What is Zeno's Dichotomy Paradox? - Colm Kelleher

Što je Zenonov paradoks dihotomije? - Colm Kelleher

3,740,328 views

2013-04-15 ・ TED-Ed


New videos

What is Zeno's Dichotomy Paradox? - Colm Kelleher

Što je Zenonov paradoks dihotomije? - Colm Kelleher

3,740,328 views ・ 2013-04-15

TED-Ed


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

00:00
Translator: Andrea McDonough Reviewer: Bedirhan Cinar
0
0
7000
Prevoditelj: Martina Valković Recezent: Ivan Stamenković
00:15
This is Zeno of Elea,
1
15096
1775
Ovo je Zenon iz Eleje,
00:16
an ancient Greek philosopher
2
16871
1506
antički grčki filozof
00:18
famous for inventing a number of paradoxes,
3
18377
2665
slavan po brojnim paradoksima koje je smislio,
00:21
arguments that seem logical,
4
21042
1518
argumentima koji djeluju
00:22
but whose conclusion is absurd or contradictory.
5
22560
3219
logični, no čija je konkluzija apsurdna ili kontradiktorna.
00:25
For more than 2,000 years,
6
25779
1404
Više od 2000 godina,
00:27
Zeno's mind-bending riddles have inspired
7
27183
2511
Zenonove zagonetke inspirirale su
00:29
mathematicians and philosophers
8
29694
1616
matematičare i filozofe
00:31
to better understand the nature of infinity.
9
31310
2436
da bolje razumiju prirodu beskonačnosti.
00:33
One of the best known of Zeno's problems
10
33746
1779
Jedan od najpoznatijih Zenonovih
00:35
is called the dichotomy paradox,
11
35525
2216
problema zove se paradoks dihotomije,
00:37
which means, "the paradox of cutting in two" in ancient Greek.
12
37741
3786
što na starom Grčkom znači "paradoks dijeljenja na dva dijela".
00:41
It goes something like this:
13
41527
1788
Ide otprilike ovako:
00:43
After a long day of sitting around, thinking,
14
43315
2839
Poslije dugog dana sjedenja i razmišljanja,
00:46
Zeno decides to walk from his house to the park.
15
46154
2796
Zenon odluči prošetati od svoje kuće od parka.
00:48
The fresh air clears his mind
16
48950
1447
Svjež zrak razbistruje mu um
00:50
and help him think better.
17
50397
1523
i pomaže kako bi bolje mislio.
00:51
In order to get to the park,
18
51920
1155
Kako bi došao do parka,
00:53
he first has to get half way to the park.
19
53075
2353
prvo mora doći na pola puta do parka.
00:55
This portion of his journey
20
55428
1173
Ovaj dio njegovog puta
00:56
takes some finite amount of time.
21
56601
1842
uzima neku konačnu količinu vremena.
00:58
Once he gets to the halfway point,
22
58443
2009
Jednom kada dođe do polovice,
01:00
he needs to walk half the remaining distance.
23
60452
2389
treba prehodati pola preostale udaljenosti.
01:02
Again, this takes a finite amount of time.
24
62841
3027
Ponovno, ovo uzima određenu količinu vremena.
01:05
Once he gets there, he still needs to walk
25
65868
2272
Jednom kada dođe do tamo, još treba prehodati
01:08
half the distance that's left,
26
68140
1742
pola preostale udaljenosti,
01:09
which takes another finite amount of time.
27
69882
2489
što opet uzima neku konačnu količinu vremena.
01:12
This happens again and again and again.
28
72371
3151
Ovo se ponavlja ponovno i ponovno i ponovno.
01:15
You can see that we can keep going like this forever,
29
75522
2673
Možete vidjeti da ovako možemo nastaviti u nedogled,
01:18
dividing whatever distance is left
30
78195
1662
dijeliti preostalu udaljenost
01:19
into smaller and smaller pieces,
31
79857
1915
na manje i manje dijelove,
01:21
each of which takes some finite time to traverse.
32
81772
3506
za prijelaz svakog od kojih je potrebno neko konačno vrijeme.
01:25
So, how long does it take Zeno to get to the park?
33
85278
2680
Pa, koliko dugo treba Zenonu da dođe do parka?
01:27
Well, to find out, you need to add the times
34
87958
2359
Kako bi to saznali, trebate zbrojiti vremena
01:30
of each of the pieces of the journey.
35
90317
1967
svih dijelova putovanja.
01:32
The problem is, there are infinitely many of these finite-sized pieces.
36
92284
4332
Problem je to što postoji beskonačno mnogo tih konačno velikih dijelova.
01:36
So, shouldn't the total time be infinity?
37
96616
3134
Stoga, nebi li ukupno vrijeme trebalo biti beskonačnost?
01:39
This argument, by the way, is completely general.
38
99750
2798
Ovaj argument je, usput rečeno, posve opći.
01:42
It says that traveling from any location to any other location
39
102548
2544
Kaže da bi putovanje od jedne do druge lokacije
01:45
should take an infinite amount of time.
40
105092
2162
trebalo trajati beskonačno dugo.
01:47
In other words, it says that all motion is impossible.
41
107254
3752
Drugim riječima, kaže da je svako kretanje nemoguće.
01:51
This conclusion is clearly absurd,
42
111006
1779
Ovakva konkluzija je očito apsurdna,
01:52
but where is the flaw in the logic?
43
112785
1999
no gdje je pogreška u logici?
01:54
To resolve the paradox,
44
114784
1182
Kako bi ga riješili,
01:55
it helps to turn the story into a math problem.
45
115966
2765
paradoks možemo pretvoriti u matematički problem.
01:58
Let's supposed that Zeno's house is one mile from the park
46
118731
2887
Pretpostavimo da je Zenonova kuća udaljena milju od parka
02:01
and that Zeno walks at one mile per hour.
47
121618
2723
i da Zenon hoda brzinom od jedne milje na sat.
02:04
Common sense tells us that the time for the journey
48
124341
2351
Zdravi razum kaže nam da bi potrebno vrijeme
02:06
should be one hour.
49
126692
1513
trebalo biti sat vremena.
02:08
But, let's look at things from Zeno's point of view
50
128205
2662
No, pogledajmo stvari s Zenonove točke gledišta
02:10
and divide up the journey into pieces.
51
130867
2329
i podijelimo putovanje na dijelove.
02:13
The first half of the journey takes half an hour,
52
133196
2460
Prva polovica putovanja traje pola sata,
02:15
the next part takes quarter of an hour,
53
135656
2126
sljedeći dio traje četvrt sata,
02:17
the third part takes an eighth of an hour,
54
137782
2282
a treći dio traje osminu sata,
02:20
and so on.
55
140064
905
02:20
Summing up all these times,
56
140969
1297
i tako dalje.
Zbrajajući sve ovo vrijeme,
02:22
we get a series that looks like this.
57
142266
2106
dobivamo niz koji izgleda ovako.
02:24
"Now", Zeno might say,
58
144372
1252
Zenon bi mogao reći,
02:25
"since there are infinitely many of terms
59
145624
2340
"s obzirom da imamo beskonačno mnogo uvjeta"
02:27
on the right side of the equation,
60
147964
1657
na desnoj strani jednadžbe,
02:29
and each individual term is finite,
61
149621
2262
a svaki individualni uvjet je konačan,
02:31
the sum should equal infinity, right?"
62
151883
2635
zbroj bi trebao biti jednak beskonačnosti, zar ne?"
02:34
This is the problem with Zeno's argument.
63
154518
2152
Ovo je problem sa Zenonovim argumentom.
02:36
As mathematicians have since realized,
64
156670
2185
Kao što su matematičari od tada shvatili,
02:38
it is possible to add up infinitely many finite-sized terms
65
158855
3763
moguće je zbrojiti beskonačno mnogo konačnih uvjeta
02:42
and still get a finite answer.
66
162618
2196
i ipak dobiti konačni odgovor.
02:44
"How?" you ask.
67
164814
1175
"Kako?", pitate.
02:45
Well, let's think of it this way.
68
165989
1497
Pa, razmislimo o tome ovako.
02:47
Let's start with a square that has area of one meter.
69
167486
2904
Počnimo s kvadratom površine jednog metra.
02:50
Now let's chop the square in half,
70
170390
2138
Sada prerežimo kvadrat napola,
02:52
and then chop the remaining half in half,
71
172528
2381
a onda preostalu polovicu prerežimo napola,
02:54
and so on.
72
174909
1263
i tako dalje.
02:56
While we're doing this,
73
176172
1067
Dok ovo radimo,
02:57
let's keep track of the areas of the pieces.
74
177239
3141
vodimo računa o površinama dijelova.
03:00
The first slice makes two parts,
75
180380
1789
Prvo rezanje stvara dva dijela,
03:02
each with an area of one-half
76
182169
1859
svaki površine pola metra.
03:04
The next slice divides one of those halves in half,
77
184028
2517
Sljedeće rezanje dijeli jednu od te dvije polovice
03:06
and so on.
78
186545
1251
napola, i tako dalje.
03:07
But, no matter how many times we slice up the boxes,
79
187796
2431
No, bez obzira na to koliko puta prerežemo kvadrate,
03:10
the total area is still the sum of the areas of all the pieces.
80
190227
4587
ukupna površina je i dalje zbroj površina svih dijelova.
03:14
Now you can see why we choose this particular way
81
194814
2628
Sada možemo vidjeti zašto smo izabrali baš ovaj način
03:17
of cutting up the square.
82
197442
1529
dijeljenja kvadrata.
03:18
We've obtained the same infinite series
83
198971
1917
Dobili smo isti beskonačni niz
03:20
as we had for the time of Zeno's journey.
84
200888
2468
kao što smo imali kod vremena Zenonovog putovanja.
03:23
As we construct more and more blue pieces,
85
203356
2435
Kako konsturiramo sve više plavih dijelova,
03:25
to use the math jargon,
86
205791
1523
matematičkim žargonom rečeno,
03:27
as we take the limit as n tends to infinity,
87
207314
3428
kako uzimamo granicu jer n teži beskonačnosti,
03:30
the entire square becomes covered with blue.
88
210742
2614
cijeli kvadrat postaje pokriven plavim.
03:33
But the area of the square is just one unit,
89
213356
2071
No površina kvadrata je samo jedna jedinica,
03:35
and so the infinite sum must equal one.
90
215427
3273
i tako beskonačni zbroj mora biti jednak jedan.
03:38
Going back to Zeno's journey,
91
218700
1054
Sada možemo vidjeti
03:39
we can now see how how the paradox is resolved.
92
219754
2616
kako je paradoks Zenonovog putovanja razriješen.
03:42
Not only does the infinite series sum to a finite answer,
93
222370
3343
Ne samo da beskonačni niz daje konačni zbroj,
03:45
but that finite answer is the same one
94
225713
2032
već je taj konačni zbroj isti onaj
03:47
that common sense tells us is true.
95
227745
2427
za kojeg nam zdravi razum kaže da je točan odgovor.
03:50
Zeno's journey takes one hour.
96
230172
2705
Zenonov put traje jedan sat.
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7