Can you outsmart this logical fallacy? - Alex Gendler

2,032,642 views ・ 2019-11-25

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Jiasi Hao 校对人员: Wei Zhang
00:06
Meet Lucy.
0
6810
1190
认识一下露西。
00:08
She was a math major in college,
1
8000
1980
她在大学主修数学,
00:09
and aced all her courses in probability and statistics.
2
9980
4130
并且在所有的概率与统计课程中 获得了高分。
00:14
Which do you think is more likely: that Lucy is a portrait artist,
3
14110
4352
你觉得哪一个情况可能性更高: 露西是一个肖像画家,
00:18
or that Lucy is a portrait artist who also plays poker?
4
18462
5028
或露西不仅是一个肖像画家, 同时也是扑克玩家?
00:23
In studies of similar questions, up to 80 percent of participants
5
23490
4016
在一个提出相似问题的研究中, 高达 80% 的参与者
00:27
chose the equivalent of the second statement:
6
27506
2504
选择了与第二个陈述等价的情况:
00:30
that Lucy is a portrait artist who also plays poker.
7
30010
3636
即露西是一个肖像画家, 而且也是一个扑克玩家。
00:33
After all, nothing we know about Lucy suggests an affinity for art,
8
33646
4722
毕竟,我们所知的露西 和艺术没有什么联系,
00:38
but statistics and probability are useful in poker.
9
38368
3812
但在扑克中, 概率与统计却很有用。
00:42
And yet, this is the wrong answer.
10
42180
2558
不过,这是一个错误的猜测。
00:44
Look at the options again.
11
44738
1790
再次看一下两个选择的陈述。
00:46
How do we know the first statement is more likely to be true?
12
46528
3740
我们是如何知道第一个陈述 更可能是真的呢?
00:50
Because it’s a less specific version of the second statement.
13
50268
4180
因为相比第二个陈述, 它是细节较少的版本。
00:54
Saying that Lucy is a portrait artist doesn’t make any claims
14
54448
3670
说露西是一个肖像画家
不代表她可能做,或可能不做 其它事情。
00:58
about what else she might or might not do.
15
58118
3500
01:01
But even though it’s far easier to imagine her playing poker than making art
16
61618
4890
基于背景信息, 尽管想象露西玩扑克
比想象她从事艺术工作简单得多,
01:06
based on the background information,
17
66508
1880
01:08
the second statement is only true if she does both of these things.
18
68388
4685
但只有在她同时做这两件事时 第二个陈述才可为真。
01:13
However counterintuitive it seems to imagine Lucy as an artist,
19
73073
4201
不论想象露西是一个艺术家 看起来有多违背直觉,
01:17
the second scenario adds another condition on top of that, making it less likely.
20
77274
5953
第二个情景中额外增加的一个条件 使其可能性变低。
01:23
For any possible set of events, the likelihood of A occurring
21
83227
4529
对于任何可能的事件集, 事件 A 可能发生的概率
01:27
will always be greater than the likelihood of A and B both occurring.
22
87756
5722
总是比事件 A 和事件 B 同时发生的概率高。
01:33
If we took a random sample of a million people who majored in math,
23
93478
3890
如果我们随机抽取 100 万个数学专业的人,
01:37
the subset who are portrait artists might be relatively small.
24
97368
4152
其中是肖像画家的子集 可能相对较小。
01:41
But it will necessarily be bigger
25
101520
2210
但是这必定会大于
01:43
than the subset who are portrait artists and play poker.
26
103730
3660
同时拥有肖像画家和扑克玩家 双重身份的子集。
01:47
Anyone who belongs to the second group will also belong to the first–
27
107390
3610
任何属于第二个子集的人, 也同时属于第一个子集。
01:51
but not vice versa.
28
111000
1490
反之,却并非如此。
01:52
The more conditions there are, the less likely an event becomes.
29
112490
5110
条件越多, 一个事件发生的可能性越低。
01:57
So why do statements with more conditions sometimes seem more believable?
30
117600
4619
所以,为什么包含更多条件的陈述 有时更加令人信服?
02:02
This is a phenomenon known as the conjunction fallacy.
31
122219
3320
这是一个称为 “合取谬误”的现象。
02:05
When we’re asked to make quick decisions, we tend to look for shortcuts.
32
125539
3800
当我们被要求快速地做出选择, 我们通常偏向于选择捷径。
02:09
In this case, we look for what seems plausible
33
129339
3120
在这种情况下, 我们会选择看似更具可行性的选项,
02:12
rather than what is statistically most probable.
34
132459
3010
而非从统计意义上讲 最有可能的选项。
02:15
On its own, Lucy being an artist doesn’t match the expectations
35
135469
4431
就其本身而言, 露西是艺术家这一事件
并不符合信息处理所生成的预期。
02:19
formed by the preceding information.
36
139900
2170
02:22
The additional detail about her playing poker
37
142070
2740
额外的一个关于她玩扑克的细节
02:24
gives us a narrative that resonates with our intuitions—
38
144810
3360
提供了与我们直觉相吻合的叙述——
02:28
it makes it seem more plausible.
39
148170
2170
这细节使之看似更加可信。
02:30
And we choose the option that seems more representative of the overall picture,
40
150340
4341
于是,不论选项的实际概率,
我们选择了看似 更加具有整体代表性的选项。
02:34
regardless of its actual probability.
41
154681
2950
02:37
This effect has been observed across multiple studies,
42
157631
3590
在许多研究中, 都观察到了这一现象,
02:41
including ones with participants who understood statistics well–
43
161221
3680
包括那些熟知统计知识的 研究参与者——
02:44
from students betting on sequences of dice rolls,
44
164901
2714
从学生们对骰子掷出顺序的赌注,
02:47
to foreign policy experts predicting the likelihood of a diplomatic crisis.
45
167615
5603
到外交政策专家 对外交危机可能性的预测。
02:53
The conjunction fallacy isn’t just a problem in hypothetical situations.
46
173218
4338
合取谬误不是一个 仅存在于假设情况下的问题。
02:57
Conspiracy theories and false news stories
47
177556
3130
阴谋论和虚假新闻
03:00
often rely on a version of the conjunction fallacy to seem credible–
48
180686
4588
通常仗着一个合取谬误的版本, 使之看似看信——
03:05
the more resonant details are added to an outlandish story,
49
185274
3630
在一个奇特故事中加入 越是与我们直觉相互呼应的细节,
03:08
the more plausible it begins to seem.
50
188904
2850
会使这个故事看起来更加真实。
03:11
But ultimately, the likelihood a story is true
51
191754
2890
但最终,一个故事为真的可能性
03:14
can never be greater than the probability that its least likely component is true.
52
194644
5150
永远不会超过 事实真相最小的可能性。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7