Newton’s three-body problem explained - Fabio Pacucci

5,572,266 views ・ 2020-08-03

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Pui-Ching Siu
00:07
In 2009, two researchers ran a simple experiment.
0
7745
4135
2009 年,兩位研究者 做了一項簡單的實驗。
00:11
They took everything we know about our solar system
1
11880
3175
他們用上了我們 對太陽系所知的一切,
00:15
and calculated where every planet would be up to 5 billion years in the future.
2
15055
6052
去計算五十億年後
每一顆行星的所在。
00:21
To do so they ran over 2,000 numerical simulations
3
21107
4000
為了做到這一點,他們進行了 超過兩千次的數值模擬,
00:25
with the same exact initial conditions except for one difference:
4
25107
4722
每一次的初始條件都相同, 除了一個差異:
00:29
the distance between Mercury and the Sun, modified by less than a millimeter
5
29829
5307
從一次模擬進入到下一次模擬時,
就把水星和太陽之間的 距離增或減一公釐。
00:35
from one simulation to the next.
6
35136
2660
00:37
Shockingly, in about 1 percent of their simulations,
7
37796
3278
驚人的是,大約 1% 的模擬中,
00:41
Mercury’s orbit changed so drastically that it could plunge into the Sun
8
41074
5346
水星的軌道大大改變,
大到有可能會衝進太陽
00:46
or collide with Venus.
9
46420
2360
或撞上金星。
00:48
Worse yet,
10
48780
720
更糟的是,在一次模擬中,
00:49
in one simulation it destabilized the entire inner solar system.
11
49500
5483
它讓整個內太陽系變得很不穩定。
00:54
This was no error; the astonishing variety in results
12
54983
4000
這不是錯誤;結果會有 這麼驚人的多樣性,
00:58
reveals the truth that our solar system may be much less stable than it seems.
13
58983
6075
表示我們的太陽系事實上
可能沒有看起來這麼穩定。
01:05
Astrophysicists refer to this astonishing property of gravitational systems
14
65058
5181
天體物理學家把這種 重力系統的驚人特質
01:10
as the n-body problem.
15
70239
2180
稱為「N 體問題」。
01:12
While we have equations that can completely predict
16
72419
2820
雖然我們有方程式可以完全預測
01:15
the motions of two gravitating masses,
17
75239
2710
兩個互相受引力作用的 質量會如何運動,
01:17
our analytical tools fall short when faced with more populated systems.
18
77949
5651
但面臨更多物體的系統時,
我們的分析工具就有所不足了。
01:23
It’s actually impossible to write down all the terms of a general formula
19
83600
5261
事實上,不可能寫出一條通式
01:28
that can exactly describe the motion of three or more gravitating objects.
20
88861
5910
來精準描述互相受引力作用的 三個(或以上)物體如何運動。
01:34
Why? The issue lies in how many unknown variables an n-body system contains.
21
94771
7105
為什麼?
問題在於 N 體系統中
有多少個未知的變數。
01:41
Thanks to Isaac Newton, we can write a set of equations
22
101876
3310
因為牛頓的功勞, 我們可以寫出一組方程式
01:45
to describe the gravitational force acting between bodies.
23
105186
4000
來描述兩個物體之間的引力作用。
01:49
However, when trying to find a general solution for the unknown variables
24
109186
4677
然而,當試圖為 這些方程式中的未知變數
01:53
in these equations,
25
113863
1290
找出通解時,
01:55
we’re faced with a mathematical constraint:
26
115153
2849
我們面臨一個數學限制:
01:58
for each unknown, there must be at least one equation
27
118002
3831
凡是有一個未知變數,
就必須要有至少一條 獨立的方程式來描述它。
02:01
that independently describes it.
28
121833
2210
02:04
Initially, a two-body system appears to have more unknown variables
29
124043
4891
最初看似兩體系統未知的
位置和速度變量的數目
02:08
for position and velocity than equations of motion.
30
128934
3790
多於運動方程式的。
02:12
However, there’s a trick:
31
132724
1956
然而有一招:
02:14
consider the relative position and velocity of the two bodies
32
134680
4235
考量兩個物體相對於
02:18
with respect to the center of gravity of the system.
33
138915
3710
系統引力中心的位置和速度。
02:22
This reduces the number of unknowns and leaves us with a solvable system.
34
142625
4728
這樣就能減少未知變數的數目, 讓它變成有解的系統。
02:27
With three or more orbiting objects in the picture, everything gets messier.
35
147353
5726
若系統中有三個以上的繞行物體,
情況就會更亂了。
02:33
Even with the same mathematical trick of considering relative motions,
36
153079
4382
即使採用同樣的數學招式 去考量相對運動,
02:37
we’re left with more unknowns than equations describing them.
37
157461
4627
未知變數的數目仍多於 描述它們的方程式數目。
02:42
There are simply too many variables for this system of equations
38
162088
4252
簡單來說就是這個 方程式系統有太多變數,
02:46
to be untangled into a general solution.
39
166340
3270
因此無法用一個通解來解決。
02:49
But what does it actually look like for objects in our universe
40
169610
3910
但我們宇宙中的物體
根據無解的運動方程式運轉,
02:53
to move according to analytically unsolvable equations of motion?
41
173520
5111
實際上看起來會是什麼模樣?
02:58
A system of three stars— like Alpha Centauri—
42
178631
3250
三個恆星的系統—— 比如南門二——
03:01
could come crashing into one another or, more likely,
43
181881
3478
有可能會撞上彼此, 或更有可能的情況是,
03:05
some might get flung out of orbit after a long time of apparent stability.
44
185359
5112
在經過長時間明顯的穩定之後, 有些恆星可能會被拋出軌道。
03:10
Other than a few highly improbable stable configurations,
45
190471
4000
除了少數極不可能發生的 穩定組態之外,
03:14
almost every possible case is unpredictable on long timescales.
46
194471
6100
幾乎每一個可能的情況
在長期來看都是無法預測的。
03:20
Each has an astronomically large range of potential outcomes,
47
200571
4197
每一個情況在天文學上 都有廣泛的可能結果,
03:24
dependent on the tiniest of differences in position and velocity.
48
204768
4808
會根據位置及速度的 微小差距而有所不同。
03:29
This behaviour is known as chaotic by physicists,
49
209576
4166
物理學家將這種行為視為「混亂」,
03:33
and is an important characteristic of n-body systems.
50
213742
3730
是 N 體系統的重要特徵之一。
03:37
Such a system is still deterministic— meaning there’s nothing random about it.
51
217472
4729
這種系統仍是確定性的系統,
意即它並不隨機。
03:42
If multiple systems start from the exact same conditions,
52
222201
3590
如果有多個系統 都從同樣的條件開始,
03:45
they’ll always reach the same result.
53
225791
2450
它們一定會達到同樣的結果。
03:48
But give one a little shove at the start, and all bets are off.
54
228241
5739
但把初始條件稍微改變一點點,
原本的預測就都不準了。
03:53
That’s clearly relevant for human space missions,
55
233980
3260
這很顯然會影響到人類的太空任務,
03:57
when complicated orbits need to be calculated with great precision.
56
237240
5249
因為需要非常精確地 計算複雜的軌道。
04:02
Thankfully, continuous advancements in computer simulations
57
242489
4000
謝天謝地,電腦模擬的持續進步
04:06
offer a number of ways to avoid catastrophe.
58
246489
2890
提供了數種避免大災難的方式。
04:09
By approximating the solutions with increasingly powerful processors,
59
249379
4316
透過使用越來越強大的 處理器來找出近似解,
04:13
we can more confidently predict the motion of n-body systems on long time-scales.
60
253695
5870
我們便能更有信心地預測
N 體系統的長期運動。
04:19
And if one body in a group of three is so light
61
259565
3190
如果三個物體中有一個特別輕,
04:22
it exerts no significant force on the other two,
62
262755
3130
輕到它對其他兩個物體 不會產生明顯的引力,
04:25
the system behaves, with very good approximation, as a two-body system.
63
265885
4842
這個系統的行為就會 非常近似二體系統。
04:30
This approach is known as the “restricted three-body problem.”
64
270727
4000
這個方法就是所謂的 「設限三體問題」。
04:34
It proves extremely useful in describing, for example,
65
274727
3370
它被證明相當有用, 適用的例子包括
04:38
an asteroid in the Earth-Sun gravitational field,
66
278097
3510
描述在地球太陽重力場中的小行星,
04:41
or a small planet in the field of a black hole and a star.
67
281607
5093
或者在黑洞與恆星力場中的小行星。
04:46
As for our solar system, you’ll be happy to hear
68
286700
2780
至於我們的太陽系, 你會很高興聽到,
04:49
that we can have reasonable confidence in its stability
69
289480
3170
我們可以合理地肯定
它在接下來的數億年都會是穩定的。
04:52
for at least the next several hundred million years.
70
292650
3680
04:56
Though if another star,
71
296330
1690
但如果有另一顆恆星
04:58
launched from across the galaxy, is on its way to us,
72
298020
3980
從銀河系的另一端出發, 朝我們前來,
05:02
all bets are off.
73
302000
1850
原本的預測就都不準了。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7