The paradox at the heart of mathematics: Gödel's Incompleteness Theorem - Marcus du Sautoy
3,804,578 views ・ 2021-07-20
請雙擊下方英文字幕播放視頻。
譯者: 盈蓓 余
審譯者: Helen Chang
00:06
Consider the following sentence:
“This statement is false.”
0
6913
3958
請看這個句子:
「這個表述是假的。」
00:10
Is that true?
1
10871
1292
是真的嗎?
00:12
If so, that would make
this statement false.
2
12163
2375
如果是的話
這個表述就會變成假的
00:14
But if it’s false, then the statement
is true.
3
14538
2291
但如果它是假的
那這個表述就是真的
00:16
By referring to itself directly, this
statement creates an unresolvable paradox.
4
16829
5292
透過直接說明句子本身
它製造出無法解決的悖論
00:22
So if it’s not true and it’s not false—
what is it?
5
22121
3667
所以如果它既不真又不假
它是什麼?
00:26
This question might seem
like a silly thought experiment.
6
26288
2875
這個問題可能聽起來像
一個無厘頭的思考實驗
00:29
But in the early 20th century,
it led Austrian logician Kurt Gödel
7
29163
4666
但它在二十世紀初
讓澳洲邏輯學家
00:33
to a discovery that would change
mathematics forever.
8
33829
3417
庫爾特.哥德爾
發現永遠改變數學的東西
00:37
Gödel’s discovery had to do with
the limitations of mathematical proofs.
9
37746
4541
哥德爾的發現
跟數學證明的限制有關
00:42
A proof is a logical argument
that demonstrates
10
42496
3166
證明是邏輯論證,用來展示
00:45
why a statement about numbers is true.
11
45662
2500
何以某個跟數字相關的表述為真
00:48
The building blocks of these arguments
are called axioms—
12
48579
3333
這些論證的構成要素
被稱為公理
00:51
undeniable statements
about the numbers involved.
13
51912
2709
關於其中數字
不證自明的論述
00:54
Every system built on mathematics,
14
54996
2291
每個以數學為基礎的系統
00:57
from the most complex proof
to basic arithmetic,
15
57287
3042
從最複雜的證明到基本的算數
01:00
is constructed from axioms.
16
60329
2125
都是由公理構成的
01:02
And if a statement about numbers is true,
17
62954
2750
若一個關於數字的表述為真
01:05
mathematicians should be able to confirm
it with an axiomatic proof.
18
65704
4584
數學家理應能夠
運用公理化的證明證實它
01:10
Since ancient Greece,
mathematicians used this system
19
70788
3208
從古希臘時代開始
數學家們運用這個系統
01:13
to prove or disprove mathematical claims
with total certainty.
20
73996
4208
以完全的確定性
證明或推翻數學主張
01:18
But when Gödel entered the field,
21
78496
1917
但當哥德爾進入這個領域時
01:20
some newly uncovered logical paradoxes
were threatening that certainty.
22
80413
4750
某些新發現的邏輯悖論
正在威脅那股確定性
01:26
Prominent mathematicians were eager
to prove
23
86121
2625
著名數學家們渴望證明
數學沒有任何矛盾
01:28
that mathematics had no contradictions.
24
88746
2542
01:31
Gödel himself wasn’t so sure.
25
91496
2375
哥德爾本人卻不那麼確定
01:33
And he was even less confident
that mathematics was the right tool
26
93871
4250
甚至還沒把握數學是不是
01:38
to investigate this problem.
27
98121
1917
研究這個問題的正確工具
01:40
While it’s relatively easy to create
a self-referential paradox with words,
28
100413
4833
雖然運用文字創造
自我指涉的悖論比較簡單
01:45
numbers don't typically
talk about themselves.
29
105246
3250
但數字通常不會指涉自身
01:48
A mathematical statement is simply
true or false.
30
108829
3209
一個數學相關的表述
不是真的就是假的
01:52
But Gödel had an idea.
31
112038
1541
但哥德爾有個想法
01:54
First, he translated mathematical
statements and equations into code numbers
32
114038
4833
首先,他把數學相關的表述
和方程式轉譯成代碼
01:58
so that a complex mathematical idea could
be expressed in a single number.
33
118871
4292
如此,一個複雜的數學概念
就可以被用單一數字表述
02:03
This meant that mathematical statements
written with those numbers
34
123621
3583
這表示運用那些數字寫出的
數學相關表述
02:07
were also expressing something about
the encoded statements of mathematics.
35
127204
4459
同時在表示
被編碼的數學表述相關的東西
02:12
In this way, the coding allowed
mathematics to talk about itself.
36
132288
4125
用這樣的方式
編碼讓數學能夠自述
02:16
Through this method, he was able to write:
37
136746
2542
透過這個方法
他可以用方程式寫出:
02:19
“This statement cannot be proved”
as an equation,
38
139288
3458
「這個表述不能被證實」
02:22
creating the first self-referential
mathematical statement.
39
142746
3750
他以此創造了第一個
自我指涉悖論的數學表述
02:27
However, unlike the ambiguous
sentence that inspired him,
40
147413
3500
然而,不同於那些
帶給他靈感的歧異句
02:30
mathematical statements must be
true or false.
41
150913
3458
數學表述必須要是真或假
02:34
So which is it?
42
154579
1500
所以是哪個呢?
02:36
If it’s false, that means the statement
does have a proof.
43
156371
3542
如果它是假的
就表示這個表述被證明了
02:39
But if a mathematical statement has
a proof, then it must be true.
44
159913
3958
但如果一個數學表述被證明了
它一定是真的
02:44
This contradiction means that Gödel’s
statement can’t be false,
45
164413
4166
這個矛盾表示
哥德爾的表述不可能是假的
02:48
and therefore it must be true that
“this statement cannot be proved.”
46
168579
4875
因此「這個表述不能被證明」
一定是真的
02:54
Yet this result is even more surprising,
47
174329
2584
所以結果更讓人驚訝
02:56
because it means we now have
a true equation of mathematics
48
176913
4083
因為它表示我們現在有個
真的數學方程式
03:00
that asserts it cannot be proved.
49
180996
2667
主張自己無法被證實
03:04
This revelation is at the heart
of Gödel’s Incompleteness Theorem,
50
184121
4750
這個真相是
哥德爾不完備定理的中心
03:08
which introduces an entirely new class
of mathematical statement.
51
188871
4250
它引介出一個
數學表述的全新類別
03:13
In Gödel’s paradigm, statements still
are either true or false,
52
193121
4375
在哥德爾的範例中
表述仍是要嘛真要嘛假
03:17
but true statements can either be
provable or unprovable
53
197621
4542
但是真的表述
在一組既有的公理中
03:22
within a given set of axioms.
54
202163
2375
能夠是可證的或不可證的
03:24
Furthermore, Gödel argues these
unprovable true statements
55
204746
4708
此外哥德爾認為
這些不可證的真實表述
03:29
exist in every axiomatic system.
56
209454
2917
存在每個公理系統當中
03:32
This makes it impossible to create
57
212788
2208
這讓用數學創造
一個完美且完整的系統
03:34
a perfectly complete system
using mathematics,
58
214996
3333
變得不可能
03:38
because there will always be true
statements we cannot prove.
59
218329
4042
因為永遠會有
我們無法證明的真實表述
03:42
Even if you account for these
unprovable statements
60
222704
2667
即使你將這些不可證表述
以新公理的身份
03:45
by adding them as new axioms
to an enlarged mathematical system,
61
225371
4042
加入一個更大的數學系統
來說明它們
03:49
that very process introduces new
unprovably true statements.
62
229704
5000
這個過程又會引介出新的
不可證的真表述
03:55
No matter how many axioms you add,
63
235121
2292
不管你加入多少公理
03:57
there will always be unprovably true
statements in your system.
64
237413
4041
永遠都會有不可證的真表述
存在你的系統當中
04:01
It’s Gödels all the way down!
65
241454
2167
這就是哥德爾的一路向前
04:04
This revelation rocked the foundations
of the field,
66
244163
3041
這個發現
動搖了數學領域的基礎
04:07
crushing those who dreamed that every
mathematical claim would one day
67
247204
4125
震驚那些夢想著總有一天
所有數學主張
04:11
be proven or disproven.
68
251329
2000
都將被證實或推翻的人
04:13
While most mathematicians accepted this
new reality, some fervently debated it.
69
253788
4916
雖然大部分數學家
接受了這個嶄新的現實
有些人展開激烈的爭論
而其他人則仍然嘗試忽略
04:18
Others still tried to ignore
the newly uncovered a hole
70
258954
3542
將這個新發現視為
領域中心的破洞
04:22
in the heart of their field.
71
262496
1875
04:24
But as more classical problems were proven
to be unprovably true,
72
264371
4417
但隨著越來越多的經典問題
被證實為不可證之真
04:28
some began to worry their life's work
would be impossible to complete.
73
268788
4625
有些人開始擔心
他們畢生的努力不可能完成
04:33
Still, Gödel’s theorem opened
as many doors as a closed.
74
273413
3833
儘管如此,哥德爾的理論
敞開了許多大門
04:37
Knowledge of unprovably true statements
75
277246
2625
關於不可證的真表述的知識
04:39
inspired key innovations
in early computers.
76
279871
3208
啟發了早期電腦的關鍵發展
04:43
And today, some mathematicians dedicate
their careers
77
283329
3084
現今有些數學家的生涯致力於
04:46
to identifying provably
unprovable statements.
78
286413
3166
發現能夠證明不可證的表述
04:49
So while mathematicians may have
lost some certainty,
79
289871
3083
因此,雖然數學家可能
失去了一點確信
04:52
thanks to Gödel they can embrace
the unknown
80
292954
2792
多虧了哥德爾
他們在任何探詢真理的核心
04:55
at the heart of any quest for truth.
81
295746
2417
都可以擁抱未知
New videos
Original video on YouTube.com
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。