请双击下面的英文字幕来播放视频。
翻译人员: Carol Wang
校对人员: Candace Hwang
00:07
In 2009, two researchers ran
a simple experiment.
0
7745
4135
2009 年,两名研究人员
做了个简单实验,
00:11
They took everything we know
about our solar system
1
11880
3175
基于我们对太阳系所有的了解,
00:15
and calculated where every planet would be
up to 5 billion years in the future.
2
15055
6052
计算了 50 亿年后
每颗行星的位置。
00:21
To do so they ran over 2,000
numerical simulations
3
21107
4000
为此,他们进行了
2000 多次数值模拟,
00:25
with the same exact initial conditions
except for one difference:
4
25107
4722
所有初始条件保持不变,
除了一个参数值:
水星到太阳的距离
00:29
the distance between Mercury and the Sun,
modified by less than a millimeter
5
29829
5307
在每次后续模拟中减少
不足 1 毫米的距离差。
00:35
from one simulation to the next.
6
35136
2660
00:37
Shockingly, in about 1 percent
of their simulations,
7
37796
3278
令人震惊的是,
大约 1% 的模拟中,
00:41
Mercury’s orbit changed so drastically
that it could plunge into the Sun
8
41074
5346
水星轨道发生了巨大变化,
它可能会一头扎进太阳
或与金星相撞。
00:46
or collide with Venus.
9
46420
2360
00:48
Worse yet,
10
48780
720
更糟糕的是,一次模拟实验中,
00:49
in one simulation it destabilized
the entire inner solar system.
11
49500
5483
水星打破了整个内太阳系的稳定。
00:54
This was no error;
the astonishing variety in results
12
54983
4000
模拟实验没有出错;模拟结果的
惊人变化揭示了这样一个事实:
00:58
reveals the truth that our solar system
may be much less stable than it seems.
13
58983
6075
我们的太阳系可能
远没有看上去的那么稳定。
01:05
Astrophysicists refer to this astonishing
property of gravitational systems
14
65058
5181
对于引力系统的这种惊人特性,
天体物理学家称之为 “N 体问题”。
01:10
as the n-body problem.
15
70239
2180
01:12
While we have equations
that can completely predict
16
72419
2820
虽然我们可以用方程式来完美预测
01:15
the motions of two gravitating masses,
17
75239
2710
两个引力物体的运动,
01:17
our analytical tools fall short
when faced with more populated systems.
18
77949
5651
但面对包含更多物体的系统时,
我们的分析工具就捉襟见肘了。
01:23
It’s actually impossible to write down
all the terms of a general formula
19
83600
5261
实际上,根本不可能写出
一个包含所有变量的通用公式,
01:28
that can exactly describe the motion
of three or more gravitating objects.
20
88861
5910
来精确地描述三个
或更多引力物体的运动。
01:34
Why? The issue lies in how many unknown
variables an n-body system contains.
21
94771
7105
为什么?这实际上取决于
一个 N 体系统究竟包含多少个未知变量。
01:41
Thanks to Isaac Newton,
we can write a set of equations
22
101876
3310
多亏了艾萨克·牛顿,
我们才可以写出一套方程
来描述作用于两个物体间的引力。
01:45
to describe the gravitational force
acting between bodies.
23
105186
4000
01:49
However, when trying to find a general
solution for the unknown variables
24
109186
4677
但当我们试图找出
这些方程中未知变量的通解时,
01:53
in these equations,
25
113863
1290
01:55
we’re faced with
a mathematical constraint:
26
115153
2849
则面临着数学上的限制:
01:58
for each unknown,
there must be at least one equation
27
118002
3831
对每个未知变量,
必须至少有一个单独描述它的方程。
02:01
that independently describes it.
28
121833
2210
02:04
Initially, a two-body system appears
to have more unknown variables
29
124043
4891
起初,和运动方程相比,
二体系统似乎有更多
关于位置和速度的未知变量。
02:08
for position and velocity
than equations of motion.
30
128934
3790
02:12
However, there’s a trick:
31
132724
1956
然而,技巧在这里:
02:14
consider the relative position
and velocity of the two bodies
32
134680
4235
要考虑两个物体
相对于系统重心的相对位置和速度。
02:18
with respect to the center
of gravity of the system.
33
138915
3710
02:22
This reduces the number of unknowns
and leaves us with a solvable system.
34
142625
4728
这样就减少了未知数的数量,
使其变成一个可解的系统。
02:27
With three or more orbiting objects
in the picture, everything gets messier.
35
147353
5726
若有三个或更多绕轨道运行的物体,
一切就会变得复杂得多。
02:33
Even with the same mathematical trick
of considering relative motions,
36
153079
4382
即使同样使用
考虑相对运动的数学技巧,
02:37
we’re left with more unknowns
than equations describing them.
37
157461
4627
我们面临的未知变量的数量
也多于描述它们的方程。
02:42
There are simply too many variables
for this system of equations
38
162088
4252
对于这个方程组来说,变量太多,
02:46
to be untangled into a general solution.
39
166340
3270
无法得到一个通解。
02:49
But what does it actually look like
for objects in our universe
40
169610
3910
不过在现实中,宇宙中物体是如何
02:53
to move according to analytically
unsolvable equations of motion?
41
173520
5111
遵循这些无解运动方程运动的呢?
02:58
A system of three stars—
like Alpha Centauri—
42
178631
3250
由三颗恒星组成的系统——
像半人马座——
03:01
could come crashing
into one another or, more likely,
43
181881
3478
可能会相互碰撞,
或者,更有可能的是,
03:05
some might get flung out of orbit
after a long time of apparent stability.
44
185359
5112
表面看似稳定了很长时间后,
有些恒星就会被甩出轨道。
03:10
Other than a few highly improbable
stable configurations,
45
190471
4000
除了少数极不可能的稳定配置外,
03:14
almost every possible case
is unpredictable on long timescales.
46
194471
6100
从较长的时间尺度来看,
几乎所有可能情况都不可预测。
03:20
Each has an astronomically large range
of potential outcomes,
47
200571
4197
基于位置和速度的最微小差异,
03:24
dependent on the tiniest of differences
in position and velocity.
48
204768
4808
每项潜在的结果都可能存在于
一个很大的天文数学范围里。
03:29
This behaviour is known
as chaotic by physicists,
49
209576
4166
这种行为被物理学家称为“混沌”,
03:33
and is an important characteristic
of n-body systems.
50
213742
3730
也是 N 体系统的一个重要特征。
03:37
Such a system is still deterministic—
meaning there’s nothing random about it.
51
217472
4729
这样的系统仍然有确定性——
即它没有任何随机性。
03:42
If multiple systems start
from the exact same conditions,
52
222201
3590
如果多个系统初始条件完全相同,
03:45
they’ll always reach the same result.
53
225791
2450
它们总是会得到相同的结果。
03:48
But give one a little shove at the start,
and all bets are off.
54
228241
5739
但如果初始条件稍有改变,
结果将难以预料。
03:53
That’s clearly relevant
for human space missions,
55
233980
3260
对人类太空任务来说,
这显然关系重大,
03:57
when complicated orbits need
to be calculated with great precision.
56
237240
5249
因为复杂的轨道
需要非常精确的计算。
04:02
Thankfully, continuous advancements
in computer simulations
57
242489
4000
庆幸的是,
计算机模拟技术的持续进步
为避免灾难提供了大量方法。
04:06
offer a number of ways
to avoid catastrophe.
58
246489
2890
04:09
By approximating the solutions
with increasingly powerful processors,
59
249379
4316
利用日益强大的处理器
计算出更接近的解决方案,
04:13
we can more confidently predict the motion
of n-body systems on long time-scales.
60
253695
5870
我们可以更自信地预测出
N 体系统在长时间尺度上的运动。
04:19
And if one body in a group
of three is so light
61
259565
3190
如果三体系统中有一个质量很轻,
04:22
it exerts no significant force
on the other two,
62
262755
3130
它对另外两个物体施力轻微,
04:25
the system behaves, with very good
approximation, as a two-body system.
63
265885
4842
这个三体系统的运行
则非常近似于二体系统,
04:30
This approach is known
as the “restricted three-body problem.”
64
270727
4000
这种方法称为“限制性三体问题”。
04:34
It proves extremely useful
in describing, for example,
65
274727
3370
实际证明,这种方法非常有用。
例如,用来描述地球-太阳
引力场内的小行星,
04:38
an asteroid in the Earth-Sun
gravitational field,
66
278097
3510
04:41
or a small planet in the field
of a black hole and a star.
67
281607
5093
或黑洞和恒星引力场内
小一点的行星。
04:46
As for our solar system,
you’ll be happy to hear
68
286700
2780
至于我们的太阳系——
你大可不必担心——
04:49
that we can have reasonable confidence
in its stability
69
289480
3170
至少在未来几亿年内它都会很稳定,
04:52
for at least the next
several hundred million years.
70
292650
3680
我们对此有充分的信心。
04:56
Though if another star,
71
296330
1690
但若一颗恒星从银河系另一边出发,
04:58
launched from across the galaxy,
is on its way to us,
72
298020
3980
正向我们飞来,
05:02
all bets are off.
73
302000
1850
那么一切后果都将难以预料。
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。