What is Zeno's Dichotomy Paradox? - Colm Kelleher

3,775,340 views ・ 2013-04-15

TED-Ed


请双击下面的英文字幕来播放视频。

00:00
Translator: Andrea McDonough Reviewer: Bedirhan Cinar
0
0
7000
翻译人员: Claire Ge 校对人员: Jiawei Ni
00:15
This is Zeno of Elea,
1
15096
1775
这是埃利亚的芝诺
00:16
an ancient Greek philosopher
2
16871
1506
一个古希腊哲学家
00:18
famous for inventing a number of paradoxes,
3
18377
2665
以发现了许多悖论而著名
00:21
arguments that seem logical,
4
21042
1518
这是指,一些看上去逻辑合理
00:22
but whose conclusion is absurd or contradictory.
5
22560
3219
但是结论却很荒谬或者自相矛盾的论证
00:25
For more than 2,000 years,
6
25779
1404
两千多年来
00:27
Zeno's mind-bending riddles have inspired
7
27183
2511
芝诺具有欺骗性的谜题们
00:29
mathematicians and philosophers
8
29694
1616
启发了数学家和哲学家们
00:31
to better understand the nature of infinity.
9
31310
2436
更好地理解了“无穷”的本质
00:33
One of the best known of Zeno's problems
10
33746
1779
芝诺最著名的悖论之一
00:35
is called the dichotomy paradox,
11
35525
2216
叫做两分法悖论
00:37
which means, "the paradox of cutting in two" in ancient Greek.
12
37741
3786
它在古希腊语中的意思是“分成两份的悖论”
00:41
It goes something like this:
13
41527
1788
它是这么说的
00:43
After a long day of sitting around, thinking,
14
43315
2839
闲坐着思考了一天之后
00:46
Zeno decides to walk from his house to the park.
15
46154
2796
芝诺决定从他的家走去公园
00:48
The fresh air clears his mind
16
48950
1447
清新的空气能够使他的大脑更清醒
00:50
and help him think better.
17
50397
1523
帮助他更好地思考
00:51
In order to get to the park,
18
51920
1155
为了到达公园
00:53
he first has to get half way to the park.
19
53075
2353
他首先需要走完整段路程的前半段
00:55
This portion of his journey
20
55428
1173
这一段路程
00:56
takes some finite amount of time.
21
56601
1842
将花费他一段有限的时间
00:58
Once he gets to the halfway point,
22
58443
2009
当他到达整段路程的中点时
01:00
he needs to walk half the remaining distance.
23
60452
2389
他又需要走完剩下路程的一半
01:02
Again, this takes a finite amount of time.
24
62841
3027
同样的,这将花费他有限的一段时间
01:05
Once he gets there, he still needs to walk
25
65868
2272
当他到达剩下路程的中点时,他还需要走
01:08
half the distance that's left,
26
68140
1742
剩下路程的前半段
01:09
which takes another finite amount of time.
27
69882
2489
这又将花费他一段有限的时间
01:12
This happens again and again and again.
28
72371
3151
这个过程将会一次一次又一次地发生
01:15
You can see that we can keep going like this forever,
29
75522
2673
你可以发现,我们可以无限地这样推导下去
01:18
dividing whatever distance is left
30
78195
1662
将剩下的不论多少路程
01:19
into smaller and smaller pieces,
31
79857
1915
分割成越来越短的路程
01:21
each of which takes some finite time to traverse.
32
81772
3506
每一段都将花费他一段有限的时间
01:25
So, how long does it take Zeno to get to the park?
33
85278
2680
那么,芝诺到达公园要花多长时间?
01:27
Well, to find out, you need to add the times
34
87958
2359
要知道这个答案
你得将每一小段所花的时间加起来
01:30
of each of the pieces of the journey.
35
90317
1967
01:32
The problem is, there are infinitely many of these finite-sized pieces.
36
92284
4332
问题是,有无限多个像这样有限长度的小段
01:36
So, shouldn't the total time be infinity?
37
96616
3134
那么,总时间不应该是无穷大吗?
01:39
This argument, by the way, is completely general.
38
99750
2798
顺便说一下,这个论题非常常见
01:42
It says that traveling from any location to any other location
39
102548
2544
它说的是从任何一个地点移动到任何另一个地点
01:45
should take an infinite amount of time.
40
105092
2162
需要花费无穷长的时间
01:47
In other words, it says that all motion is impossible.
41
107254
3752
换句话说,它的意思是,任何移动都是不可能实现的
01:51
This conclusion is clearly absurd,
42
111006
1779
这个结论显然很荒谬
01:52
but where is the flaw in the logic?
43
112785
1999
但是,逻辑的瑕疵在哪呢?
01:54
To resolve the paradox,
44
114784
1182
为了解决这个悖论
01:55
it helps to turn the story into a math problem.
45
115966
2765
把这个故事还原成一个数学问题会有所帮助
01:58
Let's supposed that Zeno's house is one mile from the park
46
118731
2887
我们假设芝诺的家离公园有一英里
02:01
and that Zeno walks at one mile per hour.
47
121618
2723
芝诺走路的速度是一英里每小时
02:04
Common sense tells us that the time for the journey
48
124341
2351
常识告诉我们,整段路程的时间
02:06
should be one hour.
49
126692
1513
应该是一小时
02:08
But, let's look at things from Zeno's point of view
50
128205
2662
但是,让我们从芝诺的角度来看这个问题
02:10
and divide up the journey into pieces.
51
130867
2329
把这整段路程分成许多小段
02:13
The first half of the journey takes half an hour,
52
133196
2460
最先一半路程花费1/2小时
02:15
the next part takes quarter of an hour,
53
135656
2126
之后的一段花费1/4小时
02:17
the third part takes an eighth of an hour,
54
137782
2282
第三段花费1/8小时
02:20
and so on.
55
140064
905
02:20
Summing up all these times,
56
140969
1297
以此类推
把这些时间加起来
02:22
we get a series that looks like this.
57
142266
2106
我们得到一个像这样的数列
02:24
"Now", Zeno might say,
58
144372
1252
“现在”,芝诺也许会说
02:25
"since there are infinitely many of terms
59
145624
2340
“因为等式的右边
02:27
on the right side of the equation,
60
147964
1657
有无限项
02:29
and each individual term is finite,
61
149621
2262
而且每一项都是有限的
02:31
the sum should equal infinity, right?"
62
151883
2635
那么它们之和应该是无穷大,对吗?”
02:34
This is the problem with Zeno's argument.
63
154518
2152
这就是芝诺论证的问题所在
02:36
As mathematicians have since realized,
64
156670
2185
数学家们后来发现
02:38
it is possible to add up infinitely many finite-sized terms
65
158855
3763
将无限个有限项加总
02:42
and still get a finite answer.
66
162618
2196
是有可能依然得到一个有限的数字的
02:44
"How?" you ask.
67
164814
1175
“为什么?”你可能会问
02:45
Well, let's think of it this way.
68
165989
1497
让我们这样想一想
02:47
Let's start with a square that has area of one meter.
69
167486
2904
让我们从这个正方形开始,它的面积是1个单位
02:50
Now let's chop the square in half,
70
170390
2138
现在把这个正方形切成两半
02:52
and then chop the remaining half in half,
71
172528
2381
然后再把剩下的一半切成两半
02:54
and so on.
72
174909
1263
以此类推
02:56
While we're doing this,
73
176172
1067
当我们这么做的时候
02:57
let's keep track of the areas of the pieces.
74
177239
3141
让我们算一下每一部分的面积
03:00
The first slice makes two parts,
75
180380
1789
第一刀分成了两份
03:02
each with an area of one-half
76
182169
1859
每一份的面积是1/2
03:04
The next slice divides one of those halves in half,
77
184028
2517
第二刀将其中的一份切成了两半
03:06
and so on.
78
186545
1251
以此类推
03:07
But, no matter how many times we slice up the boxes,
79
187796
2431
但是,不论我们切多少次
03:10
the total area is still the sum of the areas of all the pieces.
80
190227
4587
总面积都是所有小份的面积之和
03:14
Now you can see why we choose this particular way
81
194814
2628
现在你可以看出我们为什么要用这样一种
03:17
of cutting up the square.
82
197442
1529
切割正方形的方法
03:18
We've obtained the same infinite series
83
198971
1917
我们得到了和芝诺的路程
03:20
as we had for the time of Zeno's journey.
84
200888
2468
一样的无穷项的数列
03:23
As we construct more and more blue pieces,
85
203356
2435
当我们切割出一个又一个蓝色矩形的时候
03:25
to use the math jargon,
86
205791
1523
用数学的行话来说
03:27
as we take the limit as n tends to infinity,
87
207314
3428
当n趋近于无限大时
03:30
the entire square becomes covered with blue.
88
210742
2614
整个正方形将被蓝色覆盖
03:33
But the area of the square is just one unit,
89
213356
2071
但是正方形的面积就是一个单位
03:35
and so the infinite sum must equal one.
90
215427
3273
所以这无限项之和一定等于1
03:38
Going back to Zeno's journey,
91
218700
1054
再回到芝诺的路程
03:39
we can now see how how the paradox is resolved.
92
219754
2616
我们现在就知道悖论怎么解开了
03:42
Not only does the infinite series sum to a finite answer,
93
222370
3343
不仅仅是,无限项之和可以是有限的
03:45
but that finite answer is the same one
94
225713
2032
这个有限的结果
03:47
that common sense tells us is true.
95
227745
2427
还跟常识告诉我们的是相等的
03:50
Zeno's journey takes one hour.
96
230172
2705
芝诺的路程将花费一个小时
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog