What is Zeno's Dichotomy Paradox? - Colm Kelleher

3,745,205 views ・ 2013-04-15

TED-Ed


请双击下面的英文字幕来播放视频。

00:00
Translator: Andrea McDonough Reviewer: Bedirhan Cinar
0
0
7000
翻译人员: Claire Ge 校对人员: Jiawei Ni
00:15
This is Zeno of Elea,
1
15096
1775
这是埃利亚的芝诺
00:16
an ancient Greek philosopher
2
16871
1506
一个古希腊哲学家
00:18
famous for inventing a number of paradoxes,
3
18377
2665
以发现了许多悖论而著名
00:21
arguments that seem logical,
4
21042
1518
这是指,一些看上去逻辑合理
00:22
but whose conclusion is absurd or contradictory.
5
22560
3219
但是结论却很荒谬或者自相矛盾的论证
00:25
For more than 2,000 years,
6
25779
1404
两千多年来
00:27
Zeno's mind-bending riddles have inspired
7
27183
2511
芝诺具有欺骗性的谜题们
00:29
mathematicians and philosophers
8
29694
1616
启发了数学家和哲学家们
00:31
to better understand the nature of infinity.
9
31310
2436
更好地理解了“无穷”的本质
00:33
One of the best known of Zeno's problems
10
33746
1779
芝诺最著名的悖论之一
00:35
is called the dichotomy paradox,
11
35525
2216
叫做两分法悖论
00:37
which means, "the paradox of cutting in two" in ancient Greek.
12
37741
3786
它在古希腊语中的意思是“分成两份的悖论”
00:41
It goes something like this:
13
41527
1788
它是这么说的
00:43
After a long day of sitting around, thinking,
14
43315
2839
闲坐着思考了一天之后
00:46
Zeno decides to walk from his house to the park.
15
46154
2796
芝诺决定从他的家走去公园
00:48
The fresh air clears his mind
16
48950
1447
清新的空气能够使他的大脑更清醒
00:50
and help him think better.
17
50397
1523
帮助他更好地思考
00:51
In order to get to the park,
18
51920
1155
为了到达公园
00:53
he first has to get half way to the park.
19
53075
2353
他首先需要走完整段路程的前半段
00:55
This portion of his journey
20
55428
1173
这一段路程
00:56
takes some finite amount of time.
21
56601
1842
将花费他一段有限的时间
00:58
Once he gets to the halfway point,
22
58443
2009
当他到达整段路程的中点时
01:00
he needs to walk half the remaining distance.
23
60452
2389
他又需要走完剩下路程的一半
01:02
Again, this takes a finite amount of time.
24
62841
3027
同样的,这将花费他有限的一段时间
01:05
Once he gets there, he still needs to walk
25
65868
2272
当他到达剩下路程的中点时,他还需要走
01:08
half the distance that's left,
26
68140
1742
剩下路程的前半段
01:09
which takes another finite amount of time.
27
69882
2489
这又将花费他一段有限的时间
01:12
This happens again and again and again.
28
72371
3151
这个过程将会一次一次又一次地发生
01:15
You can see that we can keep going like this forever,
29
75522
2673
你可以发现,我们可以无限地这样推导下去
01:18
dividing whatever distance is left
30
78195
1662
将剩下的不论多少路程
01:19
into smaller and smaller pieces,
31
79857
1915
分割成越来越短的路程
01:21
each of which takes some finite time to traverse.
32
81772
3506
每一段都将花费他一段有限的时间
01:25
So, how long does it take Zeno to get to the park?
33
85278
2680
那么,芝诺到达公园要花多长时间?
01:27
Well, to find out, you need to add the times
34
87958
2359
要知道这个答案
你得将每一小段所花的时间加起来
01:30
of each of the pieces of the journey.
35
90317
1967
01:32
The problem is, there are infinitely many of these finite-sized pieces.
36
92284
4332
问题是,有无限多个像这样有限长度的小段
01:36
So, shouldn't the total time be infinity?
37
96616
3134
那么,总时间不应该是无穷大吗?
01:39
This argument, by the way, is completely general.
38
99750
2798
顺便说一下,这个论题非常常见
01:42
It says that traveling from any location to any other location
39
102548
2544
它说的是从任何一个地点移动到任何另一个地点
01:45
should take an infinite amount of time.
40
105092
2162
需要花费无穷长的时间
01:47
In other words, it says that all motion is impossible.
41
107254
3752
换句话说,它的意思是,任何移动都是不可能实现的
01:51
This conclusion is clearly absurd,
42
111006
1779
这个结论显然很荒谬
01:52
but where is the flaw in the logic?
43
112785
1999
但是,逻辑的瑕疵在哪呢?
01:54
To resolve the paradox,
44
114784
1182
为了解决这个悖论
01:55
it helps to turn the story into a math problem.
45
115966
2765
把这个故事还原成一个数学问题会有所帮助
01:58
Let's supposed that Zeno's house is one mile from the park
46
118731
2887
我们假设芝诺的家离公园有一英里
02:01
and that Zeno walks at one mile per hour.
47
121618
2723
芝诺走路的速度是一英里每小时
02:04
Common sense tells us that the time for the journey
48
124341
2351
常识告诉我们,整段路程的时间
02:06
should be one hour.
49
126692
1513
应该是一小时
02:08
But, let's look at things from Zeno's point of view
50
128205
2662
但是,让我们从芝诺的角度来看这个问题
02:10
and divide up the journey into pieces.
51
130867
2329
把这整段路程分成许多小段
02:13
The first half of the journey takes half an hour,
52
133196
2460
最先一半路程花费1/2小时
02:15
the next part takes quarter of an hour,
53
135656
2126
之后的一段花费1/4小时
02:17
the third part takes an eighth of an hour,
54
137782
2282
第三段花费1/8小时
02:20
and so on.
55
140064
905
02:20
Summing up all these times,
56
140969
1297
以此类推
把这些时间加起来
02:22
we get a series that looks like this.
57
142266
2106
我们得到一个像这样的数列
02:24
"Now", Zeno might say,
58
144372
1252
“现在”,芝诺也许会说
02:25
"since there are infinitely many of terms
59
145624
2340
“因为等式的右边
02:27
on the right side of the equation,
60
147964
1657
有无限项
02:29
and each individual term is finite,
61
149621
2262
而且每一项都是有限的
02:31
the sum should equal infinity, right?"
62
151883
2635
那么它们之和应该是无穷大,对吗?”
02:34
This is the problem with Zeno's argument.
63
154518
2152
这就是芝诺论证的问题所在
02:36
As mathematicians have since realized,
64
156670
2185
数学家们后来发现
02:38
it is possible to add up infinitely many finite-sized terms
65
158855
3763
将无限个有限项加总
02:42
and still get a finite answer.
66
162618
2196
是有可能依然得到一个有限的数字的
02:44
"How?" you ask.
67
164814
1175
“为什么?”你可能会问
02:45
Well, let's think of it this way.
68
165989
1497
让我们这样想一想
02:47
Let's start with a square that has area of one meter.
69
167486
2904
让我们从这个正方形开始,它的面积是1个单位
02:50
Now let's chop the square in half,
70
170390
2138
现在把这个正方形切成两半
02:52
and then chop the remaining half in half,
71
172528
2381
然后再把剩下的一半切成两半
02:54
and so on.
72
174909
1263
以此类推
02:56
While we're doing this,
73
176172
1067
当我们这么做的时候
02:57
let's keep track of the areas of the pieces.
74
177239
3141
让我们算一下每一部分的面积
03:00
The first slice makes two parts,
75
180380
1789
第一刀分成了两份
03:02
each with an area of one-half
76
182169
1859
每一份的面积是1/2
03:04
The next slice divides one of those halves in half,
77
184028
2517
第二刀将其中的一份切成了两半
03:06
and so on.
78
186545
1251
以此类推
03:07
But, no matter how many times we slice up the boxes,
79
187796
2431
但是,不论我们切多少次
03:10
the total area is still the sum of the areas of all the pieces.
80
190227
4587
总面积都是所有小份的面积之和
03:14
Now you can see why we choose this particular way
81
194814
2628
现在你可以看出我们为什么要用这样一种
03:17
of cutting up the square.
82
197442
1529
切割正方形的方法
03:18
We've obtained the same infinite series
83
198971
1917
我们得到了和芝诺的路程
03:20
as we had for the time of Zeno's journey.
84
200888
2468
一样的无穷项的数列
03:23
As we construct more and more blue pieces,
85
203356
2435
当我们切割出一个又一个蓝色矩形的时候
03:25
to use the math jargon,
86
205791
1523
用数学的行话来说
03:27
as we take the limit as n tends to infinity,
87
207314
3428
当n趋近于无限大时
03:30
the entire square becomes covered with blue.
88
210742
2614
整个正方形将被蓝色覆盖
03:33
But the area of the square is just one unit,
89
213356
2071
但是正方形的面积就是一个单位
03:35
and so the infinite sum must equal one.
90
215427
3273
所以这无限项之和一定等于1
03:38
Going back to Zeno's journey,
91
218700
1054
再回到芝诺的路程
03:39
we can now see how how the paradox is resolved.
92
219754
2616
我们现在就知道悖论怎么解开了
03:42
Not only does the infinite series sum to a finite answer,
93
222370
3343
不仅仅是,无限项之和可以是有限的
03:45
but that finite answer is the same one
94
225713
2032
这个有限的结果
03:47
that common sense tells us is true.
95
227745
2427
还跟常识告诉我们的是相等的
03:50
Zeno's journey takes one hour.
96
230172
2705
芝诺的路程将花费一个小时
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7