What is a vector? - David Huynh

1,970,726 views ・ 2016-09-13

TED-Ed


Please double-click on the English subtitles below to play the video.

Prevodilac: Ema Maričić Lektor: Tijana Mihajlović
00:07
Physicists,
0
7261
870
Fizičari,
kontrolori leta
00:08
air traffic controllers,
1
8131
1431
00:09
and video game creators
2
9562
1660
i kreatori video-igara
00:11
all have at least one thing in common:
3
11222
3239
imaju bar jednu zajedničku stvar:
00:14
vectors.
4
14461
1291
vektore.
00:15
What exactly are they, and why do they matter?
5
15752
3340
Šta su oni zaista i zašto su važni?
00:19
To answer, we first need to understand scalars.
6
19092
4181
Da bismo odgovorili na to, moramo prvo da razumemo skalare.
00:23
A scalar is a quantity with magnitude.
7
23273
2888
Skalar je kvantitet sa brojnom veličinom.
00:26
It tells us how much of something there is.
8
26161
3051
Govori nam koliko ima nečega.
00:29
The distance between you and a bench,
9
29212
2180
Razdaljina između vas i klupe,
00:31
and the volume and temperature of the beverage in your cup
10
31392
3330
zapremina i temperatura pića u vašoj šolji
00:34
are all described by scalars.
11
34722
2920
opisani su skalarima.
00:37
Vector quantities also have a magnitude plus an extra piece of information,
12
37642
5341
Vektori takođe imaju veličinu, kao i dodatnu informaciju,
00:42
direction.
13
42983
1476
pravac.
00:44
To navigate to your bench,
14
44459
1513
Da biste stigli do klupe,
00:45
you need to know how far away it is and in what direction,
15
45972
3981
trebalo bi da znate koliko je udaljena i u kom pravcu je;
00:49
not just the distance, but the displacement.
16
49953
3210
a ne samo udaljenost, već i premeštanje u drugi položaj.
Ono što čini vektore posebnim i upotrebljivim u različitim poljima
00:53
What makes vectors special and useful in all sorts of fields
17
53163
3690
00:56
is that they don't change based on perspective
18
56853
2999
je što se ne menjaju u zavisnosti od perspektive,
00:59
but remain invariant to the coordinate system.
19
59852
3490
već ostaju nepromenljivi u odnosu na koordinantni sistem.
01:03
What does that mean?
20
63342
1421
Šta to znači?
01:04
Let's say you and a friend are moving your tent.
21
64763
2772
Recimo da vi i vaš prijatelj premeštate šator.
01:07
You stand on opposite sides so you're facing in opposite directions.
22
67535
4099
Stojite na različitim stranama i gledate u suprotnim smerovima.
01:11
Your friend moves two steps to the right and three steps forward
23
71634
4211
Vaš prijatelj se pomeri dva koraka udesno i tri napred,
01:15
while you move two steps to the left and three steps back.
24
75845
3609
a vi se pomerite dva koraka levo i tri nazad.
01:19
But even though it seems like you're moving differently,
25
79454
2769
Iako izgleda kao da se krećete različito,
01:22
you both end up moving the same distance in the same direction
26
82223
3562
oboje se prelazite istu udaljenost u istom smeru,
01:25
following the same vector.
27
85785
2629
prateći isti vektor.
01:28
No matter which way you face,
28
88414
1880
Bez obzira na to na koju stranu gledate
01:30
or what coordinate system you place over the camp ground,
29
90294
2990
ili koji koordinantni sistem stavite na izletište,
01:33
the vector doesn't change.
30
93284
2351
vektor se ne menja.
01:35
Let's use the familiar Cartesian coordinate system
31
95635
2533
Uzmimo Dekartov koordinantni sistem,
01:38
with its x and y axes.
32
98168
2606
sa osama x i y.
01:40
We call these two directions our coordinate basis
33
100774
3020
Ta dva pravca nazivamo koordinantim osama
01:43
because they're used to describe everything we graph.
34
103794
3180
jer se koriste za opisivanje svega što predstavimo grafikonom.
01:46
Let's say the tent starts at the origin and ends up over here at point B.
35
106974
4791
Recimo da se šator kreće od početka do tačke B.
01:51
The straight arrow connecting the two points
36
111765
2240
Prava strelica koja povezuje ove dve tačke
01:54
is the vector from the origin to B.
37
114005
2989
je vektor od mesta polaska do tačke B.
01:56
When your friend thinks about where he has to move,
38
116994
2512
Kad vaš prijatelj razmišlja kako treba da se pomeri,
01:59
it can be written mathematically as 2x + 3y,
39
119506
4341
to se može matematički opisati kao 2x + 3y,
02:03
or, like this, which is called an array.
40
123847
3366
ili ovako, što nazivamo nizom.
02:07
Since you're facing the other way,
41
127213
1643
Kako gledate u suprotnim smerovima,
02:08
your coordinate basis points in opposite directions,
42
128856
3620
vaše koordinatne ose su suprotno okrenute
02:12
which we can call x prime and y prime,
43
132476
2895
i njih ćemo nazvati x' i y',
02:15
and your movement can be written like this,
44
135371
3604
a vaše kretanje se može ovako pribeležiti
02:18
or with this array.
45
138975
2750
ili ovim nizom.
02:21
If we look at the two arrays, they're clearly not the same,
46
141725
3425
Ako pogledamo ta dva niza, videćemo da definitivno nisu isti,
02:25
but an array alone doesn't completely describe a vector.
47
145150
4485
ali sam niz ne opisuje vektor u potpunosti.
02:29
Each needs a basis to give it context,
48
149635
3011
Svaki zahteva osu da bi imao kontekst,
02:32
and when we properly assign them,
49
152646
1751
a kad ih pravilno pripišemo,
02:34
we see that they are in fact describing the same vector.
50
154397
4068
možemo videti da zapravo opisuju isti vektor.
02:38
You can think of elements in the array as individual letters.
51
158465
3191
Možete da gledate na elemente niza kao na pojedinačna slova.
02:41
Just as a sequence of letters only becomes a word
52
161656
3059
Kao što niz slova postaje reč
02:44
in the context of a particular language,
53
164715
2880
samo kada je u kontekstu u nekom jeziku,
02:47
an array acquires meaning as a vector when assigned a coordinate basis.
54
167595
5371
tako i niz dobija značenje kao vektor kad mu se pripiše koordinantna osa.
02:52
And just as different words in two languages can convey the same idea,
55
172966
4280
I kao što različite reči u dva jezika mogu da govore o istom pojmu,
02:57
different representations from two bases can describe the same vector.
56
177246
4539
različite predstave dve ose opisuju isti vektor.
03:01
The vector is the essence of what's being communicated,
57
181785
3541
Vektor je ključan za ono o čemu se priča,
03:05
regardless of the language used to describe it.
58
185326
2850
bez obzira na to koji jezik se koristi za opisivanje.
03:08
It turns out that scalars also share this coordinate invariance property.
59
188176
4352
Ispostavlja se da su skalari konstantni u odnosu na koordinantni sistem.
03:12
In fact, all quantities with this property are members of a group called tensors.
60
192528
5520
Zapravo, svi kvantiteti sa ovom osobinom su u skupu tenzora.
03:18
Various types of tensors contain different amounts of information.
61
198048
4589
Različiti tipovi tenzora sadrže različite količine informacija.
03:22
Does that mean there's something that can convey more information than vectors?
62
202637
4022
Da li to znači da postoji nešto što može da prenosi više informacija od vektora?
03:26
Absolutely.
63
206659
1608
Naravno.
03:28
Say you're designing a video game,
64
208267
1630
Recimo da dizajnirate video-igru
03:29
and you want to realistically model how water behaves.
65
209897
3751
i želite da realistično modelirate kretanje vode.
03:33
Even if you have forces acting in the same direction
66
213648
2910
Čak i ako imate sile koje deluju u istom pravcu
03:36
with the same magnitude,
67
216558
1629
istim intenzitetom,
u zavisnosti od njihove orijentacije, možete videti talasanje ili kovitlanje.
03:38
depending on how they're oriented, you might see waves or whirls.
68
218187
4721
03:42
When force, a vector, is combined with another vector that provides orientation,
69
222908
4812
Kada se sila, vektor, kombinuje sa drugim vektorom koji pruža orijentaciju,
03:47
we have the physical quantity called stress,
70
227720
3197
onda se dobija fizički kvantitet poznat kao napon,
03:50
which is an example of a second order tensor.
71
230917
3562
a on je primer tenzora drugog reda.
03:54
These tensors are also used outside of video games for all sorts of purposes,
72
234479
5250
Ovi tenzori se koriste ne samo za video-igre, već imaju različite namene,
03:59
including scientific simulations,
73
239729
1769
poput naučnih simulacija,
04:01
car designs,
74
241498
1320
dizajniranja automobila
04:02
and brain imaging.
75
242818
1670
i snimanja mozga.
04:04
Scalars, vectors, and the tensor family present us with a relatively simple way
76
244488
4661
Skalari, vektori i porodica tenzora pružaju nam relativno lak način
04:09
of making sense of complex ideas and interactions,
77
249149
3688
razjašnjavanja kompleksnih ideja i interakcija
04:12
and as such, they're a prime example of the elegance, beauty,
78
252837
4031
i, kao takvi, primer su elegancije, lepote
04:16
and fundamental usefulness of mathematics.
79
256868
3143
i fundamentalne primenljivosti matematike.

Original video on YouTube.com
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7