How to train employees to have difficult conversations | Tamekia MizLadi Smith

113,946 views ใƒป 2018-08-20

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: yael ring ืขืจื™ื›ื”: Ido Dekkers
00:12
We live in a world where the collection of data
0
12968
2198
ืื ื—ื ื• ื—ื™ื™ื ื‘ืขื•ืœื ื‘ื• ืื™ืกื•ืฃ ืžื™ื“ืข
00:15
is happening 24 hours a day, seven days a week,
1
15190
2548
ืžืชืจื—ืฉ 24 ืฉืขื•ืช ื‘ื™ื•ื, 7 ื™ืžื™ื ื‘ืฉื‘ื•ืข,
00:17
365 days a year.
2
17762
2293
365 ื™ืžื™ื ื‘ืฉื ื”.
00:20
This data is usually collected by what we call a front-desk specialist now.
3
20730
4323
ื”ืžื™ื“ืข ื”ื–ื” ื‘ื“ืจืš ื›ืœืœ ื ืืกืฃ ืขืœ ื™ื“ื™ ืžื™ ืฉืื ื—ื ื• ืžื›ื ื™ื ืื•ืชื ื›ื™ื•ื ืžื•ืžื—ื™ ื“ืœืคืง ืงื‘ืœื”.
00:25
These are the retail clerks at your favorite department stores,
4
25077
3120
ืืœื• ื”ืžื•ื›ืจื™ื ื‘ื—ื ื•ืช ื”ื‘ื’ื“ื™ื ื”ืื”ื•ื‘ื” ืขืœื™ื›ื,
00:28
the cashiers at the grocery stores,
5
28221
2443
ื”ืงื•ืคืื™ื ื‘ืžื›ื•ืœืช,
00:30
the registration specialists at the hospital
6
30688
2605
ืžื•ืžื—ื™ ื”ืจื™ืฉื•ื ื‘ื‘ื™ืช ื”ื—ื•ืœื™ื,
00:33
and even the person that sold you your last movie ticket.
7
33317
3114
ื•ืืคื™ืœื• ื”ืื“ื ืฉืžื›ืจ ืœื›ื ืืช ื›ืจื˜ื™ืก ื”ืงื•ืœื ื•ืข ื”ืื—ืจื•ืŸ ืฉืœื›ื.
00:36
They ask discreet questions, like: "May I please have your zip code?"
8
36908
3875
ื”ื ืฉื•ืืœื™ื ืฉืืœื•ืช ื“ื™ืกืงืจื˜ื™ื•ืช ื›ืžื•: "ืืคืฉืจ ื‘ื‘ืงืฉื” ืืช ื”ืžื™ืงื•ื“ ืฉืœืš"?
00:40
Or, "Would you like to use your savings card today?"
9
40807
3111
ืื• "ื”ืื ืชืจืฆื” ืœื”ืฉืชืžืฉ ื‘ื ืงื•ื“ื•ืช ื”ื—ืกื›ื•ืŸ ืฉืœืš ื”ื™ื•ื"?
00:44
All of which gives us data.
10
44369
2309
ื›ืœ ืืœื” ื ื•ืชื ื™ื ืœื ื• ืžื™ื“ืข.
00:46
However, the conversation becomes a little bit more complex
11
46702
4587
ืขื ื–ืืช, ื”ืฉื™ื—ื” ื”ื•ืคื›ืช ืœื”ื™ื•ืช ืงืฆืช ื™ื•ืชืจ ืžืกื•ื‘ื›ืช
00:51
when the more difficult questions need to be asked.
12
51313
3318
ื›ืฉืขื•ืœื” ื”ืฆื•ืจืš ืœืฉืื•ืœ ืืช ื”ืฉืืœื•ืช ื”ืงืฉื•ืช ื™ื•ืชืจ.
00:54
Let me tell you a story, see.
13
54655
1793
ืชื ื• ืœื™ ืœืกืคืจ ืœื›ื ืกื™ืคื•ืจ, ืืชื ืจื•ืื™ื.
00:56
Once upon a time, there was a woman named Miss Margaret.
14
56750
3018
ืคืขื ืื—ืช ื”ื™ืชื” ืืฉื” ื‘ืฉื ืžื™ืก ืžืจื’ืจื˜.
00:59
Miss Margaret had been a front-desk specialist
15
59792
2151
ืžื™ืก ืžืจื’ืจื˜ ื”ื™ืชื” ืžื•ืžื—ื™ืช ืœื“ืœืคืง ืงื‘ืœื”
01:01
for almost 20 years.
16
61967
1460
ื‘ืžืฉืš ื›ืžืขื˜ 20 ืฉื ื”.
01:03
And in all that time, she has never, and I do mean never,
17
63451
3817
ื•ื‘ื›ืœ ื”ื–ืžืŸ ื”ื–ื” ื”ื™ื ืืฃ ืคืขื, ื•ืื ื™ ืžืชื›ื•ื•ื ืช ืืฃ ืคืขื,
01:07
had to ask a patient their gender, race or ethnicity.
18
67292
3520
ืœื ื”ื™ืชื” ืฆืจื™ื›ื” ืœืฉืื•ืœ ืžื˜ื•ืคืœ ืžื” ื”ืžื™ืŸ ืฉืœื•, ื”ื’ื–ืข ืฉืœื• ืื• ื”ืจืงืข ื”ืืชื ื™ ืฉืœื•
01:10
Because, see, now Miss Margaret has the ability to just look at you.
19
70836
3223
ื›ื™, ืืชื ืžื‘ื™ื ื™ื, ืœืžื™ืก ืžืจื’ืจื˜ ื™ืฉ ืืช ื”ื™ื›ื•ืœืช ืคืฉื•ื˜ ืœื”ืชื‘ื•ื ืŸ ื‘ืš.
01:14
Uh-huh.
20
74083
1158
ืื”ื”.
01:15
And she can tell if you are a boy or a girl,
21
75265
2777
ื•ื”ื™ื ื™ื•ื“ืขืช ืื ืืชื” ื‘ืŸ ืื• ื‘ืช,
01:18
black or white, American or non-American.
22
78066
3237
ืฉื—ื•ืจ ืื• ืœื‘ืŸ, ืืžืจื™ืงืื™ ืื• ืœื ืืžืจื™ืงืื™.
01:21
And in her mind, those were the only categories.
23
81327
3238
ื•ื‘ืจืืฉื” ืืœื• ื”ืงื˜ื’ื•ืจื™ื•ืช ื”ื™ื—ื™ื“ื•ืช.
01:24
So imagine that grave day,
24
84589
2016
ืื– ื“ืžื™ื™ื ื• ืืช ืื•ืชื• ื™ื•ื ืงืฉื”,
01:26
when her sassy supervisor invited her to this "change everything" meeting
25
86629
4893
ื›ืฉื”ืžืคืงื—ืช ื”ื—ืฆื•ืคื” ืฉืœื” ื”ื–ืžื™ื ื” ืื•ืชื” ืœืคื’ื™ืฉืช "ืฉื™ื ื•ื™ ื›ืœืœื™"
01:31
and told her that would have to ask each and every last one of her patients
26
91546
3634
ื•ืืžืจื” ืœื” ืฉื”ื™ื ืชืฆื˜ืจืš ืœื‘ืงืฉ ืžื›ืœ ืื—ื“ ืžื”ืžื˜ื•ืคืœื™ื ืฉืœื”
01:35
to self-identify.
27
95204
1405
ืœื”ื–ื“ื”ื•ืช ื‘ืื•ืคืŸ ืื™ืฉื™.
01:36
She gave her six genders, eight races and over 100 ethnicities.
28
96633
4770
ื”ื™ื ื ืชื ื” ืœื” ืฉืฉื” ืกื•ื’ื™ ืžื’ื“ืจ, ืฉืžื•ื ื” ื’ื–ืขื™ื ื•ืžืขืœ ืœืžืื” ืจืงืขื™ื ืืชื ื™ื™ื.
01:41
Well, now, Miss Margaret was appalled.
29
101427
2588
ื•ื‘ื›ืŸ, ืžื™ืก ืžืจื’ืจื˜ ื”ื–ื“ืขื–ืขื”,
01:44
I mean, highly offended.
30
104039
1397
ืื ื™ ืžืชื›ื•ื•ื ืช, ื”ื™ื ืžืžืฉ ื ืคื’ืขื”,
01:45
So much so that she marched down to that human-resource department
31
105460
3331
ืขื“ ื›ื“ื™ ื›ืš ืฉื”ื™ื ืฉื”ื™ื ื ื›ื ืกื” ืœืžื—ืœืงืช ื›ื•ื— ืื“ื
01:48
to see if she was eligible for an early retirement.
32
108815
2524
ื›ื“ื™ ืœืจืื•ืช ืื ื”ื™ื ื™ื›ื•ืœื” ืœืคืจื•ืฉ ืœืคื ืกื™ื” ืžื•ืงื“ืžืช.
01:51
And she ended her rant by saying
33
111363
1960
ื•ื”ื™ื ืกื™ื™ืžื” ืืช ื”ืงื™ื˜ื•ืจื™ื ืฉืœื” ื‘ืืžื™ืจื”
01:53
that her sassy supervisor invited her to this "change everything" meeting
34
113347
4870
ืฉื”ืžืคืงื—ืช ื”ื—ืฆื•ืคื” ืฉืœื” ื”ื–ืžื™ื ื” ืื•ืชื” ืœืคื’ื™ืฉืช "ืฉื™ื ื•ื™ ื›ืœืœื™"
01:58
and didn't, didn't, even, even
35
118241
2024
ื•ืืคื™ืœื•, ืืคื™ืœื•, ืœื, ืœื
02:00
bring, bring food, food, food, food.
36
120289
3028
ื”ื‘ื™ืื”, ื”ื‘ื™ืื”, ืื•ื›ืœ, ืื•ื›ืœ, ืื•ื›ืœ.
02:03
(Laughter)
37
123341
1154
(ืฆื—ื•ืง)
02:04
(Applause) (Cheers)
38
124519
5067
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื) (ืงืจื™ืื•ืช)
02:10
You know you've got to bring food to these meetings.
39
130681
2434
ืืชื ื™ื•ื“ืขื™ื ืฉืฆืจื™ืš ืœื”ื‘ื™ื ืื•ื›ืœ ืœืคื’ื™ืฉื•ืช ื›ืืœื”.
02:13
(Laughter)
40
133139
2343
(ืฆื—ื•ืง)
02:15
Anyway.
41
135506
1159
ื‘ื›ืœ ืžืงืจื”.
02:16
(Laughter)
42
136689
1508
(ืฆื—ื•ืง)
02:18
Now, that was an example of a healthcare setting,
43
138221
2769
ื–ืืช ื”ื™ืชื” ื“ื•ื’ืžื” ืœืžืฆื‘ ืžืชื•ืš ืžืขืจื›ืช ื”ื‘ืจื™ืื•ืช,
02:21
but of course, all businesses collect some form of data.
44
141014
3333
ืื‘ืœ ื›ืžื•ื‘ืŸ, ื›ืœ ื‘ืชื™ ื”ืขืกืง ืื•ืกืคื™ื ืกื•ื’ ื›ืœืฉื”ื• ืฉืœ ืžื™ื“ืข.
02:24
True story: I was going to wire some money.
45
144371
3142
ืกื™ืคื•ืจ ืืžื™ืชื™: ืจืฆื™ืชื™ ืœื”ืขื‘ื™ืจ ื›ืกืฃ
02:28
And the customer service representative asked me
46
148165
2555
ื•ื ืฆื™ื’ืช ืฉื™ืจื•ืช ื”ืœืงื•ื—ื•ืช ืฉืืœื” ืื•ืชื™
02:30
if I was born in the United States.
47
150744
2334
ืื ื ื•ืœื“ืชื™ ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช.
02:33
Now, I hesitated to answer her question,
48
153419
2381
ืขื›ืฉื™ื•, ื”ื™ืกืกืชื™ ืื ืœืขื ื•ืช ืœืฉืืœื” ืฉืœื”,
02:35
and before she even realized why I hesitated,
49
155824
3130
ื•ืœืคื ื™ ืฉื”ื™ื ืืคื™ืœื• ื”ื‘ื™ื ื” ืœืžื” ื”ื™ืกืกืชื™,
02:38
she began to throw the company she worked for under the bus.
50
158978
3015
ื”ื™ื ื”ืชื—ื™ืœื” ืœื–ืจื•ืง ืืช ื”ื—ื‘ืจื” ืขื‘ื•ืจื” ื”ื™ื ืขื‘ื“ื” ืžืชื—ืช ืœื’ืœื’ืœื™ื.
02:42
She said, "Girl, I know it's stupid, but they makin' us ask this question."
51
162017
5072
ื”ื™ื ืืžืจื”, "ืžื•ืชืง, ืื ื™ ื™ื•ื“ืขืช ืฉื–ื” ื˜ื™ืคืฉื™ ืื‘ืœ ื”ื ืžื›ืจื™ื—ื™ื ืื•ืชื ื• ืœืฉืื•ืœ ืืช ื”ืฉืืœื” ื”ื–ืืช".
02:47
(Laughter)
52
167113
1151
(ืฆื—ื•ืง)
02:48
Because of the way she presented it to me,
53
168288
2073
ื‘ื’ืœืœ ื”ืื•ืคืŸ ื‘ื• ื”ื™ื ื”ืฆื™ื’ื” ืืช ื–ื” ืœื™,
02:50
I was like, "Girl, why?
54
170385
1600
ืื ื™ ื”ื’ื‘ืชื™ ื‘"ืžื•ืชืง, ืœืžื”?
02:52
Why they makin' you ask this question?
55
172561
2230
ืœืžื” ื”ื ืžื›ืจื™ื—ื™ื ืืชื›ื ืœืฉืื•ืœ ืืช ื”ืฉืืœื” ื”ื–ืืช?
02:54
Is they deportin' people?"
56
174815
1802
ื”ืื ื”ื ืžื’ืจืฉื™ื ืื ืฉื™ื"?
02:56
(Laughter)
57
176641
2142
(ืฆื—ื•ืง)
02:58
But then I had to turn on the other side of me,
58
178807
2222
ืื‘ืœ ื”ื™ื™ืชื™ ืฆืจื™ื›ื” ืœื”ืคืขื™ืœ ืืช ื”ืฆื“ ื”ืฉื ื™ ืฉืœื™,
03:01
the more professional speaker-poet side of me.
59
181053
2568
ื”ืฆื“ ื”ื™ื•ืชืจ ืžืงืฆื•ืขื™, ื”ื“ื•ื‘ืจืช-ืžืฉื•ืจืจืช ืฉืœื™.
03:04
The one that understood that there were little Miss Margarets all over the place.
60
184164
4150
ื”ืื—ื“ ืฉื”ื‘ื™ืŸ ืฉื™ืฉ ืžืœื ืžื™ืก ืžืจื’ืจื˜ ืงื˜ื ื•ืช ื‘ื›ืœ ืžืงื•ื.
03:08
People who were good people, maybe even good employees,
61
188871
2968
ืื ืฉื™ื ืฉื”ื ืื ืฉื™ื ื˜ื•ื‘ื™ื, ืื•ืœื™ ืืคื™ืœื• ืขื•ื‘ื“ื™ื ื˜ื•ื‘ื™ื,
03:11
but lacked the ability to ask their questions properly
62
191863
2552
ืื‘ืœ ืฉืื™ืŸ ืœื”ื ืืช ื”ื™ื›ื•ืœืช ืœืฉืื•ืœ ืืช ื”ืฉืืœื•ืช ื‘ืฆื•ืจื” ืžืชืื™ืžื”
03:14
and unfortunately, that made her look bad,
63
194439
2535
ื•ืœืจื•ืข ื”ืžื–ืœ ื–ื” ื”ืฆื™ื’ ืื•ืชื” ื‘ืื•ืจ ืฉืœื™ืœื™,
03:16
but the worst, that made the business look even worse
64
196998
3246
ืื‘ืœ ื™ื•ืชืจ ืžื–ื” ื–ื” ื”ืฆื™ื’ ืืช ื‘ื™ืช ื”ืขืกืง ื‘ืื•ืจ ืขื•ื“ ื™ื•ืชืจ ื’ืจื•ืข
03:20
than how she was looking.
65
200268
1666
ืžืžื ื”.
03:22
Because she had no idea who I was.
66
202236
1767
ื‘ื’ืœืœ ืฉืœื ื”ื™ื” ืœื” ืฉื•ื ืžื•ืฉื’ ืžื™ ืื ื™.
03:24
I mean, I literally could have been a woman who was scheduled to do a TED Talk
67
204027
3685
ืื ื™ ืžืชื›ื•ื•ื ืช, ืื ื™ ื™ื›ื•ืœืชื™ ืœื”ื™ื•ืช ืืฉื” ืฉืืžื•ืจื” ืœื”ืขื‘ื™ืจ ืฉื™ื—ืช TED
03:27
and would use her as an example.
68
207736
1778
ื•ืชืฉืชืžืฉ ื‘ื” ื›ื“ื•ื’ืžื.
03:29
Imagine that.
69
209538
1300
ื“ืžื™ื™ื ื• ืืช ื–ื”.
03:30
(Applause)
70
210862
4262
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
03:35
And unfortunately,
71
215148
1183
ื•ืœืจื•ืข ื”ืžื–ืœ ืžื” ืฉืงื•ืจื” ื”ื•ื
03:36
what happens is people would decline to answer the questions,
72
216355
2895
ืฉืื ืฉื™ื ืžืกืจื‘ื™ื ืœืขื ื•ืช ืขืœ ื”ืฉืืœื•ืช ื”ืืœื”
03:39
because they feel like you would use the information
73
219274
2509
ื›ื™ ื”ื ืžืจื’ื™ืฉื™ื ืฉืืชื ืชืฉืชืžืฉื• ื‘ืžื™ื“ืข ื”ื–ื”
03:41
to discriminate against them,
74
221807
1425
ืœื”ืคืœื•ืช ื ื’ื“ื,
03:43
all because of how you presented the information.
75
223256
2391
ื•ื”ื›ืœ ื‘ื’ืœืœ ื”ืื•ืคืŸ ืฉื‘ื• ืืชื ื”ืฆื’ืชื ืืช ื”ืžื™ื“ืข.
03:45
And at that point, we get bad data.
76
225671
1778
ื•ื‘ื ืงื•ื“ื” ื”ื–ืืช ืื ื—ื ื• ืžืงื‘ืœื™ื ืžื™ื“ืข ืจืข.
03:47
And everybody knows what bad data does.
77
227473
2111
ื•ื›ื•ืœื ื™ื•ื“ืขื™ื ืžื” ืžื™ื“ืข ืจืข ืขื•ืฉื”.
03:49
Bad data costs you time, it costs you money
78
229608
2793
ืžื™ื“ืข ืจืข ืขื•ืœื” ืœืš ื‘ื–ืžืŸ, ื”ื•ื ืขื•ืœื” ืœืš ื‘ื›ืกืฃ,
03:52
and it costs you resources.
79
232425
1946
ื•ื”ื•ื ืขื•ืœื” ืœืš ื‘ืžืฉืื‘ื™ื.
03:54
Unfortunately, when you have bad data,
80
234395
2563
ืœืจื•ืข ื”ืžื–ืœ ื›ืฉื™ืฉ ืœืš ืžื™ื“ืข ืจืข,
03:56
it also costs you a lot more,
81
236982
3079
ื”ื•ื ื’ื ืขื•ืœื” ืœืš ื”ืจื‘ื” ื™ื•ืชืจ
04:00
because we have health disparities,
82
240085
2395
ื‘ื’ืœืœ ืฉื™ืฉ ืœื ื• ืคืขืจื™ ื‘ืจื™ืื•ืช,
04:02
and we have social determinants of health,
83
242504
2214
ื•ื™ืฉ ืœื ื• ื’ื•ืจืžื™ื ื—ื‘ืจืชื™ื™ื ืœื‘ืจื™ืื•ืช,
04:04
and we have the infant mortality,
84
244742
1658
ื•ื™ืฉ ืœื ื• ืชืžื•ืชืช ืชื™ื ื•ืงื•ืช,
04:06
all of which depends on the data that we collect,
85
246424
2643
ื›ืœ ืืœื” ืชืœื•ื™ื™ื ื‘ืžื™ื“ืข ืื•ืชื• ืื ื• ืื•ืกืคื™ื.
04:09
and if we have bad data, than we have those issues still.
86
249091
3248
ื•ืื ื™ืฉ ืœื ื• ืžื™ื“ืข ืจืข, ืื•ืชืŸ ื‘ืขื™ื•ืช ืขื“ื™ื™ืŸ ืงื™ื™ืžื•ืช,
04:12
And we have underprivileged populations
87
252363
1899
ื•ื™ืฉ ืœื ื• ืื•ื›ืœื•ืกื™ื•ืช ืžื•ื—ืœืฉื•ืช
04:14
that remain unfortunate and underprivileged,
88
254286
2791
ืฉื ื•ืชืจื•ืช ื—ืกืจื•ืช ืžื–ืœ ื•ืžื•ื—ืœืฉื•ืช.
04:17
because the data that we're using is either outdated,
89
257101
3926
ื‘ื’ืœืœ ืฉื”ืžื™ื“ืข ื‘ื• ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื”ื•ื ืื• ืœื ืขื“ื›ื ื™,
04:21
or is not good at all or we don't have anything at all.
90
261051
3293
ืื• ืฉืื™ื ื• ื˜ื•ื‘ ื‘ื›ืœืœ, ืื• ืฉืื™ืŸ ืœื ื• ืฉื•ื ืžื™ื“ืข ื‘ื›ืœืœ.
04:24
Now, wouldn't it be amazing if people like Miss Margaret
91
264987
2636
ื”ืื ื–ื” ืœื ื”ื™ื” ืžื“ื”ื™ื ืื ืื ืฉื™ื ื›ืžื• ืžื™ืก ืžืจื’ืจื˜
04:27
and the customer-service representative at the wiring place
92
267647
3150
ื•ื ืฆื™ื’ืช ืฉื™ืจื•ืช ื”ืœืงื•ื—ื•ืช ื‘ื—ื‘ืจืช ื”ืขื‘ืจืช ื”ื›ืกืฃ
04:30
were graced to collect data with compassionate care?
93
270821
4374
ื”ื™ื” ืืช ื”ื™ื›ื•ืœืช ืœืืกื•ืฃ ืžื™ื“ืข ื‘ืื•ืคืŸ ืฉืžื‘ื™ืข ื—ืžืœื”?
04:35
Can I explain to you what I mean by "graced?"
94
275562
2317
ื”ืื ืื ื™ ื™ื›ื•ืœื” ืœื”ืกื‘ื™ืจ ืœื›ื ืœืžื” ืื ื™ ืžืชื›ื•ื•ื ืช ื‘ื™ื›ื•ืœืช ื”ื–ื•?
04:38
I wrote an acrostic poem.
95
278324
1666
ื›ืชื‘ืชื™ ืฉื™ืจ ืืงืจื•ืกื˜ื™ื›ื•ืŸ.
04:40
G: Getting the front desk specialist involved and letting them know
96
280300
4773
G: ื”ื™ื›ื•ืœืช ืœื”ื‘ื™ื ืœืžืขื•ืจื‘ื•ืช ืฉืœ ื”ืžื•ืžื—ื” ื“ืœืคืง ื”ืงื‘ืœื” ื•ืœื”ื˜ืžื™ืข ื‘ื”ื ืืช
04:45
R: the Relevance of their role as they become
97
285097
3953
R: ื”ืจืœื•ื•ื ื˜ื™ื•ืช ืฉืœ ื”ืชืคืงื™ื“ ืฉืœื”ื ื›ืฉื”ื ื”ื•ืคื›ื™ื ืœ..
04:49
A: Accountable for the accuracy of data while implementing
98
289074
3531
A: ืื—ืจืื™ื ืœื“ื™ื•ืง ืฉืœ ื”ืžื™ื“ืข ื•ื‘ืžืงื‘ื™ืœ ื™ื™ืฉื•ื ืฉืœ
04:52
C: Compassionate care within all encounters by becoming
99
292629
4044
C: ื—ืžืœื” ื‘ื›ืœ ื”ืžืคื’ืฉื™ื ืฉืœื”ื ืขืœ ื™ื“ื™ ื”ืคื™ื›ืชื ืœ...
04:56
E: Equipped with the education needed to inform people
100
296697
3301
E: ืžืฆื•ื™ื“ื™ื ื‘ื›ืœ ื”ื—ื™ื ื•ืš ื”ื ื“ืจืฉ ืœื™ื™ื“ืข ืื ืฉื™ื ืžื“ื•ืข
05:00
of why data collection is so important.
101
300022
3293
D: ืื™ืกื•ืฃ ืžื™ื“ืข ื”ื•ื ื›ืœ ื›ืš ื—ืฉื•ื‘.
05:04
(Applause)
102
304315
2949
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
05:07
Now, I'm an artist.
103
307288
2096
ืขื›ืฉื™ื•, ืื ื™ ืืžื ื™ืช.
05:09
And so what happens with me
104
309408
1674
ืื– ืžื” ืฉืงื•ืจื” ืืฆืœื™
05:11
is that when I create something artistically,
105
311106
2174
ื”ื•ื ืฉื›ืฉืื ื™ ื™ื•ืฆืจืช ืžืฉื”ื• ืืžื ื•ืชื™,
05:13
the trainer in me is awakened as well.
106
313304
1923
ื”ืžืืžื ืช ืฉื‘ื™ ื’ื ื”ื™ื ืžืชืขื•ืจืจืช,
05:15
So what I did was, I began to develop that acrostic poem into a full training
107
315251
4072
ืื– ืžื” ืฉืขืฉื™ืชื™ ื”ื•ื ืฉื”ืคื›ืชื™ ืืช ื”ืืงืจื•ืกื˜ื™ื›ื•ืŸ ื”ื”ื•ื ืœืื™ืžื•ืŸ ืžืœื
05:19
entitled "I'm G.R.A.C.E.D."
108
319347
1548
ืฉื ืงืจื "ืื ื™ G.R.A.C.E.D. (ืžืœื ื—ืžืœื”)"
05:20
Because I remember, being the front-desk specialist,
109
320919
2841
ื›ื“ื™ ืื ื™ ื–ื•ื›ืจืช ืžื” ื–ื” ืœื”ื™ื•ืช ืื•ืชื” ืžื•ืžื—ื™ืช ื“ืœืคืง ืงื‘ืœื”,
05:23
and when I went to the office of equity to start working,
110
323784
2674
ื•ื›ืฉื”ืœื›ืชื™ ืœืžืฉืจื“ ืœื”ื•ืŸ ื‘ืจื™ืื•ืชื™ ืœื”ืชื—ื™ืœ ื‘ืขื‘ื•ื“ื”,
05:26
I was like, "Is that why they asked us to ask that question?"
111
326482
3555
ืฉืืœืชื™ "ื”ืื ื–ื• ื”ืกื™ื‘ื” ื‘ื’ืœืœื” ื”ื ืจื•ืฆื™ื ืฉื ืฉืืœ ืืช ื”ืฉืืœื” ื”ื–ื•"?
05:30
It all became a bright light to me,
112
330061
1768
ื”ื›ืœ ื”ืชื‘ื”ืจ ืœื™,
05:31
and I realized that I asked people and I told people about --
113
331853
3637
ื•ื”ื‘ื ืชื™ ืฉืื ื™ ืฉื•ืืœืช ื•ืื•ืžืจืช ืœืื ืฉื™ื --
05:35
I called them by the wrong gender, I called them by the wrong race,
114
335514
3284
ืฉืžืชื™ ืœื”ื ืืช ื”ืžื’ื“ืจ ื”ืœื ื ื›ื•ืŸ, ืฉืžืชื™ ืœื”ื ืืช ื”ื’ื–ืข ื”ืœื ื ื›ื•ืŸ,
05:38
I called them by the wrong ethnicity,
115
338822
1803
ืฉืžืชื™ ืœื”ื ืืช ื”ืจืงืข ื”ืืชื ื™ ื”ืœื ื ื›ื•ืŸ,
05:40
and the environment became hostile,
116
340649
2007
ื•ื”ืื•ื•ื™ืจื” ื”ืคื›ื” ืœืขื•ื™ื ืช,
05:42
people was offended and I was frustrated because I was not graced.
117
342680
4284
ืื ืฉื™ื ื ืคื’ืขื• ื•ืื ื™ ื”ื™ื™ืชื™ ืžืชื•ืกื›ืœืช ื›ื™ ืœื ื”ื™ืชื” ืœื™ ื—ืžืœื”.
05:46
I remember my computerized training,
118
346988
2587
ืื ื™ ื–ื•ื›ืจืช ืืช ื”ื”ื›ืฉืจื” ื”ืžืงื•ื•ื ืช ืฉืœื™,
05:49
and unfortunately, that training did not prepare me to deescalate a situation.
119
349599
5626
ื•ืœืจื•ืข ื”ืžื–ืœ, ื”ื”ื›ืฉืจื” ื”ื–ืืช ืœื ื”ื›ื™ื ื” ืื•ืชื™ ืœื ื˜ืจืœ ืžืฆื‘.
05:55
It did not prepare me to have teachable moments when I had questions
120
355249
3376
ื”ื™ื ืœื ื”ื›ื™ื ื” ืื•ืชื™ ืœืžืฆื‘ื™ ื—ื™ื ื•ืš ื›ืฉื ืชืงืœืชื™ ื‘ืฉืืœื•ืช
05:58
about asking the questions.
121
358649
1658
ืขืœ ื”ืฉืืœื•ืช ืฉืฉืืœืชื™.
06:00
I would look at the computer and say, "So, what do I do when this happens?"
122
360331
3564
ื”ื™ื™ืชื™ ืžืกืชื›ืœืช ืขืœ ื”ืžื—ืฉื‘ ื•ืื•ืžืจืช, "ืื– ืžื” ืื ื™ ืขื•ืฉื” ื›ืฉื–ื” ืงื•ืจื”"?
06:03
And the computer would say ...
123
363919
1858
ื•ื”ืžื—ืฉื‘ ื”ื™ื” ืื•ืžืจ --
06:05
nothing, because a computer cannot talk back to you.
124
365801
3268
"ื›ืœื•ื", ื›ื™ ืžื—ืฉื‘ ืœื ื™ื›ื•ืœ ืœืขื ื•ืช ืœืš.
06:09
(Laughter)
125
369093
3207
(ืฆื—ื•ืง)
06:12
So that's the importance of having someone there
126
372324
2571
ืื– ื–ื” ื”ื—ืฉื™ื‘ื•ืช ืฉืœ ืื•ืชื• ืื“ื
06:14
who was trained to teach you and tell you what you do
127
374919
2777
ืฉืžื•ื›ืฉืจ ืœืœืžื“ ืื•ืชืš ื•ืœื•ืžืจ ืœืš ืžื” ืืชื” ืขื•ืฉื”
06:17
in situations like that.
128
377720
1690
ื‘ืžืฆื‘ื™ื ื›ืืœื”.
06:20
So, when I created the "I'm G.R.A.C.E.D" training,
129
380030
2626
ืื– ื›ืฉื™ืฆืจืชื™ ืืช ืื™ืžื•ืŸ ื”"ืื ื™ G.R.A.C.E.D",
06:22
I created it with that experience that I had in mind,
130
382680
2994
ื™ืฆืจืชื™ ืื•ืชื• ืชื•ืš ื›ื“ื™ ื—ืฉื™ื‘ื” ืขืœ ืื•ืชื• ื ื™ืกื™ื•ืŸ ืฉืขื‘ืจืชื™
06:25
but also that conviction that I had in mind.
131
385698
2516
ืื‘ืœ ื’ื ืื•ืชื” ื”ื‘ื ื”.
06:28
Because I wanted the instructional design of it
132
388238
2253
ื‘ื’ืœืœ ืฉืจืฆื™ืชื™ ืฉื”ืขื™ืฆื•ื‘ ื”ืชื‘ื ื™ืชื™ ืฉืœ ื–ื”
06:30
to be a safe space for open dialogue for people.
133
390515
2778
ื™ื”ื•ื•ื” ืžืจื—ื‘ ื‘ื˜ื•ื— ืœื“ื™ืืœื•ื’ ืคืชื•ื— ื‘ื™ืŸ ืื ืฉื™ื.
06:33
I wanted to talk about biases,
134
393317
1895
ืจืฆื™ืชื™ ืœื“ื‘ืจ ืขืœ ื“ืขื•ืช ืงื“ื•ืžื•ืช,
06:35
the unconscious ones and the conscious ones,
135
395236
2397
ืืœื• ื”ื‘ืœืชื™ ืžื•ื“ืขื•ืช ื•ื”ืžื•ื“ืขื•ืช,
06:37
and what we do.
136
397657
1166
ื•ืžื” ืื ื—ื ื• ืขื•ืฉื™ื.
06:38
Because now I know that when you engage people in the why,
137
398847
3944
ื›ื™ ืขื›ืฉื™ื• ืื ื™ ื™ื•ื“ืขืช ืฉื›ืืชื” ืžืขืจื‘ ืื ืฉื™ื ื‘"ืœืžื”",
06:42
it challenges their perspective, and it changes their attitudes.
138
402815
3476
ื–ื” ืžืฆื™ื‘ ืืชื’ืจ ืœืชืคื™ืกืช ื”ืขื•ืœื ืฉืœื”ื, ื•ืžืฉื ื” ืืช ื”ื’ื™ืฉื” ืฉืœื”ื.
06:46
Now I know that data that we have at the front desk
139
406315
3159
ืขื›ืฉื™ื• ืื ื™ ื™ื•ื“ืขืช ืฉื”ืžื™ื“ืข ืฉืื ื—ื ื• ืื•ืกืคื™ื ื‘ื“ืœืคืง ื”ืงื‘ืœื”
06:49
translates into research that eliminates disparities and finds cures.
140
409498
4813
ืžืชื•ืจื’ื ืœืžื—ืงืจ ืฉืžื’ืฉืจ ืขืœ ืคืขืจื™ื ื•ืžื•ืฆื ืชืจื•ืคื•ืช.
06:54
Now I know that teaching people transitional change
141
414335
3706
ืขื›ืฉื™ื• ืื ื™ ื™ื•ื“ืขืช ืฉื”ื›ืฉืจืช ืื ืฉื™ื ืœืฉื™ื ื•ื™ ื‘ืฉืœื‘ื™ื
06:58
instead of shocking them into change
142
418065
2846
ื‘ืžืงื•ื ืœื”ืžื ืื•ืชื ื‘ืฉื™ื ื•ื™
07:00
is always a better way of implementing change.
143
420935
3255
ื”ื•ื ืชืžื™ื“ ื”ื“ืจืš ื”ื˜ื•ื‘ื” ื™ื•ืชืจ ืœื”ื˜ืžืขื” ืฉืœ ืฉื™ื ื•ื™.
07:04
See, now I know people are more likely to share information
144
424214
3046
ืืชื ืจื•ืื™ื, ืขื›ืฉื™ื• ืื ื™ ื™ื•ื“ืขืช ืฉืื ืฉื™ื ื™ื˜ื• ืœื—ืœื•ืง ืžื™ื“ืข
07:07
when they are treated with respect by knowledgeable staff members.
145
427284
3859
ื›ืฉืื ืฉื™ ืฆื•ื•ืช ืžื™ื•ื“ืขื™ื ืžืชื™ื™ื—ืกื™ื ืืœื™ื”ื ื‘ื›ื‘ื•ื“.
07:11
Now I know that you don't have to be a statistician
146
431167
3021
ืขื›ืฉื™ื• ืื ื™ ื™ื•ื“ืขืช ืฉืืชื” ืœื ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืกื˜ื˜ื™ืกื˜ื™ืงืื™
07:14
to understand the power and the purpose of data,
147
434212
3001
ื›ื“ื™ ืœื”ื‘ื™ืŸ ืืช ื”ื›ื•ื— ื•ื”ืžื˜ืจื” ืฉืœ ื”ืžื™ื“ืข
07:17
but you do have to treat people with respect and have compassionate care.
148
437237
4364
ืื‘ืœ ืืชื” ื›ืŸ ื—ื™ื™ื‘ ืœื”ืชื™ื™ื—ืก ืœืื ืฉื™ื ื‘ื›ื‘ื•ื“ ื•ื‘ื—ืžืœื”.
07:21
Now I know that when you've been graced,
149
441625
2825
ืขื›ืฉื™ื• ืื ื™ ื™ื•ื“ืขืช ืฉื›ืฉืืชื” ืžืœื ื—ืžืœื”,
07:24
it is your responsibility to empower somebody else.
150
444474
3376
ื–ื• ื”ืื—ืจื™ื•ืช ืฉืœืš ืœื”ืขืฆื™ื ืžื™ืฉื”ื• ืื—ืจ.
07:27
But most importantly, now I know
151
447874
2425
ืื‘ืœ ื”ื›ื™ ื—ืฉื•ื‘, ืขื›ืฉื™ื• ืื ื™ ื™ื•ื“ืขืช
07:30
that when teaching human beings
152
450323
2413
ืฉื›ืืชื ืžื›ืฉื™ืจื™ื ื‘ื ื™ ืื“ื
07:32
to communicate with other human beings,
153
452760
3079
ืœืชืงืฉืจ ืขื ื‘ื ื™ ืื“ื ืื—ืจื™ื,
07:35
it should be delivered by a human being.
154
455863
3785
ื™ืฉ ืœืขืฉื•ืช ื–ืืช ืขืœ ื™ื“ื™ ื‘ื ื™ ืื“ื.
07:40
(Applause)
155
460117
6792
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
07:46
So when y'all go to work
156
466933
1849
ืื– ื›ืฉื›ื•ืœื›ื ืชืœื›ื• ืœืขื‘ื•ื“ื”
07:48
and y'all schedule that "change everything" meeting --
157
468806
3335
ื•ื›ื•ืœื›ื ืชืงื‘ืขื• ืืช ืื•ืชื” ืคื’ื™ืฉืช "ืฉื™ื ื•ื™ ื›ืœืœื™" --
07:52
(Laughter)
158
472165
1650
(ืฆื—ื•ืง)
07:53
remember Miss Margaret.
159
473839
1515
ืชื–ื›ืจื• ืืช ืžื™ืก ืžืจื’ืจื˜.
07:55
And don't forget the food, the food, the food, the food.
160
475792
3819
ื•ืืœ ืชืฉื›ื—ื• ืืช ื”ืื•ื›ืœ, ื”ืื•ื›ืœ, ื”ืื•ื›ืœ.
08:00
Thank you.
161
480103
1151
ืชื•ื“ื” ืจื‘ื”.
08:01
(Applause) (Cheers)
162
481278
5475
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื) (ืงืจื™ืื•ืช)
08:06
Thank you.
163
486777
1175
ืชื•ื“ื” ืจื‘ื”.
08:07
(Applause)
164
487976
1595
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7