What is Zeno's Dichotomy Paradox? - Colm Kelleher

3,745,205 views ใƒป 2013-04-15

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Andrea McDonough Reviewer: Bedirhan Cinar
0
0
7000
ืชืจื’ื•ื: Ido Dekkers ืขืจื™ื›ื”: Zeeva Livshitz
00:15
This is Zeno of Elea,
1
15096
1775
ื–ื” ื–ื™ื ื• ืžืืœื™ื”,
00:16
an ancient Greek philosopher
2
16871
1506
ืคื™ืœื•ืกื•ืฃ ื™ื•ื•ื ื™ ืขืชื™ืง
00:18
famous for inventing a number of paradoxes,
3
18377
2665
ืฉื™ื“ื•ืข ื‘ื”ืžืฆืืช ืžืกืคืจ ืคืจื“ื•ืงืกื™ื,
00:21
arguments that seem logical,
4
21042
1518
ื˜ื™ืขื•ื ื™ื ืฉื ืจืื™ื ื”ื’ื™ื•ื ื™ื™ื,
00:22
but whose conclusion is absurd or contradictory.
5
22560
3219
ืื‘ืœ ืฉื”ืชื•ืฆืื” ืฉืœื”ื ื”ื™ื ืื‘ืกื•ืจื“ื™ืช ืื• ืกื•ืชืจืช.
00:25
For more than 2,000 years,
6
25779
1404
ื‘ืžืฉืš ื™ื•ืชืจ ืž 2000 ืฉื ื”,
00:27
Zeno's mind-bending riddles have inspired
7
27183
2511
ื”ื—ื™ื“ื•ืช ื”ืงืฉื•ืช ืฉืœ ื–ื™ื ื• ื ืชื ื• ื”ืฉืจืื”
00:29
mathematicians and philosophers
8
29694
1616
ืœืžืชืžื˜ื™ืงืื™ื ื•ืคื™ืœื•ืกื•ืคื™ื
00:31
to better understand the nature of infinity.
9
31310
2436
ื›ื“ื™ ืœื”ื‘ื™ืŸ ื˜ื•ื‘ ื™ื•ืชืจ ืืช ื”ืื•ืคื™ ืฉืœ ื”ืื™ืŸ ืกื•ืฃ.
00:33
One of the best known of Zeno's problems
10
33746
1779
ืื—ืช ืžื”ื‘ืขื™ื•ืช ื”ื™ื•ืชืจ ื™ื“ื•ืขื•ืช ืฉืœ ื–ื™ื ื•
00:35
is called the dichotomy paradox,
11
35525
2216
ื ืงืจืืช ืคืจื“ื•ืงืก ื”ื“ื™ื›ื•ื˜ื•ืžื™ื”,
00:37
which means, "the paradox of cutting in two" in ancient Greek.
12
37741
3786
ืฉื›ื•ื•ื ืชื• ื”ื™ื "ื”ืคืจื“ื•ืงืก ืฉืœ ื—ื™ืชื•ืš ืœืฉื ื™ื™ื" ื‘ื™ื•ื•ื ื™ืช ืขืชื™ืงื”.
00:41
It goes something like this:
13
41527
1788
ื”ื•ื ื”ื•ืœืš ื‘ืขืจืš ื›ื›ื”:
00:43
After a long day of sitting around, thinking,
14
43315
2839
ืื—ืจื™ ื™ื•ื ืืจื•ืš ืฉืœ ื™ืฉื™ื‘ื” ื•ื—ืฉื™ื‘ื”,
00:46
Zeno decides to walk from his house to the park.
15
46154
2796
ื–ื™ื ื• ืžื—ืœื™ื˜ ืœืœื›ืช ืžื‘ื™ืชื• ืœืคืืจืง.
00:48
The fresh air clears his mind
16
48950
1447
ื”ืื•ื™ืจ ื”ื˜ืจื™ ืžืจืขื ืŸ ืืช ืžื•ื—ื•
00:50
and help him think better.
17
50397
1523
ื•ืขื•ื–ืจ ืœื• ื—ืฉื•ื‘ ื™ื•ืชืจ ื‘ื‘ื”ื™ืจื•ืช.
00:51
In order to get to the park,
18
51920
1155
ื›ื“ื™ ืœื”ื’ื™ืข ืœืคืืจืง,
00:53
he first has to get half way to the park.
19
53075
2353
ื”ื•ื ืฆืจื™ืš ืจืืฉื™ืช ืœืœื›ืช ื—ืฆื™ ืžื”ื“ืจืš ืœืคืืจืง.
00:55
This portion of his journey
20
55428
1173
ื”ื—ืœืง ื”ื–ื” ืฉืœ ื”ื˜ื™ื•ืœ
00:56
takes some finite amount of time.
21
56601
1842
ืœื•ืงื— ื–ืžืŸ ืงื‘ื•ืข.
00:58
Once he gets to the halfway point,
22
58443
2009
ื‘ืจื’ืข ืฉื”ื•ื ืžื’ื™ืข ืœื ืงื•ื“ืช ื”ืืžืฆืข,
01:00
he needs to walk half the remaining distance.
23
60452
2389
ื”ื•ื ืฆืจื™ืš ืœืœื›ืช ื—ืฆื™ ืžื”ืžืจื—ืง ืฉื ื•ืชืจ.
01:02
Again, this takes a finite amount of time.
24
62841
3027
ืฉื•ื‘, ื–ื” ืœื•ืงื— ื–ืžืŸ ืžืกื•ื™ื™ื ืงื‘ื•ืข.
01:05
Once he gets there, he still needs to walk
25
65868
2272
ื‘ืจื’ืข ืฉื”ื•ื ืžื’ื™ืข ืœืฉื, ื”ื•ื ืขื“ื™ื™ืŸ ืฆืจื™ืš ืœืœื›ืช
01:08
half the distance that's left,
26
68140
1742
ื—ืฆื™ ืžื”ืžืจื—ืง ืฉื ื•ืชืจ,
01:09
which takes another finite amount of time.
27
69882
2489
ืžื” ืฉืœื•ืงื— ืœื• ืขื•ื“ ื–ืžืŸ ืžืกื•ื™ื™ื.
01:12
This happens again and again and again.
28
72371
3151
ื–ื” ืงื•ืจื” ืฉื•ื‘ ื•ืฉื•ื‘ ื•ืฉื•ื‘.
01:15
You can see that we can keep going like this forever,
29
75522
2673
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉื–ื” ื™ื›ื•ืœ ืœื”ืžืฉื™ืš ืœืขื“,
01:18
dividing whatever distance is left
30
78195
1662
ื—ืœื•ืงืช ื”ืžืจื—ืง ืฉื ื•ืชืจ
01:19
into smaller and smaller pieces,
31
79857
1915
ืœื—ืœืงื™ื ืงื˜ื ื™ื ื™ื•ืชืจ ื•ื™ื•ืชืจ,
01:21
each of which takes some finite time to traverse.
32
81772
3506
ื›ืœ ืื—ื“ ืžื”ื ืœื•ืงื— ื–ืžืŸ ืžืกื•ื™ื™ื ืœืขื‘ื•ืจ.
01:25
So, how long does it take Zeno to get to the park?
33
85278
2680
ืื–, ื›ืžื” ื–ืžืŸ ืœื•ืงื— ืœื–ื™ื ื• ืœื”ื’ื™ืข ืœืคืืจืง?
01:27
Well, to find out, you need to add the times
34
87958
2359
ื•ื‘ื›ืŸ, ื›ื“ื™ ืœื“ืขืช, ืืชื ืฆืจื™ื›ื™ื ืœื—ื‘ืจ ืืช ื”ื–ืžื ื™ื
01:30
of each of the pieces of the journey.
35
90317
1967
ืฉืœ ื›ืœ ืื—ืช ืžืคื™ืกื•ืช ื”ื“ืจืš.
01:32
The problem is, there are infinitely many of these finite-sized pieces.
36
92284
4332
ื”ื‘ืขื™ื” ื”ื™ื, ืฉื™ืฉ ืžืกืคืจ ืื™ืŸ ืกื•ืคื™ ืฉืœ ืคื™ืกื•ืช ื“ืจืš ืืœื•.
01:36
So, shouldn't the total time be infinity?
37
96616
3134
ืื–, ื”ืื ื”ื–ืžืŸ ื”ื›ื•ืœืœ ืฆืจื™ืš ืœื”ื™ื•ืช ืื™ืŸ ืกื•ืคื™?
01:39
This argument, by the way, is completely general.
38
99750
2798
ื”ื˜ื™ืขื•ืŸ ื”ื–ื”, ื“ืจืš ืื’ื‘, ื”ื•ื ื›ืœืœื™ ืœื—ืœื•ื˜ื™ืŸ.
01:42
It says that traveling from any location to any other location
39
102548
2544
ื”ื•ื ืื•ืžืจ ืฉืžืขื‘ืจ ืžื ืงื•ื“ื” ืœื ืงื•ื“ื” ืื—ืจืช
01:45
should take an infinite amount of time.
40
105092
2162
ืฆืจื™ืš ืœืงื—ืช ื–ืžืŸ ืื™ืŸ ืกื•ืคื™.
01:47
In other words, it says that all motion is impossible.
41
107254
3752
ื‘ืžื™ืœื™ื ืื—ืจื•ืช, ื–ื” ืื•ืžืจ ืฉื›ืœ ืชื ื•ืขื” ื”ื™ื ื‘ืœืชื™ ืืคืฉืจื™ืช.
01:51
This conclusion is clearly absurd,
42
111006
1779
ื”ืžืกืงื ื” ื”ื–ื• ื”ื™ื ืื‘ืกื•ืจื“ื™ืช ืœื—ืœื•ื˜ื™ืŸ,
01:52
but where is the flaw in the logic?
43
112785
1999
ืื‘ืœ ืื™ืคื” ื”ื›ืฉืœ ื‘ื”ื™ื’ื™ื•ืŸ?
01:54
To resolve the paradox,
44
114784
1182
ื›ื“ื™ ืœืคืชื•ืจ ืืช ื”ืคืจื“ื•ืงืก ื”ื–ื”,
01:55
it helps to turn the story into a math problem.
45
115966
2765
ื–ื” ืขื•ื–ืจ ืœื”ืคื•ืš ืืช ื”ืกื™ืคื•ืจ ื”ื–ื” ืœื‘ืขื™ื” ืžืชืžื˜ื™ืช.
01:58
Let's supposed that Zeno's house is one mile from the park
46
118731
2887
ื‘ื•ืื• ื ื ื™ื— ืฉื”ื‘ื™ืช ืฉืœ ื–ื™ื ื• ื ืžืฆื ืžื™ื™ืœ ืื—ื“ ืžื”ืคืืจืง
02:01
and that Zeno walks at one mile per hour.
47
121618
2723
ื•ืฉื–ื™ื ื• ื”ื•ืœืš ืžื™ื™ืœ ืื—ื“ ื‘ืฉืขื”.
02:04
Common sense tells us that the time for the journey
48
124341
2351
ื”ื”ื’ื™ื•ืŸ ืื•ืžืจ ืœื ื• ืฉื”ื–ืžืŸ ืฉืžืฉืšื”ื”ืœื™ื›ื”
02:06
should be one hour.
49
126692
1513
ืฆืจื™ืš ืœื”ื™ื•ืช ืฉืขื”.
02:08
But, let's look at things from Zeno's point of view
50
128205
2662
ืื‘ืœ, ื‘ื•ืื• ื ื‘ื™ื˜ ื‘ื–ื” ืžื ืงื•ื“ืช ืžื‘ื˜ื• ืฉืœ ื–ื™ื ื•
02:10
and divide up the journey into pieces.
51
130867
2329
ื•ื ื—ืœืง ืืช ื”ื“ืจืš ืœืงื˜ืขื™ื.
02:13
The first half of the journey takes half an hour,
52
133196
2460
ื”ื—ืฆื™ ื”ืจืืฉื•ืŸ ืฉืœ ื”ื”ืœื™ื›ื” ื™ืงื— ื—ืฆื™ ืฉืขื”,
02:15
the next part takes quarter of an hour,
53
135656
2126
ื”ื—ืœืง ื”ื‘ื ื™ืงื— ืจื‘ืข ืฉืขื”,
02:17
the third part takes an eighth of an hour,
54
137782
2282
ื”ืฉืœื™ืฉื™ ืฉืžื™ื ื™ืช ืฉืขื”,
02:20
and so on.
55
140064
905
02:20
Summing up all these times,
56
140969
1297
ื•ื›ืš ื”ืœืื”.
ื›ืฉืžืกื›ืžื™ื ืืช ื›ืœ ื”ื–ืžื ื™ื ื”ืืœื”,
02:22
we get a series that looks like this.
57
142266
2106
ืื ื—ื ื• ืžืงื‘ืœื™ื ืกื“ืจื” ืฉื ืจืื™ืช ื›ื›ื”.
02:24
"Now", Zeno might say,
58
144372
1252
"ืขื›ืฉื™ื•" ื–ื™ื ื• ืื•ืœื™ ื™ื’ื™ื“,
02:25
"since there are infinitely many of terms
59
145624
2340
"ืžืื—ืจ ื•ื™ืฉ ืžืกืคืจ ืžื•ื ื—ื™ื ืื™ืŸ ืกื•ืคื™ื™ื
02:27
on the right side of the equation,
60
147964
1657
ื‘ืฆื“ ื™ืžื™ืŸ ืฉืœ ื”ืžืฉื•ื•ืื”,
02:29
and each individual term is finite,
61
149621
2262
ื•ื›ืœ ืžื•ื ื— ื”ื•ื ืกื•ืคื™,
02:31
the sum should equal infinity, right?"
62
151883
2635
ื”ืกื›ื•ื ืฆืจื™ืš ืœื”ื™ื•ืช ืื™ืŸ ืกื•ืคื™, ื ื›ื•ืŸ?"
02:34
This is the problem with Zeno's argument.
63
154518
2152
ื–ื• ื”ื‘ืขื™ื” ืฉืœ ื”ื˜ื™ืขื•ืŸ ืฉืœ ื–ื™ื ื•.
02:36
As mathematicians have since realized,
64
156670
2185
ืžื” ืฉืžืชืžื˜ื™ืงืื™ื ื”ื‘ื™ื ื• ืžืื–,
02:38
it is possible to add up infinitely many finite-sized terms
65
158855
3763
ื–ื” ืฉื–ื” ืืคืฉืจื™ ืœื—ื‘ืจ ืžืกืคืจ ืื™ืŸ ืกื•ืคื™ ืฉืœ ืžื•ื ื—ื™ื ืขื ื’ื•ื“ืœ ืกื•ืคื™
02:42
and still get a finite answer.
66
162618
2196
ื•ืขื“ื™ื™ืŸ ืœืงื‘ืœ ืชืฉื•ื‘ื” ืกื•ืคื™ืช.
02:44
"How?" you ask.
67
164814
1175
"ืื™ืš?" ืืชื ืฉื•ืืœื™ื.
02:45
Well, let's think of it this way.
68
165989
1497
ื•ื‘ื›ืŸ, ื‘ื•ืื• ื ื—ืฉื•ื‘ ืขืœ ื–ื” ื›ืš.
02:47
Let's start with a square that has area of one meter.
69
167486
2904
ื‘ื•ืื• ื ืชื—ื™ืœ ืขื ืจื™ื‘ื•ืข ืฉื™ืฉ ืœื• ืฉื˜ื— ืฉืœ ืžื˜ืจ ืื—ื“.
02:50
Now let's chop the square in half,
70
170390
2138
ืขื›ืฉื™ื• ื‘ื•ืื• ื ื—ืชื•ืš ืืช ื”ืจื™ื‘ื•ืข ืœืฉื ื™ื™ื,
02:52
and then chop the remaining half in half,
71
172528
2381
ื•ืื– ืืช ื”ืฉืืจื™ืช ืœืฉื ื™ื™ื,
02:54
and so on.
72
174909
1263
ื•ื›ืš ื”ืœืื”.
02:56
While we're doing this,
73
176172
1067
ื‘ืžืŸ ืฉืื ื—ื ื• ืขื•ืฉื™ื ืืช ื–ื”,
02:57
let's keep track of the areas of the pieces.
74
177239
3141
ื‘ื•ืื• ื•ื ืขืงื•ื‘ ืื—ืจื™ ืฉื˜ื— ื”ื—ืชื™ื›ื•ืช.
03:00
The first slice makes two parts,
75
180380
1789
ื”ื—ื™ืชื•ืš ื”ืจืืฉื•ืŸ ื™ื•ืฆืจ ืฉื ื™ ื—ืœืงื™ื,
03:02
each with an area of one-half
76
182169
1859
ื›ืœ ืื—ื“ ื‘ืฉื˜ื— ืฉืœ ื—ืฆื™
03:04
The next slice divides one of those halves in half,
77
184028
2517
ื”ื—ื™ืชื•ืš ื”ื‘ื ืžื—ืœืง ืืช ื”ื—ืฆืื™ื ื”ืืœื• ืœื—ืฆื™,
03:06
and so on.
78
186545
1251
ื•ื›ืš ื”ืœืื”.
03:07
But, no matter how many times we slice up the boxes,
79
187796
2431
ืื‘ืœ, ืœื ืžืฉื ื” ื›ืžื” ืคืขืžื™ื ื ื—ืชื•ืš ืืช ื”ืงื•ืคืกืื•ืช,
03:10
the total area is still the sum of the areas of all the pieces.
80
190227
4587
ื”ืฉื˜ื— ื”ื›ื•ืœืœ ื”ื•ื ืขื“ื™ื™ืŸ ืกื›ื•ื ื›ืœ ื”ื—ืœืงื™ื.
03:14
Now you can see why we choose this particular way
81
194814
2628
ืขื›ืฉื™ื• ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืœืžื” ื‘ื—ืจื ื• ื‘ื“ืจืš ื”ืžืกื•ื™ื™ืžืช ื”ื–ื•
03:17
of cutting up the square.
82
197442
1529
ืฉืœ ื—ื™ืชื•ืš ืจื™ื‘ื•ืข.
03:18
We've obtained the same infinite series
83
198971
1917
ื”ืฉื’ื ื• ืืช ืื•ืชื” ืกื“ืจื” ืื™ืŸ ืกื•ืคื™ืช
03:20
as we had for the time of Zeno's journey.
84
200888
2468
ื›ืžื• ื–ืžืŸ ื”ื”ืœื™ื›ื” ืฉืœ ื–ื™ื ื•.
03:23
As we construct more and more blue pieces,
85
203356
2435
ื›ืฉืื ื—ื ื• ืžืจื›ื™ื‘ื™ื ื™ื•ืชืจ ื•ื™ื•ืชืจ ื—ืœืงื™ื ื›ื—ื•ืœื™ื,
03:25
to use the math jargon,
86
205791
1523
ืื ื ืฉืชืžืฉ ื‘ืžื•ื ื—ื™ื ืžืชืžื˜ื™ื™ื,
03:27
as we take the limit as n tends to infinity,
87
207314
3428
ื›ืฉืื ื—ื ื• ืœื•ืงื—ื™ื ืืช ื”ื’ื‘ื•ืœ ื› n ืฉื•ืืฃ ืœืื™ืŸ ืกื•ืฃ,
03:30
the entire square becomes covered with blue.
88
210742
2614
ื›ืœ ื”ืจื™ื‘ื•ืข ื”ื•ืคืš ืœืžื›ื•ืกื” ื‘ื›ื—ื•ืœ.
03:33
But the area of the square is just one unit,
89
213356
2071
ืื‘ืœ ื”ืฉื˜ื— ืฉืœ ื”ืจื™ื‘ื•ืข ื”ื•ื ืจืง ื™ื—ื™ื“ื” ืื—ืช,
03:35
and so the infinite sum must equal one.
90
215427
3273
ื•ื›ืš ื”ืกื›ื•ื ื”ืกื•ืคื™ ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืื—ื“.
03:38
Going back to Zeno's journey,
91
218700
1054
ืื ื ื—ื–ื•ืจ ืœื”ืœื™ื›ื” ืฉืœ ื–ื™ื ื•,
03:39
we can now see how how the paradox is resolved.
92
219754
2616
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ืขื›ืฉื™ื• ืื™ืš ื”ืคืจื“ื•ืงืก ื ืคืชืจ.
03:42
Not only does the infinite series sum to a finite answer,
93
222370
3343
ืœื ืจืง ืฉื”ืกื“ืจื” ื”ืื™ืŸ ืกื•ืคื™ืช ืžืกืชื›ืžืช ืœืชืฉื•ื‘ื” ืกื•ืคื™ืช,
03:45
but that finite answer is the same one
94
225713
2032
ืืœื ืฉื”ืชืฉื•ื‘ื” ื”ืกื•ืคื™ืช ื”ื™ื ืื•ืชื” ืื—ืช
03:47
that common sense tells us is true.
95
227745
2427
ืฉื”ื”ื’ื™ื•ืŸ ืžื›ืชื™ื‘ ืœื ื• ื›ื ื›ื•ื ื”.
03:50
Zeno's journey takes one hour.
96
230172
2705
ื”ื”ืœื™ื›ื” ืฉืœ ื–ื™ื ื• ืœื•ืงื—ืช ืฉืขื”.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7