How to spot a misleading graph - Lea Gaslowitz

3,026,185 views ・ 2017-07-06

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Sherl H 審譯者: 庭芝 梁
00:07
A toothpaste brand claims their product will destroy more plaque
0
7808
3031
某個牙膏品牌宣稱他們的產品 能消滅的牙菌斑數量
00:10
than any product ever made.
1
10839
2071
比有史以來任何產品更多
00:12
A politician tells you their plan will create the most jobs.
2
12910
3501
一位政治家告訴你 他的計畫能產生最多就業機會
00:16
We're so used to hearing these kinds of exaggerations
3
16411
2540
在廣告和政治活動中
00:18
in advertising and politics
4
18951
1899
我們對於這類的誇飾習以為常
00:20
that we might not even bat an eye.
5
20850
2281
甚至眼睛連眨都不眨一下
00:23
But what about when the claim is accompanied by a graph?
6
23131
2980
但如果提出的論點搭配了圖表呢?
00:26
Afterall, a graph isn't an opinion.
7
26111
2360
畢竟,圖表並非只是個人的觀點
00:28
It represents cold, hard numbers, and who can argue with those?
8
28471
4140
它呈現出實際、明確的數字 而誰能夠質疑這些數字?
00:32
Yet, as it turns out, there are plenty of ways graphs can mislead
9
32611
3792
是的,事實證明 圖表有很多方法誤導他人
00:36
and outright manipulate.
10
36403
1789
甚至是肆無忌憚地進行操弄
這裡有幾件事需要密切注意
00:38
Here are some things to look out for.
11
38192
2553
00:40
In this 1992 ad, Chevy claimed to make the most reliable trucks in America
12
40745
5015
在這則 1992 年的廣告中 雪佛蘭汽車使用這張圖表
宣稱他們製造出全美國最可靠的貨車
00:45
using this graph.
13
45760
1750
00:47
Not only does it show that 98% of all Chevy trucks sold in the last ten years
14
47510
4453
它不僅顯示過去十年來 雪佛蘭銷售的貨車
有 98% 還能在路上行駛
00:51
are still on the road,
15
51963
1629
00:53
but it looks like they're twice as dependable as Toyota trucks.
16
53592
3746
而且可靠性看起來像是 豐田貨車的兩倍
00:57
That is, until you take a closer look at the numbers on the left
17
57338
3296
似乎如此 但是當你仔細看左邊的數字
01:00
and see that the figure for Toyota is about 96.5%.
18
60634
4838
可以注意到 豐田的數據 大概是 96.5%
01:05
The scale only goes between 95 and 100%.
19
65472
3841
整個圖表的刻度範圍 是 95%~100%
01:09
If it went from 0 to 100, it would look like this.
20
69313
3650
如果將範圍改成 0~100% 看起來就會像這樣
01:12
This is one of the most common ways graphs misrepresent data,
21
72963
3280
用圖表來曲解資料時
最常見的方式之一 就是扭曲刻度範圍
01:16
by distorting the scale.
22
76243
2090
01:18
Zooming in on a small portion of the y-axis
23
78333
2471
放大 y 軸的一小部分
01:20
exaggerates a barely detectable difference between the things being compared.
24
80804
4899
會放大項目之間 幾乎無法察覺的微小差距
01:25
And it's especially misleading with bar graphs
25
85703
2271
而且長條圖特別容易產生誤導
01:27
since we assume the difference in the size of the bars
26
87974
3049
因為我們會認定長條的面積
與其數值大小成等比關係
01:31
is proportional to the values.
27
91023
2210
01:33
But the scale can also be distorted along the x-axis,
28
93233
2892
但 x 軸尺度也可能被扭曲
01:36
usually in line graphs showing something changing over time.
29
96125
4289
通常是想要在曲線圖中 顯示某件事隨著時間而改變
01:40
This chart showing the rise in American unemployment from 2008 to 2010
30
100414
4333
這張圖顯示 2008 到 2010 年間 美國失業率的攀升
01:44
manipulates the x-axis in two ways.
31
104747
3249
圖中用了兩種方式來操弄 x 軸
01:47
First of all, the scale is inconsistent,
32
107996
2399
首先,刻度範圍並不一致
01:50
compressing the 15-month span after March 2009
33
110395
3021
從 2009 年 3 月 之後的 15 個月被壓縮
01:53
to look shorter than the preceding six months.
34
113416
3339
使其看起來比前面的六個月更短
01:56
Using more consistent data points gives a different picture
35
116755
3351
當我們用前後一致的資料點 會得到截然不同的圖形
02:00
with job losses tapering off by the end of 2009.
36
120106
3599
失業率在 2009 年底逐漸停止攀升
02:03
And if you wonder why they were increasing in the first place,
37
123705
2970
而如果你想瞭解 為何一開始失業率是上升的
02:06
the timeline starts immediately after the U.S.'s biggest financial collapse
38
126675
3940
那是因為時間軸的起點正好緊接著
美國從經濟大蕭條以來 最嚴重的一次金融風暴
02:10
since the Great Depression.
39
130615
2011
02:12
These techniques are known as cherry picking.
40
132626
2593
這種手法被稱為「採櫻桃謬誤」
02:15
A time range can be carefully chosen to exclude the impact of a major event
41
135219
3650
就是小心地選擇某一段時間
並且將這段時間之外的 重要影響因素排除
02:18
right outside it.
42
138869
1779
02:20
And picking specific data points can hide important changes in between.
43
140648
4114
而且,挑選某些特定的資料點 還能隱藏這段期間的重要變化
02:24
Even when there's nothing wrong with the graph itself,
44
144762
2594
即使圖表本身沒有錯誤
02:27
leaving out relevant data can give a misleading impression.
45
147356
3581
刻意省略相關資料 也會產生誤導他人的印象
02:30
This chart of how many people watch the Super Bowl each year
46
150937
3060
這張圖表是關於 每年有多少人觀看超級盃比賽
02:33
makes it look like the event's popularity is exploding.
47
153997
3629
看起來超級盃的受歡迎度 似乎每年急遽上升
02:37
But it's not accounting for population growth.
48
157626
2572
但它沒有將人口數的增加列入計算
02:40
The ratings have actually held steady
49
160198
1769
實際上,收視率一直維持穩定
02:41
because while the number of football fans has increased,
50
161967
3142
因為足球迷的人數雖然增加
02:45
their share of overall viewership has not.
51
165109
2850
但是佔所有觀眾的比例卻沒有改變
02:47
Finally, a graph can't tell you much
52
167959
1929
如果你不能充分理解 圖表所呈現資訊的真正意義
02:49
if you don't know the full significance of what's being presented.
53
169888
3430
圖表無法告訴你很多事情
02:53
Both of the following graphs use the same ocean temperature data
54
173318
3139
以下兩張圖同樣都使用
來自國家環境資訊中心的 海洋溫度資料
02:56
from the National Centers for Environmental Information.
55
176457
3262
02:59
So why do they seem to give opposite impressions?
56
179719
2771
為什麼會帶給人們 截然不同的感覺呢?
03:02
The first graph plots the average annual ocean temperature
57
182490
2789
第一張圖所畫的是
從 1880 到 2016 年的 年平均海洋溫度
03:05
from 1880 to 2016,
58
185279
2708
03:07
making the change look insignificant.
59
187987
2162
看起來變化並不顯著
03:10
But in fact, a rise of even half a degree Celsius
60
190149
2729
但事實上,即使只是增加攝氏 0.5 度
03:12
can cause massive ecological disruption.
61
192878
2921
就可能造成嚴重的生態破壞
03:15
This is why the second graph,
62
195799
1420
這就是為什麼在第二張圖中
03:17
which show the average temperature variation each year,
63
197219
2639
顯示的每年平均溫度變化
03:19
is far more significant.
64
199858
2532
看起來更為明顯
03:22
When they're used well, graphs can help us intuitively grasp complex data.
65
202390
4989
當運用得當時,圖表能幫助我們 憑直覺就能瞭解複雜的資料
03:27
But as visual software has enabled more usage of graphs throughout all media,
66
207379
3801
但是當影像軟體普及 圖表就更常被用在各種媒體中
03:31
it's also made them easier to use in a careless or dishonest way.
67
211180
4720
同時也更容易 被以草率或欺騙的方式運用
03:35
So the next time you see a graph, don't be swayed by the lines and curves.
68
215900
3660
所以下次當你看到圖表時 不要被線條和曲線所操弄
03:39
Look at the labels,
69
219560
1322
看清楚標示
03:40
the numbers,
70
220882
1248
數字
03:42
the scale,
71
222130
918
量測刻度
03:43
and the context,
72
223048
1312
以及前後脈絡
03:44
and ask what story the picture is trying to tell.
73
224360
2420
並且提出質疑: 這張圖到底想表達什麼?
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7