What is Zeno's Dichotomy Paradox? - Colm Kelleher
什麼是芝諾的二分法悖論? - Colm Kelleher
3,745,205 views ・ 2013-04-15
請雙擊下方英文字幕播放視頻。
00:00
Translator: Andrea McDonough
Reviewer: Bedirhan Cinar
0
0
7000
譯者: Jephian Lin
審譯者: Regina Chu
00:15
This is Zeno of Elea,
1
15096
1775
這位是埃利亞的芝諾,
00:16
an ancient Greek philosopher
2
16871
1506
一位古希臘哲學家,
00:18
famous for inventing a number of paradoxes,
3
18377
2665
因發明許多悖論而聞名。
00:21
arguments that seem logical,
4
21042
1518
悖論是指看似有道理,
00:22
but whose conclusion is absurd or contradictory.
5
22560
3219
但結論卻是荒謬
或矛盾的論證。
00:25
For more than 2,000 years,
6
25779
1404
兩千多年以來,
00:27
Zeno's mind-bending riddles have inspired
7
27183
2511
芝諾那些誤導思路的難題
啟發了許多
00:29
mathematicians and philosophers
8
29694
1616
數學家與哲學家
00:31
to better understand the nature of infinity.
9
31310
2436
來了解「無窮」的本質。
00:33
One of the best known of Zeno's problems
10
33746
1779
最有名的一個芝諾難題
00:35
is called the dichotomy paradox,
11
35525
2216
叫做二分法悖論,
00:37
which means, "the paradox of cutting in two" in ancient Greek.
12
37741
3786
在古希臘文的意思就是「切割為二詭辯」。
00:41
It goes something like this:
13
41527
1788
內容大約是這樣:
00:43
After a long day of sitting around, thinking,
14
43315
2839
芝諾在漫長地坐著沉思一天後,
00:46
Zeno decides to walk from his house to the park.
15
46154
2796
決定從家裡散步到公園。
00:48
The fresh air clears his mind
16
48950
1447
清新的空氣啟發他的心靈
00:50
and help him think better.
17
50397
1523
並讓他想得更清楚。
00:51
In order to get to the park,
18
51920
1155
要走到公園,
00:53
he first has to get half way to the park.
19
53075
2353
他必須先走到路程的中點。
00:55
This portion of his journey
20
55428
1173
他這部份的旅程
00:56
takes some finite amount of time.
21
56601
1842
要花一些有限的時間。
00:58
Once he gets to the halfway point,
22
58443
2009
一旦他到達這中點,
01:00
he needs to walk half the remaining distance.
23
60452
2389
他必須再走到剩下距離的中點。
01:02
Again, this takes a finite amount of time.
24
62841
3027
這又花了一些有限的時間。
01:05
Once he gets there, he still needs to walk
25
65868
2272
一旦他到那兒,他還是必須再走到
01:08
half the distance that's left,
26
68140
1742
剩下距離的中點,
01:09
which takes another finite amount of time.
27
69882
2489
那也會花另一些有限的時間。
01:12
This happens again and again and again.
28
72371
3151
這會一次又一次的發生。
01:15
You can see that we can keep going like this forever,
29
75522
2673
你可以見到我們
永遠都在這過程打轉,
01:18
dividing whatever distance is left
30
78195
1662
就是不斷將剩的距離分成
01:19
into smaller and smaller pieces,
31
79857
1915
更小更細的路段,
01:21
each of which takes some finite time to traverse.
32
81772
3506
每一段都須要一些
有限的時間才能通過。
01:25
So, how long does it take Zeno to get to the park?
33
85278
2680
所以,芝諾要多久才能走到公園?
01:27
Well, to find out, you need to add the times
34
87958
2359
嗯,要得到答案,你必須把每段路段
01:30
of each of the pieces of the journey.
35
90317
1967
所花的時間加起來。
01:32
The problem is, there are infinitely many of these finite-sized pieces.
36
92284
4332
而問題是,有無限個這種
「有限的時間」。
01:36
So, shouldn't the total time be infinity?
37
96616
3134
所以,全部的時間也應該要是無限大嗎?
01:39
This argument, by the way, is completely general.
38
99750
2798
順帶一提,這個論證是很通用的。
01:42
It says that traveling from any location to any other location
39
102548
2544
它說明從任何地點移動到
任何其它地點
01:45
should take an infinite amount of time.
40
105092
2162
應該要花無窮的時間。
01:47
In other words, it says that all motion is impossible.
41
107254
3752
換句話說,它說明所有運動都是不可能的。
01:51
This conclusion is clearly absurd,
42
111006
1779
這個結果顯然很荒謬,
01:52
but where is the flaw in the logic?
43
112785
1999
但邏輯上的瑕疵在哪裡?
01:54
To resolve the paradox,
44
114784
1182
要解開這個悖論,
01:55
it helps to turn the story into a math problem.
45
115966
2765
把故事轉換成數學問題
會有所幫助。
01:58
Let's supposed that Zeno's house is one mile from the park
46
118731
2887
我們假設芝諾的家
距離公園有一英里,
02:01
and that Zeno walks at one mile per hour.
47
121618
2723
而芝諾每小時走一英里。
02:04
Common sense tells us that the time for the journey
48
124341
2351
常理告訴我們這趟旅程
02:06
should be one hour.
49
126692
1513
應該要花一小時。
02:08
But, let's look at things from Zeno's point of view
50
128205
2662
但是,讓我們從芝諾的觀點來看看
02:10
and divide up the journey into pieces.
51
130867
2329
並把路程分程許多小段。
02:13
The first half of the journey takes half an hour,
52
133196
2460
最初的一段路程要花 1/2 小時,
02:15
the next part takes quarter of an hour,
53
135656
2126
下一段要花 1/4 小時,
02:17
the third part takes an eighth of an hour,
54
137782
2282
而第三段要花 1/8 小時,
02:20
and so on.
55
140064
905
02:20
Summing up all these times,
56
140969
1297
以此類推。
將這些時間全部加起來,
02:22
we get a series that looks like this.
57
142266
2106
我們得到一串
長成這樣的級數。
02:24
"Now", Zeno might say,
58
144372
1252
「現在」,芝諾可能會說,
02:25
"since there are infinitely many of terms
59
145624
2340
「因為方程式右邊有無限項,
02:27
on the right side of the equation,
60
147964
1657
每項又都是有限的,
02:29
and each individual term is finite,
61
149621
2262
它們的總和
02:31
the sum should equal infinity, right?"
62
151883
2635
應該是無窮,對吧?」
02:34
This is the problem with Zeno's argument.
63
154518
2152
這就是芝諾論證的問題了。
02:36
As mathematicians have since realized,
64
156670
2185
數學家從此明白,
02:38
it is possible to add up infinitely many finite-sized terms
65
158855
3763
把無限個有限的量相加
是有可能得到
02:42
and still get a finite answer.
66
162618
2196
一個有限的答案。
02:44
"How?" you ask.
67
164814
1175
「怎麼會呢?」你可能會問。
02:45
Well, let's think of it this way.
68
165989
1497
嗯,我們可以這樣想。
02:47
Let's start with a square that has area of one meter.
69
167486
2904
我們考慮一個
一公尺見方的正方形。
02:50
Now let's chop the square in half,
70
170390
2138
現在把這個正方形
分成兩半,
02:52
and then chop the remaining half in half,
71
172528
2381
再把剩的分半,
02:54
and so on.
72
174909
1263
接著往下做。
02:56
While we're doing this,
73
176172
1067
當我們這麼做時,
02:57
let's keep track of the areas of the pieces.
74
177239
3141
我們依序記錄每塊的面積。
03:00
The first slice makes two parts,
75
180380
1789
最初的切片有兩部份,
03:02
each with an area of one-half
76
182169
1859
每部份的面積都是 1/2,
03:04
The next slice divides one of those halves in half,
77
184028
2517
而下一次切片把其中一個 1/2
再分成兩半,
03:06
and so on.
78
186545
1251
依此類推。
03:07
But, no matter how many times we slice up the boxes,
79
187796
2431
但,無論我們切割了幾次,
03:10
the total area is still the sum of the areas of all the pieces.
80
190227
4587
整塊面積還是所有小面積的總和。
03:14
Now you can see why we choose this particular way
81
194814
2628
現在你可以了解
為什麼要選這麼特別的方式
03:17
of cutting up the square.
82
197442
1529
來切割正方形。
03:18
We've obtained the same infinite series
83
198971
1917
我們已經做出了那串
相同的無窮級數,
03:20
as we had for the time of Zeno's journey.
84
200888
2468
就是在芝諾的旅程中
算出來的那串。
03:23
As we construct more and more blue pieces,
85
203356
2435
當我們建構了更多的藍色小方塊,
03:25
to use the math jargon,
86
205791
1523
用數學的行話來說,
03:27
as we take the limit as n tends to infinity,
87
207314
3428
就是當我們取 n 趨近到無窮時的極限,
03:30
the entire square becomes covered with blue.
88
210742
2614
整個正方形都被藍色蓋住了。
03:33
But the area of the square is just one unit,
89
213356
2071
但正方形的面積就只有 1 平方單位而已,
03:35
and so the infinite sum must equal one.
90
215427
3273
所以無窮項的總合一定是 1。
03:38
Going back to Zeno's journey,
91
218700
1054
我們回到芝諾的旅程,
03:39
we can now see how how the paradox is resolved.
92
219754
2616
我們可以看到這悖論
是如何被解決的。
03:42
Not only does the infinite series sum to a finite answer,
93
222370
3343
不止是無限項加起來可能是有限,
03:45
but that finite answer is the same one
94
225713
2032
而且這個有限的答案還是一樣的,
03:47
that common sense tells us is true.
95
227745
2427
和常理告訴我們的一樣 ──
03:50
Zeno's journey takes one hour.
96
230172
2705
芝諾的旅程要花一小時。
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。