How to train employees to have difficult conversations | Tamekia MizLadi Smith

113,414 views ・ 2018-08-20

TED


Dobbeltklik venligst på de engelske undertekster nedenfor for at afspille videoen.

Translator: Kamilla Christiansen Reviewer: Anders Finn Jørgensen
00:12
We live in a world where the collection of data
0
12968
2198
Vi lever i en verden, hvor data indsamles
00:15
is happening 24 hours a day, seven days a week,
1
15190
2548
alle 24 timer i døgnet, 7 dage om ugen,
00:17
365 days a year.
2
17762
2293
365 dage om året.
00:20
This data is usually collected by what we call a front-desk specialist now.
3
20730
4323
Denne data samles ofte ind af kundeservicemedarbejdere.
00:25
These are the retail clerks at your favorite department stores,
4
25077
3120
Det kan være butiksassistenten i din yndlingsbutik,
00:28
the cashiers at the grocery stores,
5
28221
2443
kassemedarbejderen i supermarkedet,
00:30
the registration specialists at the hospital
6
30688
2605
sekretæren i modtagelsen på hospitalet
00:33
and even the person that sold you your last movie ticket.
7
33317
3114
eller personen der solgte dig din seneste biografbillet.
00:36
They ask discreet questions, like: "May I please have your zip code?"
8
36908
3875
De stiller diskrete spørgsmål som: "Må jeg få dit postnummer?"
00:40
Or, "Would you like to use your savings card today?"
9
40807
3111
Eller, "Vil du benytte dit kreditkort?"
00:44
All of which gives us data.
10
44369
2309
Og det hele giver os data.
00:46
However, the conversation becomes a little bit more complex
11
46702
4587
Men samtalen bliver lidt mere kompleks,
00:51
when the more difficult questions need to be asked.
12
51313
3318
når sværere spørgsmål skal stilles.
00:54
Let me tell you a story, see.
13
54655
1793
Lad mig fortælle dig en historie:
00:56
Once upon a time, there was a woman named Miss Margaret.
14
56750
3018
Der var en gang en kvinde, der hed Margaret.
00:59
Miss Margaret had been a front-desk specialist
15
59792
2151
Margaret havde været kundeservicemedarbejder
01:01
for almost 20 years.
16
61967
1460
i næsten 20 år.
01:03
And in all that time, she has never, and I do mean never,
17
63451
3817
Og i alle disse år havde hun aldrig, aldrig nogensinde,
01:07
had to ask a patient their gender, race or ethnicity.
18
67292
3520
været nødt til at bede en patient oplyse køn, race eller etnicitet.
01:10
Because, see, now Miss Margaret has the ability to just look at you.
19
70836
3223
For ser du, Margaret kunne bare tage et kig på dig.
01:14
Uh-huh.
20
74083
1158
Nemlig.
01:15
And she can tell if you are a boy or a girl,
21
75265
2777
Og hun kunne se om du var en dreng eller en pige,
01:18
black or white, American or non-American.
22
78066
3237
sort eller hvid, amerikaner eller ej.
01:21
And in her mind, those were the only categories.
23
81327
3238
Og i hendes hoved var det alle kategorier der fandtes.
01:24
So imagine that grave day,
24
84589
2016
Så forestil dig den dag
01:26
when her sassy supervisor invited her to this "change everything" meeting
25
86629
4893
hendes frække chef inviterede hende til et "total forandrings-møde"
01:31
and told her that would have to ask each and every last one of her patients
26
91546
3634
og fik hende til at bede hver eneste patient,
01:35
to self-identify.
27
95204
1405
om at identificere sig selv.
01:36
She gave her six genders, eight races and over 100 ethnicities.
28
96633
4770
Hun gav hende 6 køn, 8 racer og mere end 100 etniciteter.
01:41
Well, now, Miss Margaret was appalled.
29
101427
2588
Nu var Margaret forarget.
01:44
I mean, highly offended.
30
104039
1397
Virkelig dybt forulempet.
01:45
So much so that she marched down to that human-resource department
31
105460
3331
Så meget, at hun marcherede ned til HR-afdelingen
01:48
to see if she was eligible for an early retirement.
32
108815
2524
for at høre, om hun ikke kunne gå på tidlig pension.
01:51
And she ended her rant by saying
33
111363
1960
Og hun afsluttede sin tale med at sige,
01:53
that her sassy supervisor invited her to this "change everything" meeting
34
113347
4870
at hendes frække chef inviterede hende til "total forandrings-mødet"
01:58
and didn't, didn't, even, even
35
118241
2024
uden at, uden overhovedet at
02:00
bring, bring food, food, food, food.
36
120289
3028
at tage, tage mad med, mad, mad, mad.
02:03
(Laughter)
37
123341
1154
(Latter)
02:04
(Applause) (Cheers)
38
124519
5067
(Klapsalve)
02:10
You know you've got to bring food to these meetings.
39
130681
2434
Alle ved at man skal tage mad med til de møder.
02:13
(Laughter)
40
133139
2343
(Latter)
02:15
Anyway.
41
135506
1159
Lige meget.
02:16
(Laughter)
42
136689
1508
(Latter)
02:18
Now, that was an example of a healthcare setting,
43
138221
2769
Det var et eksempel fra sundhedsplejen,
02:21
but of course, all businesses collect some form of data.
44
141014
3333
men selvfølgelig indsamler alle virksomheder nogen form af data.
02:24
True story: I was going to wire some money.
45
144371
3142
Sand historie: Jeg skulle overføre nogle pengle.
02:28
And the customer service representative asked me
46
148165
2555
Og kundeservicemedarbejderen spurgte mig,
02:30
if I was born in the United States.
47
150744
2334
om jeg var født i USA.
02:33
Now, I hesitated to answer her question,
48
153419
2381
Jeg tøvede lidt, inden jeg svarede,
02:35
and before she even realized why I hesitated,
49
155824
3130
og før hun overhovedet indså, hvorfor jeg tøvede,
02:38
she began to throw the company she worked for under the bus.
50
158978
3015
havde hun undergravet firmaet, hun arbejdede for.
02:42
She said, "Girl, I know it's stupid, but they makin' us ask this question."
51
162017
5072
Hun sagde, "Du, jeg ved det er dumt, men de får os til at spørge."
02:47
(Laughter)
52
167113
1151
(Latter)
02:48
Because of the way she presented it to me,
53
168288
2073
Fordi hun fremlagde det sådan for mig,
02:50
I was like, "Girl, why?
54
170385
1600
spurgte jeg, "Hvorfor?
02:52
Why they makin' you ask this question?
55
172561
2230
Hvorfor får de jer til at spørge?
02:54
Is they deportin' people?"
56
174815
1802
Vil de udvise folk?"
02:56
(Laughter)
57
176641
2142
(Latter)
02:58
But then I had to turn on the other side of me,
58
178807
2222
Men så tændte jeg den anden side af mig selv,
03:01
the more professional speaker-poet side of me.
59
181053
2568
den mere professionelle taler-poet-side.
03:04
The one that understood that there were little Miss Margarets all over the place.
60
184164
4150
Den som forstod, at der var mange små Margareter derude.
03:08
People who were good people, maybe even good employees,
61
188871
2968
Gode mennesker, måske også gode medarbejdere,
03:11
but lacked the ability to ask their questions properly
62
191863
2552
som manglede evnen til at stille sine spørgsmål godt,
03:14
and unfortunately, that made her look bad,
63
194439
2535
og desværre kom til at se dårlige ud,
03:16
but the worst, that made the business look even worse
64
196998
3246
men endnu værre, fik deres firma til at se endnu dårligere ud
03:20
than how she was looking.
65
200268
1666
end hun gjorde.
03:22
Because she had no idea who I was.
66
202236
1767
For hun havde ingen anelse om, hvem jeg er.
03:24
I mean, I literally could have been a woman who was scheduled to do a TED Talk
67
204027
3685
Jeg kunne være en kvinde, der skulle holde en TED Talk
03:27
and would use her as an example.
68
207736
1778
og ville bruge hende som eksempel.
03:29
Imagine that.
69
209538
1300
Tænk dig det.
03:30
(Applause)
70
210862
4262
(Klapsalve)
03:35
And unfortunately,
71
215148
1183
Og desværre,
03:36
what happens is people would decline to answer the questions,
72
216355
2895
leder det til at folk ikke vil svare på spørgsmålene,
03:39
because they feel like you would use the information
73
219274
2509
fordi de føler, at informationen vil blive brugt
03:41
to discriminate against them,
74
221807
1425
til at diskriminere dem,
03:43
all because of how you presented the information.
75
223256
2391
alene på grund af måden, du præsenterede det.
03:45
And at that point, we get bad data.
76
225671
1778
Og sådan får vi dårlig data.
03:47
And everybody knows what bad data does.
77
227473
2111
Og alle ved, hvad dårlig data gør.
03:49
Bad data costs you time, it costs you money
78
229608
2793
Dårlig data koster dig tid, koster dig penge
03:52
and it costs you resources.
79
232425
1946
og koster dig ressourcer.
03:54
Unfortunately, when you have bad data,
80
234395
2563
Desværre, når du har dårlig data,
03:56
it also costs you a lot more,
81
236982
3079
koster det dig også meget mere,
04:00
because we have health disparities,
82
240085
2395
fordi vi har sundhedsforskelle,
04:02
and we have social determinants of health,
83
242504
2214
og sociale helbredsfaktorer,
04:04
and we have the infant mortality,
84
244742
1658
og dødelighed blandt børn,
04:06
all of which depends on the data that we collect,
85
246424
2643
som alle afhænger af dataen, vi indsamler,
04:09
and if we have bad data, than we have those issues still.
86
249091
3248
og hvis vi har dårlig data, så har vi fortsat disse problemer.
04:12
And we have underprivileged populations
87
252363
1899
Vi har underpriviligerede befolkninger,
04:14
that remain unfortunate and underprivileged,
88
254286
2791
der forbliver uheldige og underpriviligerede
04:17
because the data that we're using is either outdated,
89
257101
3926
fordi dataen vi bruger enten er forældet
04:21
or is not good at all or we don't have anything at all.
90
261051
3293
eller slet ikke god nok, eller overhovedet ikke eksisterer.
04:24
Now, wouldn't it be amazing if people like Miss Margaret
91
264987
2636
Så ville det ikke være fantastisk, hvis folk som Margaret
04:27
and the customer-service representative at the wiring place
92
267647
3150
og kundeservicemedarbejdere hos pengeinstitutioner
04:30
were graced to collect data with compassionate care?
93
270821
4374
var "graced" til at indsamle data med pleje og medfølelse?
04:35
Can I explain to you what I mean by "graced?"
94
275562
2317
Må jeg forklare, hvad jeg mener med "graced"?
04:38
I wrote an acrostic poem.
95
278324
1666
Jeg skrev et akrostikon.
04:40
G: Getting the front desk specialist involved and letting them know
96
280300
4773
G: Gør medarbejderen involveret og i stand til at forstå
04:45
R: the Relevance of their role as they become
97
285097
3953
R: Relevancen deres rolle har, når de bliver
04:49
A: Accountable for the accuracy of data while implementing
98
289074
3531
A: Ansvarlige for nøjagtigheden af dataen, imens de viser
04:52
C: Compassionate care within all encounters by becoming
99
292629
4044
C: omsorg ved alle kontaktpunkter, ved at blive
04:56
E: Equipped with the education needed to inform people
100
296697
3301
E: udrustede med uddannelsen det kræver, for at informere folk
05:00
of why data collection is so important.
101
300022
3293
D: om hvorfor Dataindsamling er så vigtig.
05:04
(Applause)
102
304315
2949
(Klapsalve)
05:07
Now, I'm an artist.
103
307288
2096
Jeg er ikke kunstner.
05:09
And so what happens with me
104
309408
1674
Så det der sker med mig,
05:11
is that when I create something artistically,
105
311106
2174
når jeg skaber noget kunstnerligt, er,
05:13
the trainer in me is awakened as well.
106
313304
1923
at træneren i mig vækkes.
05:15
So what I did was, I began to develop that acrostic poem into a full training
107
315251
4072
Så jeg begyndte at udvikle mit akrostikon til træningsprogrammet
05:19
entitled "I'm G.R.A.C.E.D."
108
319347
1548
"Jeg er G.R.A.C.E.D."
05:20
Because I remember, being the front-desk specialist,
109
320919
2841
For jeg husker, at være kunde-servicemedarbejderen,
05:23
and when I went to the office of equity to start working,
110
323784
2674
og da jeg begyndte at arbejde på finanskontoret
05:26
I was like, "Is that why they asked us to ask that question?"
111
326482
3555
tænkte jeg "Var det derfor, de stillede det spørgsmål?"
05:30
It all became a bright light to me,
112
330061
1768
Alt blev helt tydeligt for mig,
05:31
and I realized that I asked people and I told people about --
113
331853
3637
og det gik op for mig, at jeg spurgte folk og fortalte om dem --
05:35
I called them by the wrong gender, I called them by the wrong race,
114
335514
3284
Jeg brugte det forkerte køn, jeg kaldte dem ved forkert race.
05:38
I called them by the wrong ethnicity,
115
338822
1803
Jeg brugte ikke deres rette etnicitet
05:40
and the environment became hostile,
116
340649
2007
og omgivelserne blev fjendtlige,
05:42
people was offended and I was frustrated because I was not graced.
117
342680
4284
folk forulempede og jeg frustreret, fordi jeg ikke var "graced".
05:46
I remember my computerized training,
118
346988
2587
Jeg husker træningen jeg fik på computer
05:49
and unfortunately, that training did not prepare me to deescalate a situation.
119
349599
5626
og desværre forberedte den træning mig ikke på deeskalering.
05:55
It did not prepare me to have teachable moments when I had questions
120
355249
3376
Den forberedte mig ikke på at lære noget, når jeg havde spørgsmål
05:58
about asking the questions.
121
358649
1658
om at stille spørgsmål.
06:00
I would look at the computer and say, "So, what do I do when this happens?"
122
360331
3564
Jeg så på computeren og sagde: "Hvad gør jeg så, når det her sker?"
06:03
And the computer would say ...
123
363919
1858
Og computen svarede...
06:05
nothing, because a computer cannot talk back to you.
124
365801
3268
Intet. For en computer kan ikke tale tilbage til dig.
06:09
(Laughter)
125
369093
3207
(Latter)
06:12
So that's the importance of having someone there
126
372324
2571
Derfor er det vigtigt, at have nogen på plads,
06:14
who was trained to teach you and tell you what you do
127
374919
2777
som er trænet til at lære dig og fortælle dig, hvad du gør
06:17
in situations like that.
128
377720
1690
i den slags situationer.
06:20
So, when I created the "I'm G.R.A.C.E.D" training,
129
380030
2626
Så da jeg skabte "Jeg er G.R.A.C.E.D."-træningen,
06:22
I created it with that experience that I had in mind,
130
382680
2994
gjorde jeg det på baggrund af min erfaring,
06:25
but also that conviction that I had in mind.
131
385698
2516
men også med den overbevisning.
06:28
Because I wanted the instructional design of it
132
388238
2253
For jeg ville have et instruktionelt design,
06:30
to be a safe space for open dialogue for people.
133
390515
2778
der gav en sikker plads for åben dialog mellem mennesker.
06:33
I wanted to talk about biases,
134
393317
1895
Jeg ville snakke om fordomme,
06:35
the unconscious ones and the conscious ones,
135
395236
2397
de underbevidste og de bevidste,
06:37
and what we do.
136
397657
1166
og hvad vi gør.
06:38
Because now I know that when you engage people in the why,
137
398847
3944
For nu ved jeg, at når du giver folk spørgsmålet "hvorfor",
06:42
it challenges their perspective, and it changes their attitudes.
138
402815
3476
så udfordrer det deres perspektiver og deres attituder.
06:46
Now I know that data that we have at the front desk
139
406315
3159
Nu ved jeg at data, vi indsamler ved frontdisken
06:49
translates into research that eliminates disparities and finds cures.
140
409498
4813
oversættes til undersøgelser, der eliminerer ulighed og kurerer.
06:54
Now I know that teaching people transitional change
141
414335
3706
Nu ved jeg, at det at lære folk om gradvis forandring,
06:58
instead of shocking them into change
142
418065
2846
i stedet for at chokere dem til forandring,
07:00
is always a better way of implementing change.
143
420935
3255
altid er en bedre måde, at implementere forandring.
07:04
See, now I know people are more likely to share information
144
424214
3046
Nu ved jeg, at folk er mere villige til at dele information,
07:07
when they are treated with respect by knowledgeable staff members.
145
427284
3859
når de behandles med respekt af kyndigt personale.
07:11
Now I know that you don't have to be a statistician
146
431167
3021
Nu ved jeg, at du ikke skal være statistiker
07:14
to understand the power and the purpose of data,
147
434212
3001
for at forstå kraften i og formålet med data,
07:17
but you do have to treat people with respect and have compassionate care.
148
437237
4364
men at den kræver, at du udviser omsorg og respekt for folk.
07:21
Now I know that when you've been graced,
149
441625
2825
Nu ved jeg, at når du er "graced",
07:24
it is your responsibility to empower somebody else.
150
444474
3376
så er det dit ansvar at give andre kraft.
07:27
But most importantly, now I know
151
447874
2425
Men vigtigst af alt, nu ved jeg,
07:30
that when teaching human beings
152
450323
2413
at når man lærer mennesker
07:32
to communicate with other human beings,
153
452760
3079
at kommunikere med andre mennesker,
07:35
it should be delivered by a human being.
154
455863
3785
bør læringen komme fra et menneske.
07:40
(Applause)
155
460117
6792
(Klapsalve)
07:46
So when y'all go to work
156
466933
1849
Så når I går på arbejde
07:48
and y'all schedule that "change everything" meeting --
157
468806
3335
og planlægger det der "total forandrings-møde" --
07:52
(Laughter)
158
472165
1650
(Latter)
07:53
remember Miss Margaret.
159
473839
1515
Så husk Margaret.
07:55
And don't forget the food, the food, the food, the food.
160
475792
3819
Og glem ikke maden, maden, maden, maden.
08:00
Thank you.
161
480103
1151
Tak skal I have.
08:01
(Applause) (Cheers)
162
481278
5475
(Klapsalve)
08:06
Thank you.
163
486777
1175
Tak.
08:07
(Applause)
164
487976
1595
(Klapsalve)
Om denne hjemmeside

På dette websted kan du se YouTube-videoer, der er nyttige til at lære engelsk. Du vil se engelskundervisning, der er udført af førsteklasses lærere fra hele verden. Dobbeltklik på de engelske undertekster, der vises på hver videoside, for at afspille videoen derfra. Underteksterne ruller i takt med videoafspilningen. Hvis du har kommentarer eller ønsker, bedes du kontakte os ved hjælp af denne kontaktformular.

https://forms.gle/WvT1wiN1qDtmnspy7