The paradox at the heart of mathematics: Gödel's Incompleteness Theorem - Marcus du Sautoy
3,804,578 views ・ 2021-07-20
请双击下面的英文字幕来播放视频。
翻译人员: Xinyue Li
校对人员: Helen Chang
00:06
Consider the following sentence:
“This statement is false.”
0
6913
3958
观察以下句子:
“这句话是错误的。”
00:10
Is that true?
1
10871
1292
这句话是正确的吗?
00:12
If so, that would make
this statement false.
2
12163
2375
如果是的话,
那么这句话就是错误的。
00:14
But if it’s false, then the statement
is true.
3
14538
2291
如果不是的话,
那么这句话就是正确的。
00:16
By referring to itself directly, this
statement creates an unresolvable paradox.
4
16829
5292
通过引用本身,
这句话创造了一个无法解决的悖论。
00:22
So if it’s not true and it’s not false—
what is it?
5
22121
3667
如果它不是正确的也不是错误的——
那么它是什么呢?
00:26
This question might seem
like a silly thought experiment.
6
26288
2875
这个问题看起来像一个愚蠢的思维实验
00:29
But in the early 20th century,
it led Austrian logician Kurt Gödel
7
29163
4666
但在 20 世纪早期,
它使得澳大利亚逻辑学家库尔特·哥德尔
00:33
to a discovery that would change
mathematics forever.
8
33829
3417
作出了一个永远改变数学界的发现。
00:37
Gödel’s discovery had to do with
the limitations of mathematical proofs.
9
37746
4541
哥德尔的发现与数学证明的局限性有关。
00:42
A proof is a logical argument
that demonstrates
10
42496
3166
证明是一种逻辑论证,被用来展示
00:45
why a statement about numbers is true.
11
45662
2500
何以一句对于数字的表述成立。
00:48
The building blocks of these arguments
are called axioms—
12
48579
3333
建立起这些论证的组成部分
被称为公理——
00:51
undeniable statements
about the numbers involved.
13
51912
2709
有关这些提及到的数字
不证自明的论述。
00:54
Every system built on mathematics,
14
54996
2291
每一个建立在数学基础上的系统,
00:57
from the most complex proof
to basic arithmetic,
15
57287
3042
从最复杂的证明到基础运算,
01:00
is constructed from axioms.
16
60329
2125
都由公理推算而来。
01:02
And if a statement about numbers is true,
17
62954
2750
如果一个关于数字的论述是正确的,
01:05
mathematicians should be able to confirm
it with an axiomatic proof.
18
65704
4584
数学家就应该能够用公理证明它。
01:10
Since ancient Greece,
mathematicians used this system
19
70788
3208
从古希腊起,
数学家用这个系统
01:13
to prove or disprove mathematical claims
with total certainty.
20
73996
4208
来充分证明或证伪数学陈述。
01:18
But when Gödel entered the field,
21
78496
1917
但当哥德尔进入了这个领域后,
01:20
some newly uncovered logical paradoxes
were threatening that certainty.
22
80413
4750
一些新发现的逻辑悖论
挑战了先前的充分性。
01:26
Prominent mathematicians were eager
to prove
23
86121
2625
杰出的数学家们迫切地想证明
01:28
that mathematics had no contradictions.
24
88746
2542
数学是没有矛盾性的。
01:31
Gödel himself wasn’t so sure.
25
91496
2375
哥德尔自己却没有那么确定。
01:33
And he was even less confident
that mathematics was the right tool
26
93871
4250
而且他甚至对于数学是否是
解决这个问题正确的工具
01:38
to investigate this problem.
27
98121
1917
更加没有信心。
01:40
While it’s relatively easy to create
a self-referential paradox with words,
28
100413
4833
尽管用一个文字来形成一个
自我引用的悖论相对简单,
01:45
numbers don't typically
talk about themselves.
29
105246
3250
数字通常不会引用自身。
01:48
A mathematical statement is simply
true or false.
30
108829
3209
一个数学论述就是简单的对或错。
01:52
But Gödel had an idea.
31
112038
1541
但哥德尔有了一个想法。
01:54
First, he translated mathematical
statements and equations into code numbers
32
114038
4833
首先,他把数学论述和等式
转化成了代码,
01:58
so that a complex mathematical idea could
be expressed in a single number.
33
118871
4292
从而使得复杂的数学概念
可以用一数字进行表述。
02:03
This meant that mathematical statements
written with those numbers
34
123621
3583
这意味着用这些数字写成的数学语句
02:07
were also expressing something about
the encoded statements of mathematics.
35
127204
4459
也表达了一些关于数学编码语句的内容。
02:12
In this way, the coding allowed
mathematics to talk about itself.
36
132288
4125
以这种方式,
代码能让数学表述自身。
02:16
Through this method, he was able to write:
37
136746
2542
通过这个方式,他能够将:
02:19
“This statement cannot be proved”
as an equation,
38
139288
3458
“这个论述无法被证明”
写作一个等式,
02:22
creating the first self-referential
mathematical statement.
39
142746
3750
创造了第一个自我引用的数学论述。
02:27
However, unlike the ambiguous
sentence that inspired him,
40
147413
3500
然而,并不像那些启发他的
模棱两可的句子,
02:30
mathematical statements must be
true or false.
41
150913
3458
数学论述必须是正确或者错误。
02:34
So which is it?
42
154579
1500
因此它是哪个呢?
02:36
If it’s false, that means the statement
does have a proof.
43
156371
3542
如果它是错误的,
那就意味着论述可以被证明。
02:39
But if a mathematical statement has
a proof, then it must be true.
44
159913
3958
但如果一个数学论述可以被证明,
那它一定是正确的。
02:44
This contradiction means that Gödel’s
statement can’t be false,
45
164413
4166
这个矛盾意味着哥德尔的论述不能是错误的,
02:48
and therefore it must be true that
“this statement cannot be proved.”
46
168579
4875
因此,“这个论述不能被证明” 是正确的。
02:54
Yet this result is even more surprising,
47
174329
2584
然而这个结论其实更加令人讶异,
02:56
because it means we now have
a true equation of mathematics
48
176913
4083
因为它意味着存在一个正确的数学等式
03:00
that asserts it cannot be proved.
49
180996
2667
却无法被证明。
03:04
This revelation is at the heart
of Gödel’s Incompleteness Theorem,
50
184121
4750
这个出乎意料的事实
正是“哥德尔不完备定理”的核心,
03:08
which introduces an entirely new class
of mathematical statement.
51
188871
4250
开启了一个全新的数学论述的阶段。
03:13
In Gödel’s paradigm, statements still
are either true or false,
52
193121
4375
在哥德尔的范例中,
论述依旧是正确或者错误,
03:17
but true statements can either be
provable or unprovable
53
197621
4542
但正确的论述在给定的公理下
03:22
within a given set of axioms.
54
202163
2375
可证或不可证。
03:24
Furthermore, Gödel argues these
unprovable true statements
55
204746
4708
此外,哥德尔提出
这些不可证的正确论述
03:29
exist in every axiomatic system.
56
209454
2917
存在于每一个公理系统中。
03:32
This makes it impossible to create
57
212788
2208
如此一来就无法
03:34
a perfectly complete system
using mathematics,
58
214996
3333
用数学建立一个完美完满的系统,
03:38
because there will always be true
statements we cannot prove.
59
218329
4042
因为永远会存在
无法被证明的正确论述。
03:42
Even if you account for these
unprovable statements
60
222704
2667
即使你可以将这些无法被证明的论述
03:45
by adding them as new axioms
to an enlarged mathematical system,
61
225371
4042
作为新的公理,
添加进已经很庞大的数学系统,
03:49
that very process introduces new
unprovably true statements.
62
229704
5000
这个过程依旧会引入新的
无法被证明的正确论述。
03:55
No matter how many axioms you add,
63
235121
2292
无论你添加多少新的公理,
03:57
there will always be unprovably true
statements in your system.
64
237413
4041
你的系统中永远会存在
无法被证明的正确论述。
04:01
It’s Gödels all the way down!
65
241454
2167
哥德尔的理论永远成立!
04:04
This revelation rocked the foundations
of the field,
66
244163
3041
这一发现震撼了数学领域的基础,
04:07
crushing those who dreamed that every
mathematical claim would one day
67
247204
4125
粉碎那些梦想总有一天
所有的数学论述
04:11
be proven or disproven.
68
251329
2000
都会被证明或证伪的人。
04:13
While most mathematicians accepted this
new reality, some fervently debated it.
69
253788
4916
尽管大部分数学家接受了这个全新的现实,
一些人满怀期待的想推翻它,
04:18
Others still tried to ignore
the newly uncovered a hole
70
258954
3542
而剩下的则打心底里努力地去忽略
这个他们领域中全新的
04:22
in the heart of their field.
71
262496
1875
无法被填补的窟窿。
04:24
But as more classical problems were proven
to be unprovably true,
72
264371
4417
不过当越来越多的经典问题被证明
它们是无法被证明的正确论述,
04:28
some began to worry their life's work
would be impossible to complete.
73
268788
4625
一些人开始担心
他们无法完成毕生的事业。
04:33
Still, Gödel’s theorem opened
as many doors as a closed.
74
273413
3833
即便如此,哥德尔定理
打开的门和关闭的门一样多。
04:37
Knowledge of unprovably true statements
75
277246
2625
有关无法被证明的正确论述的知识
04:39
inspired key innovations
in early computers.
76
279871
3208
成为了早期电脑的关键创新启发。
04:43
And today, some mathematicians dedicate
their careers
77
283329
3084
而如今,一些数学家穷尽他们的职业生涯
04:46
to identifying provably
unprovable statements.
78
286413
3166
试图去证明那些无法被证明的论述。
04:49
So while mathematicians may have
lost some certainty,
79
289871
3083
因此即使数学家可能丢失了一些必然性,
04:52
thanks to Gödel they can embrace
the unknown
80
292954
2792
多亏了哥德尔,
他们得以以满心的期待
04:55
at the heart of any quest for truth.
81
295746
2417
去拥抱未知。
New videos
Original video on YouTube.com
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。