How to spot a misleading graph - Lea Gaslowitz

3,354,308 views ・ 2017-07-06

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Sherl H 審譯者: 庭芝 梁
00:07
A toothpaste brand claims their product will destroy more plaque
0
7808
3031
某個牙膏品牌宣稱他們的產品 能消滅的牙菌斑數量
00:10
than any product ever made.
1
10839
2071
比有史以來任何產品更多
00:12
A politician tells you their plan will create the most jobs.
2
12910
3501
一位政治家告訴你 他的計畫能產生最多就業機會
00:16
We're so used to hearing these kinds of exaggerations
3
16411
2540
在廣告和政治活動中
00:18
in advertising and politics
4
18951
1899
我們對於這類的誇飾習以為常
00:20
that we might not even bat an eye.
5
20850
2281
甚至眼睛連眨都不眨一下
00:23
But what about when the claim is accompanied by a graph?
6
23131
2980
但如果提出的論點搭配了圖表呢?
00:26
Afterall, a graph isn't an opinion.
7
26111
2360
畢竟,圖表並非只是個人的觀點
00:28
It represents cold, hard numbers, and who can argue with those?
8
28471
4140
它呈現出實際、明確的數字 而誰能夠質疑這些數字?
00:32
Yet, as it turns out, there are plenty of ways graphs can mislead
9
32611
3792
是的,事實證明 圖表有很多方法誤導他人
00:36
and outright manipulate.
10
36403
1789
甚至是肆無忌憚地進行操弄
這裡有幾件事需要密切注意
00:38
Here are some things to look out for.
11
38192
2553
00:40
In this 1992 ad, Chevy claimed to make the most reliable trucks in America
12
40745
5015
在這則 1992 年的廣告中 雪佛蘭汽車使用這張圖表
宣稱他們製造出全美國最可靠的貨車
00:45
using this graph.
13
45760
1750
00:47
Not only does it show that 98% of all Chevy trucks sold in the last ten years
14
47510
4453
它不僅顯示過去十年來 雪佛蘭銷售的貨車
有 98% 還能在路上行駛
00:51
are still on the road,
15
51963
1629
00:53
but it looks like they're twice as dependable as Toyota trucks.
16
53592
3746
而且可靠性看起來像是 豐田貨車的兩倍
00:57
That is, until you take a closer look at the numbers on the left
17
57338
3296
似乎如此 但是當你仔細看左邊的數字
01:00
and see that the figure for Toyota is about 96.5%.
18
60634
4838
可以注意到 豐田的數據 大概是 96.5%
01:05
The scale only goes between 95 and 100%.
19
65472
3841
整個圖表的刻度範圍 是 95%~100%
01:09
If it went from 0 to 100, it would look like this.
20
69313
3650
如果將範圍改成 0~100% 看起來就會像這樣
01:12
This is one of the most common ways graphs misrepresent data,
21
72963
3280
用圖表來曲解資料時
最常見的方式之一 就是扭曲刻度範圍
01:16
by distorting the scale.
22
76243
2090
01:18
Zooming in on a small portion of the y-axis
23
78333
2471
放大 y 軸的一小部分
01:20
exaggerates a barely detectable difference between the things being compared.
24
80804
4899
會放大項目之間 幾乎無法察覺的微小差距
01:25
And it's especially misleading with bar graphs
25
85703
2271
而且長條圖特別容易產生誤導
01:27
since we assume the difference in the size of the bars
26
87974
3049
因為我們會認定長條的面積
與其數值大小成等比關係
01:31
is proportional to the values.
27
91023
2210
01:33
But the scale can also be distorted along the x-axis,
28
93233
2892
但 x 軸尺度也可能被扭曲
01:36
usually in line graphs showing something changing over time.
29
96125
4289
通常是想要在曲線圖中 顯示某件事隨著時間而改變
01:40
This chart showing the rise in American unemployment from 2008 to 2010
30
100414
4333
這張圖顯示 2008 到 2010 年間 美國失業率的攀升
01:44
manipulates the x-axis in two ways.
31
104747
3249
圖中用了兩種方式來操弄 x 軸
01:47
First of all, the scale is inconsistent,
32
107996
2399
首先,刻度範圍並不一致
01:50
compressing the 15-month span after March 2009
33
110395
3021
從 2009 年 3 月 之後的 15 個月被壓縮
01:53
to look shorter than the preceding six months.
34
113416
3339
使其看起來比前面的六個月更短
01:56
Using more consistent data points gives a different picture
35
116755
3351
當我們用前後一致的資料點 會得到截然不同的圖形
02:00
with job losses tapering off by the end of 2009.
36
120106
3599
失業率在 2009 年底逐漸停止攀升
02:03
And if you wonder why they were increasing in the first place,
37
123705
2970
而如果你想瞭解 為何一開始失業率是上升的
02:06
the timeline starts immediately after the U.S.'s biggest financial collapse
38
126675
3940
那是因為時間軸的起點正好緊接著
美國從經濟大蕭條以來 最嚴重的一次金融風暴
02:10
since the Great Depression.
39
130615
2011
02:12
These techniques are known as cherry picking.
40
132626
2593
這種手法被稱為「採櫻桃謬誤」
02:15
A time range can be carefully chosen to exclude the impact of a major event
41
135219
3650
就是小心地選擇某一段時間
並且將這段時間之外的 重要影響因素排除
02:18
right outside it.
42
138869
1779
02:20
And picking specific data points can hide important changes in between.
43
140648
4114
而且,挑選某些特定的資料點 還能隱藏這段期間的重要變化
02:24
Even when there's nothing wrong with the graph itself,
44
144762
2594
即使圖表本身沒有錯誤
02:27
leaving out relevant data can give a misleading impression.
45
147356
3581
刻意省略相關資料 也會產生誤導他人的印象
02:30
This chart of how many people watch the Super Bowl each year
46
150937
3060
這張圖表是關於 每年有多少人觀看超級盃比賽
02:33
makes it look like the event's popularity is exploding.
47
153997
3629
看起來超級盃的受歡迎度 似乎每年急遽上升
02:37
But it's not accounting for population growth.
48
157626
2572
但它沒有將人口數的增加列入計算
02:40
The ratings have actually held steady
49
160198
1769
實際上,收視率一直維持穩定
02:41
because while the number of football fans has increased,
50
161967
3142
因為足球迷的人數雖然增加
02:45
their share of overall viewership has not.
51
165109
2850
但是佔所有觀眾的比例卻沒有改變
02:47
Finally, a graph can't tell you much
52
167959
1929
如果你不能充分理解 圖表所呈現資訊的真正意義
02:49
if you don't know the full significance of what's being presented.
53
169888
3430
圖表無法告訴你很多事情
02:53
Both of the following graphs use the same ocean temperature data
54
173318
3139
以下兩張圖同樣都使用
來自國家環境資訊中心的 海洋溫度資料
02:56
from the National Centers for Environmental Information.
55
176457
3262
02:59
So why do they seem to give opposite impressions?
56
179719
2771
為什麼會帶給人們 截然不同的感覺呢?
03:02
The first graph plots the average annual ocean temperature
57
182490
2789
第一張圖所畫的是
從 1880 到 2016 年的 年平均海洋溫度
03:05
from 1880 to 2016,
58
185279
2708
03:07
making the change look insignificant.
59
187987
2162
看起來變化並不顯著
03:10
But in fact, a rise of even half a degree Celsius
60
190149
2729
但事實上,即使只是增加攝氏 0.5 度
03:12
can cause massive ecological disruption.
61
192878
2921
就可能造成嚴重的生態破壞
03:15
This is why the second graph,
62
195799
1420
這就是為什麼在第二張圖中
03:17
which show the average temperature variation each year,
63
197219
2639
顯示的每年平均溫度變化
03:19
is far more significant.
64
199858
2532
看起來更為明顯
03:22
When they're used well, graphs can help us intuitively grasp complex data.
65
202390
4989
當運用得當時,圖表能幫助我們 憑直覺就能瞭解複雜的資料
03:27
But as visual software has enabled more usage of graphs throughout all media,
66
207379
3801
但是當影像軟體普及 圖表就更常被用在各種媒體中
03:31
it's also made them easier to use in a careless or dishonest way.
67
211180
4720
同時也更容易 被以草率或欺騙的方式運用
03:35
So the next time you see a graph, don't be swayed by the lines and curves.
68
215900
3660
所以下次當你看到圖表時 不要被線條和曲線所操弄
03:39
Look at the labels,
69
219560
1322
看清楚標示
03:40
the numbers,
70
220882
1248
數字
03:42
the scale,
71
222130
918
量測刻度
03:43
and the context,
72
223048
1312
以及前後脈絡
03:44
and ask what story the picture is trying to tell.
73
224360
2420
並且提出質疑: 這張圖到底想表達什麼?
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog