Exploring other dimensions - Alex Rosenthal and George Zaidan

探索其它維度 - Alex Rosenthal 和 George Zaidan

5,209,435 views

2013-07-17 ・ TED-Ed


New videos

Exploring other dimensions - Alex Rosenthal and George Zaidan

探索其它維度 - Alex Rosenthal 和 George Zaidan

5,209,435 views ・ 2013-07-17

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Bernice Huang 審譯者: Qiwen Lu
00:11
We live in a three-dimensional world
0
11702
2025
我們住在一個三維世界
00:13
where everything has length,
1
13751
967
一切事物都有長度、
00:14
width,
2
14742
603
寬度、
00:15
and height.
3
15369
1386
和高度
00:16
But what if our world were two-dimensional?
4
16779
2373
但如果我們的世界是二維的會怎麼樣呢?
00:19
We would be squashed down
5
19176
1422
我們會被壓扁
00:20
to occupy a single plane of existence,
6
20622
2488
於一個存在的單一平面上
00:23
geometrically speaking, of course.
7
23134
1990
以幾何學來講,理所當然
00:25
And what would that world look and feel like?
8
25148
2705
那個世界看起來及感覺起來像怎麼樣呢?
00:27
This is the premise
9
27877
635
這是一個假設
00:28
of Edwin Abbott's 1884 novella, Flatland.
10
28536
3495
由愛德溫‧艾勃特在1884年的 短篇小說《 平面國》中提出
00:32
Flatland is a fun, mathematical thought experiment
11
32055
2381
平面國是一個有趣的數學思維實驗
00:34
that follows the trials and tribulations of a square
12
34460
2578
敘述一個正方形遇到的種種考驗與磨練
在歷經第三維度的時候
00:37
exposed to the third dimension.
13
37062
2517
00:39
But what is a dimension, anyway?
14
39603
2356
但什麼是維度呢?
00:41
For our purposes, a dimension is a direction,
15
41983
2858
從我們的角度出發,一維是指一個方向
00:44
which we can picture as a line.
16
44865
2238
我們可以想成一條線
00:47
For our direction to be a dimension,
17
47127
2172
把我們的方向當作是一維
00:49
it has to be at right angles to all other dimensions.
18
49323
4010
它必須與所有其他的維度都形成直角
00:53
So, a one-dimensional space is just a line.
19
53357
2764
所以,一維空間就是一條線
00:56
A two-dimensional space is defined
20
56145
1781
二維空間
00:57
by two perpendicular lines,
21
57950
2131
由兩條相互垂直的直線所定義
01:00
which describe a flat plane
22
60105
1546
它們建構了一個平面
01:01
like a piece of paper.
23
61675
1612
就像一張紙一樣
01:03
And a three-dimensional space
24
63311
1381
三維空間
01:04
adds a third perpendicular line,
25
64716
2022
增加第三條垂直線
01:06
which gives us height
26
66762
1258
它提供我們高度
01:08
and the world we're familiar with.
27
68044
2604
及那個我們熟悉的世界
01:10
So, what about four dimensions?
28
70672
1800
那四維呢?
01:12
And five?
29
72496
958
五維?
01:13
And eleven?
30
73478
1093
甚至十一維?
01:14
Where do we put these new perpendicular lines?
31
74595
2686
我們要將這些新的垂直線放在哪呢?
01:17
This is where Flatland can help us.
32
77305
2511
這就是平面國可以幫助我們的地方
01:19
Let's look at our square protagonist's world.
33
79840
2873
讓我們來看一下正方形主角的世界
01:22
Flatland is populated by geometric shapes,
34
82737
2504
平面國居住著各種幾何圖形
01:25
ranging from isosceles trianges
35
85265
1644
從等腰三角形、
01:26
to equilateral triangles
36
86933
1243
等邊三角形、
01:28
to squares,
37
88200
765
01:28
pentagons,
38
88989
505
正方形、
五角形、
01:29
hexagons,
39
89518
571
六角形、
01:30
all the way up to circles.
40
90113
2131
一直到圓形
01:32
These shapes are all scurrying around a flat world,
41
92268
2739
這些圖形都在一個 平面的世界上到處跑來跑去
01:35
living their flat lives.
42
95031
1727
過著它們平面的生活
01:36
They have a single eye on the front of their faces,
43
96782
2651
在它們臉的前方有一隻眼睛
01:39
and let's see what the world looks like
44
99457
1059
讓我們來看看從它們的角度上 這個世界看起來像甚麼樣
01:40
from their perspective.
45
100540
1892
01:42
What they see is essentially one dimension,
46
102456
2868
實質上它們看到的是一維
01:45
a line.
47
105348
1087
也就是一條線
01:46
But in Abbott's Flatland,
48
106459
1363
但在艾勃特的平面國中
01:47
closer objects are brighter,
49
107846
1926
越接近的物體看起來越明亮
01:49
and that's how they see depth.
50
109796
2157
這就是它們如何看到深度
01:51
So a triangle looks different from a square,
51
111977
2308
所以三角形看起來與正方形不同、
01:54
looks different a circle,
52
114309
1266
看起來與圓形不同
01:55
and so on.
53
115599
1275
諸如此類
01:56
Their brains cannot comprehend the third dimension.
54
116898
2589
它們的腦袋無法理解第三維度
01:59
In fact, they vehemently deny its existence
55
119511
2852
事實上,它們極力否認第三維度的存在
02:02
because it's simply not part of their world
56
122387
2147
因為那根本完全不存在於它們的世界
02:04
or experience.
57
124558
1675
或經驗中
02:06
But all they need,
58
126257
1041
但事實證明,它們所需要的
02:07
as it turns out,
59
127322
1138
02:08
is a little boost.
60
128484
2090
只是一點小小的刺激
02:10
One day a sphere shows up in Flatland
61
130598
1894
有一天,一個球體出現在平面國中
02:12
to visit our square hero.
62
132516
1725
拜訪我們的正方形英雄
02:14
Here's what it looks like
63
134265
913
這是當球體經過平面國時看起來的樣子
02:15
when the sphere passes through Flatland
64
135202
2123
02:17
from the square's perspective,
65
137349
2492
從正方形的角度來看
02:19
and this blows his little square mind.
66
139865
2600
這完全顛覆了它小小正方形的思想
02:22
Then the sphere lifts the square
67
142489
1862
之後球體將正方形提升
02:24
into the third dimension,
68
144375
1514
進入第三維
02:25
the height direction where no Flatlander has gone before
69
145913
3025
也就是高度方向 一個平面國國民以前從未到過的地方
02:28
and shows him his world.
70
148962
1981
向正方形展示了它的世界
02:30
From up here, the square can see everything:
71
150967
2561
從這個高度,正方形可以看到所有事物
02:33
the shapes of buildings,
72
153552
1056
建築物的形狀、
02:34
all the precious gems hidden in the Earth,
73
154632
2117
所有隱藏在世界中珍貴的寶物、
02:36
and even the insides of his friends,
74
156773
2548
甚至於它朋友的內部
02:39
which is probably pretty awkward.
75
159345
2648
這可能有點尷尬
02:42
Once the hapless square
76
162017
1098
不幸的正方形一接受第三維度後
02:43
comes to terms with the third dimension,
77
163139
1729
02:44
he begs his host to help him
78
164892
1364
就乞求球體幫助它
02:46
visit the fourth and higher dimensions,
79
166280
2217
探索第四或更高的維度
02:48
but the sphere bristles at the mere suggestion
80
168521
2191
但球體感到非常生氣
02:50
of dimensions higher than three
81
170736
1594
對於超過三維的看法
02:52
and exiles the square back to Flatland.
82
172354
2974
並把正方形逐回平面國
02:55
Now, the sphere's indignation is understandable.
83
175352
2475
球體的憤怒是可以理解的
02:57
A fourth dimension is very difficult
84
177851
1715
第四維度很難
02:59
to reconcile with our experience of the world.
85
179590
2595
和我們在這世界的經歷達成一致
03:02
Short of being lifted into the fourth dimension
86
182209
2239
沒有被來訪的超立方體提升到第四維度
03:04
by visiting hypercube,
87
184472
1086
03:05
we can't experience it,
88
185582
1909
我們無法體會
03:07
but we can get close.
89
187515
1631
但我們可以接近
03:09
You'll recall that when the sphere
90
189170
1351
你回溯到當球體
03:10
first visited the second dimension,
91
190545
1895
第一次到訪第二維時
03:12
he looked like a series of circles
92
192464
1775
它看起來像一連串的圓圈
03:14
that started as a point
93
194263
1176
當它碰觸到平面國時起始於一個點
03:15
when he touched Flatland,
94
195463
1394
03:16
grew bigger until he was halfway through,
95
196881
2284
越變越大直到它穿越一半時
03:19
and then shrank smaller again.
96
199189
1973
然後又萎縮變小
03:21
We can think of this visit
97
201186
1306
我們可以視此次拜訪
03:22
as a series of 2D cross-sections of a 3D object.
98
202516
4142
為三維物體的一連串橫截面
03:26
Well, we can do the same thing
99
206682
1429
我們可以同樣對待
03:28
in the third dimension with a four-dimensional object.
100
208135
4061
在第三維度的四維物體
03:32
Let's say that a hypersphere
101
212220
1334
我們說超球體
03:33
is the 4D equivalent of a 3D sphere.
102
213578
2812
是一個四維物體,等同於三維的球體
03:36
When the 4D object passes through the third dimension,
103
216414
2887
當這四維物體經過第三維度
03:39
it'll look something like this.
104
219325
2583
它會看起來像這樣
03:41
Let's look at one more way
105
221932
1076
我們來看看另一個表現四維物體的方式
03:43
of representing a four-dimensional object.
106
223032
2676
03:45
Let's say we have a point,
107
225732
860
我們有一個點,一個零維圖形
03:46
a zero-dimensional shape.
108
226616
2054
03:48
Now we extend it out one inch
109
228694
1518
現在我們把它延伸一吋
03:50
and we have a one-dimensional line segment.
110
230236
2562
於是我們有了一個一維線段
03:52
Extend the whole line segment by an inch,
111
232822
2066
把整個線段向外延伸一吋
03:54
and we get a 2D square.
112
234912
2134
於是我們得到一個二維正方形
03:57
Take the whole square and extend it out one inch,
113
237070
2334
把整個二維正方形向外延伸一吋
03:59
and we get a 3D cube.
114
239428
1913
於是我們得到一個三維立方體
04:01
You can see where we're going with this.
115
241365
1626
你可以看見我們做了什麼
04:03
Take the whole cube
116
243015
1138
把整個立方體向外延伸一吋
04:04
and extend it out one inch,
117
244177
1332
04:05
this time perpendicular to all three existing directions,
118
245533
3308
這一次與所有存在的三個維度相互垂直
04:08
and we get a 4D hypercube,
119
248865
2369
然後我們得到一個超立方體
04:11
also called a tesseract.
120
251258
2544
也叫四維超正方體
04:13
For all we know,
121
253826
939
04:14
there could be four-dimensional lifeforms
122
254789
1552
我們都知道
可能有四維生物存在於某個地方
04:16
somewhere out there,
123
256365
1229
04:17
occasionally poking their heads
124
257618
1477
偶爾探頭到我們繁忙的三維世界
04:19
into our bustling 3D world
125
259119
1815
04:20
and wondering what all the fuss is about.
126
260958
2163
看看有什麼大驚小怪的事情
04:23
In fact, there could be whole
127
263145
1142
事實上,可能有其他的四維世界
04:24
other four-dimensional worlds
128
264311
1746
04:26
beyond our detection,
129
266081
1461
超越我們所能察覺的範圍
04:27
hidden from us forever
130
267566
979
因為我們感知的特性 導致我們永遠看不到
04:28
by the nature of our perception.
131
268569
2358
04:30
Doesn't that blow your little spherical mind?
132
270951
3252
那不會顛覆你小小的腦袋嗎?
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7