The paradox at the heart of mathematics: Gödel's Incompleteness Theorem - Marcus du Sautoy

3,804,578 views ・ 2021-07-20

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Xinyue Li 校对人员: Helen Chang
00:06
Consider the following sentence: “This statement is false.”
0
6913
3958
观察以下句子: “这句话是错误的。”
00:10
Is that true?
1
10871
1292
这句话是正确的吗?
00:12
If so, that would make this statement false.
2
12163
2375
如果是的话, 那么这句话就是错误的。
00:14
But if it’s false, then the statement is true.
3
14538
2291
如果不是的话, 那么这句话就是正确的。
00:16
By referring to itself directly, this statement creates an unresolvable paradox.
4
16829
5292
通过引用本身, 这句话创造了一个无法解决的悖论。
00:22
So if it’s not true and it’s not false— what is it?
5
22121
3667
如果它不是正确的也不是错误的—— 那么它是什么呢?
00:26
This question might seem like a silly thought experiment.
6
26288
2875
这个问题看起来像一个愚蠢的思维实验
00:29
But in the early 20th century, it led Austrian logician Kurt Gödel
7
29163
4666
但在 20 世纪早期, 它使得澳大利亚逻辑学家库尔特·哥德尔
00:33
to a discovery that would change mathematics forever.
8
33829
3417
作出了一个永远改变数学界的发现。
00:37
Gödel’s discovery had to do with the limitations of mathematical proofs.
9
37746
4541
哥德尔的发现与数学证明的局限性有关。
00:42
A proof is a logical argument that demonstrates
10
42496
3166
证明是一种逻辑论证,被用来展示
00:45
why a statement about numbers is true.
11
45662
2500
何以一句对于数字的表述成立。
00:48
The building blocks of these arguments are called axioms—
12
48579
3333
建立起这些论证的组成部分 被称为公理——
00:51
undeniable statements about the numbers involved.
13
51912
2709
有关这些提及到的数字 不证自明的论述。
00:54
Every system built on mathematics,
14
54996
2291
每一个建立在数学基础上的系统,
00:57
from the most complex proof to basic arithmetic,
15
57287
3042
从最复杂的证明到基础运算,
01:00
is constructed from axioms.
16
60329
2125
都由公理推算而来。
01:02
And if a statement about numbers is true,
17
62954
2750
如果一个关于数字的论述是正确的,
01:05
mathematicians should be able to confirm it with an axiomatic proof.
18
65704
4584
数学家就应该能够用公理证明它。
01:10
Since ancient Greece, mathematicians used this system
19
70788
3208
从古希腊起, 数学家用这个系统
01:13
to prove or disprove mathematical claims with total certainty.
20
73996
4208
来充分证明或证伪数学陈述。
01:18
But when Gödel entered the field,
21
78496
1917
但当哥德尔进入了这个领域后,
01:20
some newly uncovered logical paradoxes were threatening that certainty.
22
80413
4750
一些新发现的逻辑悖论 挑战了先前的充分性。
01:26
Prominent mathematicians were eager to prove
23
86121
2625
杰出的数学家们迫切地想证明
01:28
that mathematics had no contradictions.
24
88746
2542
数学是没有矛盾性的。
01:31
Gödel himself wasn’t so sure.
25
91496
2375
哥德尔自己却没有那么确定。
01:33
And he was even less confident that mathematics was the right tool
26
93871
4250
而且他甚至对于数学是否是 解决这个问题正确的工具
01:38
to investigate this problem.
27
98121
1917
更加没有信心。
01:40
While it’s relatively easy to create a self-referential paradox with words,
28
100413
4833
尽管用一个文字来形成一个 自我引用的悖论相对简单,
01:45
numbers don't typically talk about themselves.
29
105246
3250
数字通常不会引用自身。
01:48
A mathematical statement is simply true or false.
30
108829
3209
一个数学论述就是简单的对或错。
01:52
But Gödel had an idea.
31
112038
1541
但哥德尔有了一个想法。
01:54
First, he translated mathematical statements and equations into code numbers
32
114038
4833
首先,他把数学论述和等式 转化成了代码,
01:58
so that a complex mathematical idea could be expressed in a single number.
33
118871
4292
从而使得复杂的数学概念 可以用一数字进行表述。
02:03
This meant that mathematical statements written with those numbers
34
123621
3583
这意味着用这些数字写成的数学语句
02:07
were also expressing something about the encoded statements of mathematics.
35
127204
4459
也表达了一些关于数学编码语句的内容。
02:12
In this way, the coding allowed mathematics to talk about itself.
36
132288
4125
以这种方式, 代码能让数学表述自身。
02:16
Through this method, he was able to write:
37
136746
2542
通过这个方式,他能够将:
02:19
“This statement cannot be proved” as an equation,
38
139288
3458
“这个论述无法被证明” 写作一个等式,
02:22
creating the first self-referential mathematical statement.
39
142746
3750
创造了第一个自我引用的数学论述。
02:27
However, unlike the ambiguous sentence that inspired him,
40
147413
3500
然而,并不像那些启发他的 模棱两可的句子,
02:30
mathematical statements must be true or false.
41
150913
3458
数学论述必须是正确或者错误。
02:34
So which is it?
42
154579
1500
因此它是哪个呢?
02:36
If it’s false, that means the statement does have a proof.
43
156371
3542
如果它是错误的, 那就意味着论述可以被证明。
02:39
But if a mathematical statement has a proof, then it must be true.
44
159913
3958
但如果一个数学论述可以被证明, 那它一定是正确的。
02:44
This contradiction means that Gödel’s statement can’t be false,
45
164413
4166
这个矛盾意味着哥德尔的论述不能是错误的,
02:48
and therefore it must be true that “this statement cannot be proved.”
46
168579
4875
因此,“这个论述不能被证明” 是正确的。
02:54
Yet this result is even more surprising,
47
174329
2584
然而这个结论其实更加令人讶异,
02:56
because it means we now have a true equation of mathematics
48
176913
4083
因为它意味着存在一个正确的数学等式
03:00
that asserts it cannot be proved.
49
180996
2667
却无法被证明。
03:04
This revelation is at the heart of Gödel’s Incompleteness Theorem,
50
184121
4750
这个出乎意料的事实 正是“哥德尔不完备定理”的核心,
03:08
which introduces an entirely new class of mathematical statement.
51
188871
4250
开启了一个全新的数学论述的阶段。
03:13
In Gödel’s paradigm, statements still are either true or false,
52
193121
4375
在哥德尔的范例中, 论述依旧是正确或者错误,
03:17
but true statements can either be provable or unprovable
53
197621
4542
但正确的论述在给定的公理下
03:22
within a given set of axioms.
54
202163
2375
可证或不可证。
03:24
Furthermore, Gödel argues these unprovable true statements
55
204746
4708
此外,哥德尔提出 这些不可证的正确论述
03:29
exist in every axiomatic system.
56
209454
2917
存在于每一个公理系统中。
03:32
This makes it impossible to create
57
212788
2208
如此一来就无法
03:34
a perfectly complete system using mathematics,
58
214996
3333
用数学建立一个完美完满的系统,
03:38
because there will always be true statements we cannot prove.
59
218329
4042
因为永远会存在 无法被证明的正确论述。
03:42
Even if you account for these unprovable statements
60
222704
2667
即使你可以将这些无法被证明的论述
03:45
by adding them as new axioms to an enlarged mathematical system,
61
225371
4042
作为新的公理, 添加进已经很庞大的数学系统,
03:49
that very process introduces new unprovably true statements.
62
229704
5000
这个过程依旧会引入新的 无法被证明的正确论述。
03:55
No matter how many axioms you add,
63
235121
2292
无论你添加多少新的公理,
03:57
there will always be unprovably true statements in your system.
64
237413
4041
你的系统中永远会存在 无法被证明的正确论述。
04:01
It’s Gödels all the way down!
65
241454
2167
哥德尔的理论永远成立!
04:04
This revelation rocked the foundations of the field,
66
244163
3041
这一发现震撼了数学领域的基础,
04:07
crushing those who dreamed that every mathematical claim would one day
67
247204
4125
粉碎那些梦想总有一天 所有的数学论述
04:11
be proven or disproven.
68
251329
2000
都会被证明或证伪的人。
04:13
While most mathematicians accepted this new reality, some fervently debated it.
69
253788
4916
尽管大部分数学家接受了这个全新的现实, 一些人满怀期待的想推翻它,
04:18
Others still tried to ignore the newly uncovered a hole
70
258954
3542
而剩下的则打心底里努力地去忽略 这个他们领域中全新的
04:22
in the heart of their field.
71
262496
1875
无法被填补的窟窿。
04:24
But as more classical problems were proven to be unprovably true,
72
264371
4417
不过当越来越多的经典问题被证明 它们是无法被证明的正确论述,
04:28
some began to worry their life's work would be impossible to complete.
73
268788
4625
一些人开始担心 他们无法完成毕生的事业。
04:33
Still, Gödel’s theorem opened as many doors as a closed.
74
273413
3833
即便如此,哥德尔定理 打开的门和关闭的门一样多。
04:37
Knowledge of unprovably true statements
75
277246
2625
有关无法被证明的正确论述的知识
04:39
inspired key innovations in early computers.
76
279871
3208
成为了早期电脑的关键创新启发。
04:43
And today, some mathematicians dedicate their careers
77
283329
3084
而如今,一些数学家穷尽他们的职业生涯
04:46
to identifying provably unprovable statements.
78
286413
3166
试图去证明那些无法被证明的论述。
04:49
So while mathematicians may have lost some certainty,
79
289871
3083
因此即使数学家可能丢失了一些必然性,
04:52
thanks to Gödel they can embrace the unknown
80
292954
2792
多亏了哥德尔, 他们得以以满心的期待
04:55
at the heart of any quest for truth.
81
295746
2417
去拥抱未知。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7