What is a vector? - David Huynh

Što je vektor? - David Huynh

2,000,359 views ・ 2016-09-13

TED-Ed


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Tamara Rabuzin Recezent: Ivan Stamenković
00:07
Physicists,
0
7261
870
Fizičari,
00:08
air traffic controllers,
1
8131
1431
kontrolori leta
00:09
and video game creators
2
9562
1660
i dizajneri video igara
00:11
all have at least one thing in common:
3
11222
3239
imaju barem jednu stvar zajedničku:
00:14
vectors.
4
14461
1291
vektore.
00:15
What exactly are they, and why do they matter?
5
15752
3340
Što su točno vektori i zašto su važni?
00:19
To answer, we first need to understand scalars.
6
19092
4181
Da bi odgovorili, prvo moramo razumjeti skalare.
00:23
A scalar is a quantity with magnitude.
7
23273
2888
Skalar je veličina s duljinom.
00:26
It tells us how much of something there is.
8
26161
3051
Govori nam koliko nečeg ima.
00:29
The distance between you and a bench,
9
29212
2180
Udaljenost između vas i klupe,
00:31
and the volume and temperature of the beverage in your cup
10
31392
3330
i volumen i temperatura napitka u vašoj šalici
00:34
are all described by scalars.
11
34722
2920
opisani su skalarima.
00:37
Vector quantities also have a magnitude plus an extra piece of information,
12
37642
5341
Vektorske veličine također imaju iznos ali i dodatni element,
00:42
direction.
13
42983
1476
smjer.
00:44
To navigate to your bench,
14
44459
1513
Da bi došli do svoje klupe,
00:45
you need to know how far away it is and in what direction,
15
45972
3981
morate znati koliko je udaljena i u kojem smjeru,
00:49
not just the distance, but the displacement.
16
49953
3210
ne samo njezinu udaljenost već i položaj.
00:53
What makes vectors special and useful in all sorts of fields
17
53163
3690
Ono što vektore čini posebnima i korisnima u mnogim područjima
00:56
is that they don't change based on perspective
18
56853
2999
jest to da se ne mijenjaju s obzirom na gledište
00:59
but remain invariant to the coordinate system.
19
59852
3490
već ostaju invarijantni s obzirom na koordinatni sustav.
01:03
What does that mean?
20
63342
1421
Što to znači?
01:04
Let's say you and a friend are moving your tent.
21
64763
2772
Recimo da vi i prijatelj premještate šator.
01:07
You stand on opposite sides so you're facing in opposite directions.
22
67535
4099
Stojite na suprotnim stranama pa gledate u suprotnim smjerovima.
01:11
Your friend moves two steps to the right and three steps forward
23
71634
4211
Vaš prijatelj pomiče se dva koraka desno i tri koraka naprijed
01:15
while you move two steps to the left and three steps back.
24
75845
3609
dok se vi mičete dva koraka lijevo i tri koraka natrag.
01:19
But even though it seems like you're moving differently,
25
79454
2769
Ali iako se čini da ste se pomaknuli drukčije,
01:22
you both end up moving the same distance in the same direction
26
82223
3562
na kraju ste se pomaknuli za istu udaljenost u istom smjeru
01:25
following the same vector.
27
85785
2629
prateći isti vektor.
01:28
No matter which way you face,
28
88414
1880
Bez obzira u kojem smjeru gledate,
01:30
or what coordinate system you place over the camp ground,
29
90294
2990
ili kakav koordinatni sustav postavite na tlo kampa,
01:33
the vector doesn't change.
30
93284
2351
vektor se ne mijenja.
01:35
Let's use the familiar Cartesian coordinate system
31
95635
2533
Koristit ćemo poznati nam Kartezijev koordinatni sustav
01:38
with its x and y axes.
32
98168
2606
s x i y osi.
01:40
We call these two directions our coordinate basis
33
100774
3020
Ova dva smjera zovemo vektori baze.
01:43
because they're used to describe everything we graph.
34
103794
3180
jer pomoću njih opisujemo sve što ćemo prikazati grafom.
01:46
Let's say the tent starts at the origin and ends up over here at point B.
35
106974
4791
Neka šator počinje u ishodištu i završava ovdje u točki B.
01:51
The straight arrow connecting the two points
36
111765
2240
Ravna strelica koja povezuje dvije točke
01:54
is the vector from the origin to B.
37
114005
2989
je vektor iz ishodišta prema B.
01:56
When your friend thinks about where he has to move,
38
116994
2512
Kada vaš prijatelj određuje gdje se mora pomaknuti,
01:59
it can be written mathematically as 2x + 3y,
39
119506
4341
to se matematičkim jezikom može zapisati kao 2x+3y,
02:03
or, like this, which is called an array.
40
123847
3366
ili ovako, kao uređeni par.
02:07
Since you're facing the other way,
41
127213
1643
S obzirom da vi gledate u drugom smjeru,
02:08
your coordinate basis points in opposite directions,
42
128856
3620
vaša baza je u suprotnom smjeru,
02:12
which we can call x prime and y prime,
43
132476
2895
što možemo nazvati x i y baze,
02:15
and your movement can be written like this,
44
135371
3604
a tvoj pomak može se zapisati ovako,
02:18
or with this array.
45
138975
2750
ili pomoću ovog uređenog para.
02:21
If we look at the two arrays, they're clearly not the same,
46
141725
3425
Ako pogledamo ova dva uređena para vidimo da očito nisu jednaki,
02:25
but an array alone doesn't completely describe a vector.
47
145150
4485
ali sam uređeni par nije dovoljan da bi se odredio vektor.
02:29
Each needs a basis to give it context,
48
149635
3011
Da bi se dobio kontekst, potrebne su baze,
02:32
and when we properly assign them,
49
152646
1751
a kad ih dodijelimo,
02:34
we see that they are in fact describing the same vector.
50
154397
4068
vidimo da one zapravo opisuju isto vektor.
02:38
You can think of elements in the array as individual letters.
51
158465
3191
Elemente uređenog para možete zamisliti kao pojedinačna slova.
02:41
Just as a sequence of letters only becomes a word
52
161656
3059
Niz slova postaje riječ
02:44
in the context of a particular language,
53
164715
2880
tek u kontekstu određenog jezika,
02:47
an array acquires meaning as a vector when assigned a coordinate basis.
54
167595
5371
isto tako uređeni par opisuje neki vektor tek kad mu se dodijeli baza.
02:52
And just as different words in two languages can convey the same idea,
55
172966
4280
Različite riječi u dva jezika mogu opisivati istu ideju,
02:57
different representations from two bases can describe the same vector.
56
177246
4539
isto tako prikazi u dvije različite baze mogu opisivati isti vektor.
03:01
The vector is the essence of what's being communicated,
57
181785
3541
Vektor je osnova onoga što se prenosi,
03:05
regardless of the language used to describe it.
58
185326
2850
bez obzira na jezik pomoću kojeg se opisuje.
03:08
It turns out that scalars also share this coordinate invariance property.
59
188176
4352
Skalari također imaju svojstvo invarijantnosti s obzirom na koordinate.
03:12
In fact, all quantities with this property are members of a group called tensors.
60
192528
5520
Zapravo, sve veličine s ovim svojstvom pripadaju grupi tenzora.
03:18
Various types of tensors contain different amounts of information.
61
198048
4589
Različite vrste tenzora sadrže različit broj informacija.
03:22
Does that mean there's something that can convey more information than vectors?
62
202637
4022
Znači li to da postoji nešto što prenosi više informacija od vektora?
03:26
Absolutely.
63
206659
1608
Naravno.
03:28
Say you're designing a video game,
64
208267
1630
Recimo da dizajnirate video igru,
03:29
and you want to realistically model how water behaves.
65
209897
3751
i želite realistično modelirati ponašanje vode.
03:33
Even if you have forces acting in the same direction
66
213648
2910
Čak i ako imate sile koje djeluju u istom smjeru
03:36
with the same magnitude,
67
216558
1629
i istog su iznosa,
03:38
depending on how they're oriented, you might see waves or whirls.
68
218187
4721
ovisno o tome kako su usmjerene, pojavljuju se ili valovi ili vrtlozi.
03:42
When force, a vector, is combined with another vector that provides orientation,
69
222908
4812
Kad se stlači, vektor se kombinira s drugim vektorom koji određuje orijentaciju,
03:47
we have the physical quantity called stress,
70
227720
3197
pa imamo fizikalnu veličinu koja se zove naprezanje,
03:50
which is an example of a second order tensor.
71
230917
3562
što je primjer tenzora drugog reda.
03:54
These tensors are also used outside of video games for all sorts of purposes,
72
234479
5250
Ovi tenzori koriste se i izvan područja video igara za različite svrhe,
03:59
including scientific simulations,
73
239729
1769
uključujući znanstvene simulacije,
04:01
car designs,
74
241498
1320
dizajniranje automobila,
04:02
and brain imaging.
75
242818
1670
i mapiranje mozga.
04:04
Scalars, vectors, and the tensor family present us with a relatively simple way
76
244488
4661
Skalari, vektori i familija tenzora na razmjerno jednostavan način
04:09
of making sense of complex ideas and interactions,
77
249149
3688
objašnjavaju složene ideje i međudjelovanja,
04:12
and as such, they're a prime example of the elegance, beauty,
78
252837
4031
i kao takvi, oni su lijep primjer elegancije, ljepote
04:16
and fundamental usefulness of mathematics.
79
256868
3143
i temeljne korisnosti matematike.

Original video on YouTube.com
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7