Exploring other dimensions - Alex Rosenthal and George Zaidan

5,200,503 views ・ 2013-07-17

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Gabriella Hu 校对人员: Geoff Chen
00:11
We live in a three-dimensional world
0
11702
2025
我们生活在一个三维世界里
00:13
where everything has length,
1
13751
967
每件物体都有长度
00:14
width,
2
14742
603
宽度
00:15
and height.
3
15369
1386
和高度
00:16
But what if our world were two-dimensional?
4
16779
2373
但是如果我们的世界是二维的呢?
00:19
We would be squashed down
5
19176
1422
我们会被压扁
00:20
to occupy a single plane of existence,
6
20622
2488
只存在于一个平面,
00:23
geometrically speaking, of course.
7
23134
1990
当然,只是从几何的角度来看
00:25
And what would that world look and feel like?
8
25148
2705
那那个世界看上去 和感觉上又是怎样的呢?
00:27
This is the premise
9
27877
635
这就是埃德温·艾勃特
00:28
of Edwin Abbott's 1884 novella, Flatland.
10
28536
3495
1884年的中篇小说《平面国》中的假设
00:32
Flatland is a fun, mathematical thought experiment
11
32055
2381
平面国是一个有趣的数学思想实验
00:34
that follows the trials and tribulations of a square
12
34460
2578
通过一个正方形在三维世界里的
考验和磨难
00:37
exposed to the third dimension.
13
37062
2517
00:39
But what is a dimension, anyway?
14
39603
2356
但,什么是一个维度呢?
00:41
For our purposes, a dimension is a direction,
15
41983
2858
简单的来说,一个维度是一个方向
00:44
which we can picture as a line.
16
44865
2238
我们可以把它想象成一条直线
00:47
For our direction to be a dimension,
17
47127
2172
一个方向能成为一个维度
00:49
it has to be at right angles to all other dimensions.
18
49323
4010
它必须和其它的维度形成直角
00:53
So, a one-dimensional space is just a line.
19
53357
2764
所以,一维空间只是一条直线
00:56
A two-dimensional space is defined
20
56145
1781
一个二维空间是由
00:57
by two perpendicular lines,
21
57950
2131
两条垂直的线组成
01:00
which describe a flat plane
22
60105
1546
形成一个平面
01:01
like a piece of paper.
23
61675
1612
像一张纸一样
01:03
And a three-dimensional space
24
63311
1381
一个三维空间
01:04
adds a third perpendicular line,
25
64716
2022
再添加了第三条垂直的线
01:06
which gives us height
26
66762
1258
给了我们高度
01:08
and the world we're familiar with.
27
68044
2604
和我们所熟悉的世界
01:10
So, what about four dimensions?
28
70672
1800
那四维世界呢?
01:12
And five?
29
72496
958
五维?
01:13
And eleven?
30
73478
1093
十一维?
01:14
Where do we put these new perpendicular lines?
31
74595
2686
我们在哪里放置这些新的垂直线条呢?
01:17
This is where Flatland can help us.
32
77305
2511
这就是《平面国》可以 帮助我们找到的答案
01:19
Let's look at our square protagonist's world.
33
79840
2873
让我们看看书中的主角 - 正方形 - 的世界
01:22
Flatland is populated by geometric shapes,
34
82737
2504
平面国中充满不同的几何形状
01:25
ranging from isosceles trianges
35
85265
1644
从等腰三角形
01:26
to equilateral triangles
36
86933
1243
到等边三角形
01:28
to squares,
37
88200
765
01:28
pentagons,
38
88989
505
到正方形
五角形
01:29
hexagons,
39
89518
571
六边形
01:30
all the way up to circles.
40
90113
2131
一直到圆形
01:32
These shapes are all scurrying around a flat world,
41
92268
2739
这些图形在一个平面世界中四处游荡
01:35
living their flat lives.
42
95031
1727
过着它们的平面生活
01:36
They have a single eye on the front of their faces,
43
96782
2651
它们的脸上有一只眼睛
01:39
and let's see what the world looks like
44
99457
1059
让我们看看从它们的角度
01:40
from their perspective.
45
100540
1892
这个世界是什么样子的
01:42
What they see is essentially one dimension,
46
102456
2868
它们所看到的是一维的
01:45
a line.
47
105348
1087
一条直线
01:46
But in Abbott's Flatland,
48
106459
1363
但是在艾勃特的《平面国》中
01:47
closer objects are brighter,
49
107846
1926
距离更近的物体更加明亮
01:49
and that's how they see depth.
50
109796
2157
这是它们如何察觉深度的
01:51
So a triangle looks different from a square,
51
111977
2308
所以,一个三角形看上去 就和一个正方形不同
01:54
looks different a circle,
52
114309
1266
和圆形不一样
01:55
and so on.
53
115599
1275
等等
01:56
Their brains cannot comprehend the third dimension.
54
116898
2589
它们的大脑无法理解第三维度
01:59
In fact, they vehemently deny its existence
55
119511
2852
其实,它们强烈地否认它的存在
02:02
because it's simply not part of their world
56
122387
2147
因为那不是它们的世界的一部分
02:04
or experience.
57
124558
1675
它们也没有经历过
02:06
But all they need,
58
126257
1041
但是它们所需要的
02:07
as it turns out,
59
127322
1138
事实证明
02:08
is a little boost.
60
128484
2090
是一点小鼓励
02:10
One day a sphere shows up in Flatland
61
130598
1894
有一天,一个球体出现在平面国中
02:12
to visit our square hero.
62
132516
1725
去拜访那个正方形
02:14
Here's what it looks like
63
134265
913
当一个球体从平面国中通过时,
02:15
when the sphere passes through Flatland
64
135202
2123
从一个正方形的角度
02:17
from the square's perspective,
65
137349
2492
它看到的画面是这样的
02:19
and this blows his little square mind.
66
139865
2600
这彻底颠覆了它的二维观念
02:22
Then the sphere lifts the square
67
142489
1862
然后,那个球体把正方形举起来
02:24
into the third dimension,
68
144375
1514
进入了第三维度
02:25
the height direction where no Flatlander has gone before
69
145913
3025
高度上升了,到了平面国中的形状们 从来没去过的地方
02:28
and shows him his world.
70
148962
1981
给正方形看看它的世界
02:30
From up here, the square can see everything:
71
150967
2561
从上空中,正方形看到了所有的东西:
02:33
the shapes of buildings,
72
153552
1056
高楼的形状
02:34
all the precious gems hidden in the Earth,
73
154632
2117
地球中埋藏着的珍贵的宝石
02:36
and even the insides of his friends,
74
156773
2548
甚至它的朋友们的内侧
02:39
which is probably pretty awkward.
75
159345
2648
这应该挺尴尬的
02:42
Once the hapless square
76
162017
1098
一旦这个正方形
02:43
comes to terms with the third dimension,
77
163139
1729
适应了第三个维度
02:44
he begs his host to help him
78
164892
1364
它央求球体帮助它
02:46
visit the fourth and higher dimensions,
79
166280
2217
看到第四个,更高的维度
02:48
but the sphere bristles at the mere suggestion
80
168521
2191
但是听见之后十分生气
02:50
of dimensions higher than three
81
170736
1594
居然还有比三维更高的维度
02:52
and exiles the square back to Flatland.
82
172354
2974
然后把正方形放逐回平面国
02:55
Now, the sphere's indignation is understandable.
83
175352
2475
我们可以理解球体的愤怒
02:57
A fourth dimension is very difficult
84
177851
1715
第四个维度的想法很难
02:59
to reconcile with our experience of the world.
85
179590
2595
和我们在世界中的经历并存
03:02
Short of being lifted into the fourth dimension
86
182209
2239
我们不可能被一个超立方体举起
03:04
by visiting hypercube,
87
184472
1086
被带到第四个维度
03:05
we can't experience it,
88
185582
1909
我们无法体验它
03:07
but we can get close.
89
187515
1631
但是我们能接近它
03:09
You'll recall that when the sphere
90
189170
1351
回想一下,当球体
03:10
first visited the second dimension,
91
190545
1895
第一次来到二维世界时
03:12
he looked like a series of circles
92
192464
1775
它看上去像一系列的圆形
03:14
that started as a point
93
194263
1176
当它在平面国落地时
03:15
when he touched Flatland,
94
195463
1394
它看上去像一个点
03:16
grew bigger until he was halfway through,
95
196881
2284
一直变大,直到它一半的体积陷进地面
03:19
and then shrank smaller again.
96
199189
1973
然后又开始变小
03:21
We can think of this visit
97
201186
1306
我们可以把这个看做
03:22
as a series of 2D cross-sections of a 3D object.
98
202516
4142
一个三维物体的一系列 二维横截面
03:26
Well, we can do the same thing
99
206682
1429
我们可以用同样的方法
03:28
in the third dimension with a four-dimensional object.
100
208135
4061
从一个三维世界看一个四维物体
03:32
Let's say that a hypersphere
101
212220
1334
比如,一个超球是一个
03:33
is the 4D equivalent of a 3D sphere.
102
213578
2812
相当于三维球体的四维物体
03:36
When the 4D object passes through the third dimension,
103
216414
2887
当四维物体通过一个三维世界时
03:39
it'll look something like this.
104
219325
2583
它看上去是这样的
03:41
Let's look at one more way
105
221932
1076
我们用另一个角度来看
03:43
of representing a four-dimensional object.
106
223032
2676
四维物体
03:45
Let's say we have a point,
107
225732
860
我们画一个点
03:46
a zero-dimensional shape.
108
226616
2054
这是一个零维形状
03:48
Now we extend it out one inch
109
228694
1518
现在我们把它扩展到一英寸
03:50
and we have a one-dimensional line segment.
110
230236
2562
我们就有一个一维直线
03:52
Extend the whole line segment by an inch,
111
232822
2066
再把直线扩展一英寸
03:54
and we get a 2D square.
112
234912
2134
我们就有了一个二维正方形
03:57
Take the whole square and extend it out one inch,
113
237070
2334
把整个正方形再扩大一英寸
03:59
and we get a 3D cube.
114
239428
1913
就有了一个三维正方体
04:01
You can see where we're going with this.
115
241365
1626
这就是大概的思路
04:03
Take the whole cube
116
243015
1138
把整个正方体
04:04
and extend it out one inch,
117
244177
1332
再扩充一英寸
04:05
this time perpendicular to all three existing directions,
118
245533
3308
这次垂直于所有的三个已存在的方向
04:08
and we get a 4D hypercube,
119
248865
2369
我们就有了一个四维的超立方体
04:11
also called a tesseract.
120
251258
2544
又被称作正八胞体
04:13
For all we know,
121
253826
939
根据我们现在所知道的
04:14
there could be four-dimensional lifeforms
122
254789
1552
很有可能有一种四维的生命体
04:16
somewhere out there,
123
256365
1229
在宇宙中某个遥远的地方
04:17
occasionally poking their heads
124
257618
1477
偶尔把它们的头探入
我们繁忙的三维世界
04:19
into our bustling 3D world
125
259119
1815
04:20
and wondering what all the fuss is about.
126
260958
2163
奇怪我们都在瞎忙什么
04:23
In fact, there could be whole
127
263145
1142
其实,可能有许多其它的
04:24
other four-dimensional worlds
128
264311
1746
四维世界
04:26
beyond our detection,
129
266081
1461
无法被我们发现
04:27
hidden from us forever
130
267566
979
因为我们感知的能力
04:28
by the nature of our perception.
131
268569
2358
永远隐藏在我们找不到的地方
04:30
Doesn't that blow your little spherical mind?
132
270951
3252
这有没有彻底颠覆你的三维观念?
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7