What is Zeno's Dichotomy Paradox? - Colm Kelleher

3,740,328 views ・ 2013-04-15

TED-Ed


Please double-click on the English subtitles below to play the video.

00:00
Translator: Andrea McDonough Reviewer: Bedirhan Cinar
0
0
7000
Prevodilac: Marija Kojić Lektor: Jelena Kovačević
00:15
This is Zeno of Elea,
1
15096
1775
Ovo je Zenon od Eleje,
00:16
an ancient Greek philosopher
2
16871
1506
antički Grčki filozof
00:18
famous for inventing a number of paradoxes,
3
18377
2665
poznat po tome što je izumeo veliki broj paradoksa,
argumenata koji se čine logičnim,
00:21
arguments that seem logical,
4
21042
1518
00:22
but whose conclusion is absurd or contradictory.
5
22560
3219
ali čiji zaključak je apsurdan
ili kontradiktoran.
00:25
For more than 2,000 years,
6
25779
1404
Više od 2000 godina,
00:27
Zeno's mind-bending riddles have inspired
7
27183
2511
Zenonove zbunjujuće zagonetke
00:29
mathematicians and philosophers
8
29694
1616
inspirišu matematičare i filozofe
00:31
to better understand the nature of infinity.
9
31310
2436
da bolje razumeju prirodu beskonačnosti.
00:33
One of the best known of Zeno's problems
10
33746
1779
Jedan od najpoznatijih Zenonovih problema
00:35
is called the dichotomy paradox,
11
35525
2216
zove se paradoks dihotomije,
00:37
which means, "the paradox of cutting in two" in ancient Greek.
12
37741
3786
što znači „paradoks deljenja na dva" na antičkom Grčkom.
00:41
It goes something like this:
13
41527
1788
Paradoks se može objasniti ovako:
00:43
After a long day of sitting around, thinking,
14
43315
2839
Posle dugog dana sedenja
i razmišljenja
00:46
Zeno decides to walk from his house to the park.
15
46154
2796
Zenon odluči da prošeta od svoje kuće do parka.
00:48
The fresh air clears his mind
16
48950
1447
Svež vazduh ga osvežava
00:50
and help him think better.
17
50397
1523
i pomaže mu da bolje misli.
00:51
In order to get to the park,
18
51920
1155
Da bi došao do parka,
00:53
he first has to get half way to the park.
19
53075
2353
on prvo mora da prođe polovinu puta do parka.
00:55
This portion of his journey
20
55428
1173
Ovaj deo putovanja
00:56
takes some finite amount of time.
21
56601
1842
traje konačan period vremena.
00:58
Once he gets to the halfway point,
22
58443
2009
Kada pređe pola puta,
01:00
he needs to walk half the remaining distance.
23
60452
2389
on mora da pređe drugu polovinu puta.
01:02
Again, this takes a finite amount of time.
24
62841
3027
Ponovo, ovo traje konačan period vremena.
01:05
Once he gets there, he still needs to walk
25
65868
2272
Kada stigne tamo, još uvek mora da pređe
01:08
half the distance that's left,
26
68140
1742
polovinu puta koji mu preostaje,
01:09
which takes another finite amount of time.
27
69882
2489
što traje još jedan konačan period vremena.
01:12
This happens again and again and again.
28
72371
3151
Ovo se ponavlja iznova i iznova i iznova.
01:15
You can see that we can keep going like this forever,
29
75522
2673
Možete da vidite da ovako možemo zauvek,
01:18
dividing whatever distance is left
30
78195
1662
deleći preostali deo puta
01:19
into smaller and smaller pieces,
31
79857
1915
na manje i manje delove,
01:21
each of which takes some finite time to traverse.
32
81772
3506
od kojih svaki traje ograničen period vremena da se pređe.
01:25
So, how long does it take Zeno to get to the park?
33
85278
2680
Dakle, koliko Zenonu treba vremena da dođe do parka?
01:27
Well, to find out, you need to add the times
34
87958
2359
Pa, da biste saznali, morate da saberete vremena
01:30
of each of the pieces of the journey.
35
90317
1967
koja su potrebna za svaki deo putovanja.
01:32
The problem is, there are infinitely many of these finite-sized pieces.
36
92284
4332
Problem je u tome da postoji
beskonačno mnogo ovih vremenski ograničenih delova.
01:36
So, shouldn't the total time be infinity?
37
96616
3134
Dakle, zar ukupno vreme ne bi bilo beskonačno?
01:39
This argument, by the way, is completely general.
38
99750
2798
Ovaj argument je, inače, sasvim opšti.
01:42
It says that traveling from any location to any other location
39
102548
2544
On tvrdi da putovanje sa jednog mesta na drugo
01:45
should take an infinite amount of time.
40
105092
2162
treba da traje beskonačno mnogo vremena.
01:47
In other words, it says that all motion is impossible.
41
107254
3752
Drugim rečima, on tvrdi da je svako kretanje nemoguće.
01:51
This conclusion is clearly absurd,
42
111006
1779
Ovaj zaključak je očigledno apsurdan,
01:52
but where is the flaw in the logic?
43
112785
1999
ali gde je greška u logici?
01:54
To resolve the paradox,
44
114784
1182
Da rešimo paradoks,
01:55
it helps to turn the story into a math problem.
45
115966
2765
pomaže da pretvorimo priču u matematički problem.
01:58
Let's supposed that Zeno's house is one mile from the park
46
118731
2887
Pretpostavimo da je Zenonova kuća od parka udaljena 1,6 kilometara
02:01
and that Zeno walks at one mile per hour.
47
121618
2723
i da Zenon prelazi 1,6 kilometara na sat.
02:04
Common sense tells us that the time for the journey
48
124341
2351
Zdrav razum nam govori da vreme putovanja
02:06
should be one hour.
49
126692
1513
treba da bude 1 sat.
02:08
But, let's look at things from Zeno's point of view
50
128205
2662
Ipak, hajde da sagledamo stvari iz Zenonovog ugla
02:10
and divide up the journey into pieces.
51
130867
2329
i podelimo putovanje u delove.
02:13
The first half of the journey takes half an hour,
52
133196
2460
Prva polovina putovanja traje pola sata,
02:15
the next part takes quarter of an hour,
53
135656
2126
sledeća traje četvrt sata,
02:17
the third part takes an eighth of an hour,
54
137782
2282
sledeća osminu sata,
02:20
and so on.
55
140064
905
02:20
Summing up all these times,
56
140969
1297
i tako dalje.
Kada saberemo sva ova vremena,
02:22
we get a series that looks like this.
57
142266
2106
dobijamo niz koji izgleda ovako.
02:24
"Now", Zeno might say,
58
144372
1252
„Sada,” Zenon bi mogao da kaže,
02:25
"since there are infinitely many of terms
59
145624
2340
budući da postoji beskonačan broj izraza
02:27
on the right side of the equation,
60
147964
1657
sa desne strane jednačine,
02:29
and each individual term is finite,
61
149621
2262
i da je svaki pojedinačan izraz konačan,
02:31
the sum should equal infinity, right?"
62
151883
2635
zbir bi trebao da bude jednak beskonačnom, tako?"
02:34
This is the problem with Zeno's argument.
63
154518
2152
U tome je problem sa Zenonovim argumentom.
02:36
As mathematicians have since realized,
64
156670
2185
Kao što su matematičari od tada shvatili,
02:38
it is possible to add up infinitely many finite-sized terms
65
158855
3763
moguće je zbrajati beskonačan niz mnogih konačnih izraza
02:42
and still get a finite answer.
66
162618
2196
i opet dobiti rezultat koji je konačan.
02:44
"How?" you ask.
67
164814
1175
„Kako?”, pitate se vi.
02:45
Well, let's think of it this way.
68
165989
1497
Razmišljajmo o tome ovako.
02:47
Let's start with a square that has area of one meter.
69
167486
2904
Počnimo sa kvadratom koji zauzima površinu od jednog metra.
02:50
Now let's chop the square in half,
70
170390
2138
Sada, hajde da presečemo kvadrat na pola,
02:52
and then chop the remaining half in half,
71
172528
2381
i onda da presečemo preostalu polovinu na pola,
02:54
and so on.
72
174909
1263
i tako dalje.
02:56
While we're doing this,
73
176172
1067
Dok ovo radimo,
02:57
let's keep track of the areas of the pieces.
74
177239
3141
hajde da beležimo površinu ovih delova.
03:00
The first slice makes two parts,
75
180380
1789
Prvi rez pravi dva dela,
03:02
each with an area of one-half
76
182169
1859
svaki sa površinom jedne polovine.
03:04
The next slice divides one of those halves in half,
77
184028
2517
Sledeći rez deli ove polovine na pola,
03:06
and so on.
78
186545
1251
i tako dalje.
03:07
But, no matter how many times we slice up the boxes,
79
187796
2431
Ipak, koliko god puta mi da presečemo kvadrat,
03:10
the total area is still the sum of the areas of all the pieces.
80
190227
4587
celokupna površina je još uvek zbir površina svih delova.
03:14
Now you can see why we choose this particular way
81
194814
2628
Sada uviđate zašto smo izabrali baš ovaj način
03:17
of cutting up the square.
82
197442
1529
da presecamo kvadrat.
03:18
We've obtained the same infinite series
83
198971
1917
Dobili smo isti beskonačan niz
03:20
as we had for the time of Zeno's journey.
84
200888
2468
koji smo imali za vreme Zenonovog putovanja.
03:23
As we construct more and more blue pieces,
85
203356
2435
Kako mi kombinujemo sve više i više plavih delova,
03:25
to use the math jargon,
86
205791
1523
da kažemo to matematički,
03:27
as we take the limit as n tends to infinity,
87
207314
3428
kako mi za limit uzimamo „n” koji teži beskonačnom,
03:30
the entire square becomes covered with blue.
88
210742
2614
ceo kvadrat postaje prekriven plavim.
03:33
But the area of the square is just one unit,
89
213356
2071
Ipak, površina kvadrata je samo jedna jedinica,
03:35
and so the infinite sum must equal one.
90
215427
3273
stoga beskonačan zbir mora biti jednak jedinici.
03:38
Going back to Zeno's journey,
91
218700
1054
U Zenonovom putovanju,
03:39
we can now see how how the paradox is resolved.
92
219754
2616
vidimo kako se paradoks može rešiti.
03:42
Not only does the infinite series sum to a finite answer,
93
222370
3343
Ne samo da je zbir beskonačnog niza
konačan odgovor,
03:45
but that finite answer is the same one
94
225713
2032
nego je i konačan odgovor isti onaj
03:47
that common sense tells us is true.
95
227745
2427
za koji nam zdrav razum govori da je tačan.
03:50
Zeno's journey takes one hour.
96
230172
2705
Zenonovo putovanje traje jedan sat.
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7