)
221
694724
3568
(ืฆื—ื•ืง)
11:38
So what I wanted to leave you with today is the notion that
222
698292
3024
ืื– ืžื” ืฉืื ื™ ืจื•ืฆื” ืœื”ืฉืื™ืจ ืœื›ื ื”ื™ื•ื ื–ื” ื”ืจืขื™ื•ืŸ
11:41
when you let things start to think and walk
223
701316
2855
ืฉื›ืฉืืชื” ื ื•ืชืŸ ืœื“ื‘ืจื™ื ืœื”ืชื—ื™ืœ ืœื—ืฉื•ื‘ ื•ืœืœื›ืช
11:44
and talk on their own, interesting processes and productivities can emerge.
224
704171
5291
ื•ืœื“ื‘ืจ ื‘ืขืฆืžื, ืชื”ืœื™ื›ื™ื ื•ื™ืขื™ืœื•ื™ื•ืช ืžืขื ื™ื™ื ื™ื ื™ื›ื•ืœื™ื ืœืฆื•ืฅ.
11:49
And now I think next time you go to your front step
225
709462
2941
ื•ืขื›ืฉื™ื• ืื ื™ ื—ื•ืฉื‘ ืฉื‘ืคืขื ื”ื‘ืื” ืฉืชืœื›ื• ืœืžืคืชืŸ ื”ื“ืœืช
11:52
and pick up that box that you just ordered online,
226
712403
2511
ื•ืชืจื™ืžื• ืืช ื”ืงื•ืคืกื ืฉื”ื–ืžื ืชื ื‘ืจืฉืช,
11:54
you break it open and the goo is in there,
227
714914
2224
ืชืคืชื—ื• ืื•ืชื” ื•ื”ืณื’ื•ืณ ื™ื”ื™ื” ืฉื,
11:57
you'll have some wonderment as to whether a robot
228
717138
2753
ืชืขืœื” ื‘ื›ื ื”ืฉืืœื” ื”ืื ืจื•ื‘ื•ื˜
11:59
assisted in the picking and packing of that order.
229
719891
2593
ืขื–ืจ ื‘ืืจื™ื–ืช ื”ื—ื‘ื™ืœื” ืฉื”ื–ืžื ืชื.
12:02
Thank you.
230
722484
1679
ืชื•ื“ื” ืœื›ื.
12:04
(Applause)
231
724163
4630
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7