Alex Wissner-Gross: A new equation for intelligence

199,453 views ・ 2014-02-06

TED


請雙擊下方英文字幕播放視頻。

譯者: Willy Feng 審譯者: Rowena Weng
00:12
Intelligence -- what is it?
0
12899
3667
智慧,是什麽?
00:16
If we take a look back at the history
1
16566
2291
如果我們回顧歷史
00:18
of how intelligence has been viewed,
2
18857
2624
對智慧的定義,
00:21
one seminal example has been
3
21481
3618
有一個基本的例子是,
00:25
Edsger Dijkstra's famous quote that
4
25099
3477
艾茲赫爾·戴克斯特拉說過的一句話: (註:著名電腦科學家)
00:28
"the question of whether a machine can think
5
28576
3111
“關於機械是否能思考的問題
00:31
is about as interesting
6
31687
1310
就有如在問
00:32
as the question of whether a submarine
7
32997
2971
潛水艇是否能游泳
00:35
can swim."
8
35968
1790
一樣有意思。”
00:37
Now, Edsger Dijkstra, when he wrote this,
9
37758
3844
當艾茲赫爾·戴克斯特拉寫下這句話,
00:41
intended it as a criticism
10
41602
2054
是在質疑
00:43
of the early pioneers of computer science,
11
43656
3000
早期的電腦科學先驅,
00:46
like Alan Turing.
12
46656
1747
譬如艾倫·圖靈。
00:48
However, if you take a look back
13
48403
2499
然而,如果你回顧
00:50
and think about what have been
14
50902
1965
並思考,
00:52
the most empowering innovations
15
52867
1996
是什麼重大的創新
00:54
that enabled us to build
16
54863
1879
使我們能夠製造出
00:56
artificial machines that swim
17
56742
2234
會游泳和會飛的
00:58
and artificial machines that [fly],
18
58976
2573
人造機器,
01:01
you find that it was only through understanding
19
61549
3547
你就會發現,
01:05
the underlying physical mechanisms
20
65096
2608
唯有透過了解
01:07
of swimming and flight
21
67704
2779
游泳和飛翔的基本物理機制,
01:10
that we were able to build these machines.
22
70483
3172
我們才能製造出這些機器。
01:13
And so, several years ago,
23
73655
2256
因此,幾年前,
01:15
I undertook a program to try to understand
24
75911
3249
我著手進行一個計劃,
01:19
the fundamental physical mechanisms
25
79160
2634
試圖去了解什麼是
01:21
underlying intelligence.
26
81794
2768
智慧的基本物理機制。
01:24
Let's take a step back.
27
84562
1860
先讓我們退一步,
01:26
Let's first begin with a thought experiment.
28
86422
3149
先從一個發想實驗開始。
01:29
Pretend that you're an alien race
29
89571
2854
假設你是一個外星人,
01:32
that doesn't know anything about Earth biology
30
92425
3041
對地球的生物完全不了解,
01:35
or Earth neuroscience or Earth intelligence,
31
95466
3116
也不了解地球的神經學和生物智慧,
01:38
but you have amazing telescopes
32
98582
2192
但你有很棒的望遠鏡,
01:40
and you're able to watch the Earth,
33
100774
2362
可以直接看到地球,
01:43
and you have amazingly long lives,
34
103136
2332
而且你有很長很長的壽命,
01:45
so you're able to watch the Earth
35
105468
1499
所以你有好幾百萬年甚至好幾十億年的時間
01:46
over millions, even billions of years.
36
106967
3442
來觀察地球。
01:50
And you observe a really strange effect.
37
110409
3015
你發現一個很怪異的事情。
01:53
You observe that, over the course of the millennia,
38
113424
4312
你發現,在千禧年這個過程中,
01:57
Earth is continually bombarded with asteroids
39
117736
4285
地球不斷地遭到小行星的撞擊,
02:02
up until a point,
40
122021
2087
直到某一天,
02:04
and that at some point,
41
124108
1531
在某一個時刻,
02:05
corresponding roughly to our year, 2000 AD,
42
125639
4192
大約就是我們現在的西元兩千年左右,
02:09
asteroids that are on
43
129831
1716
小行星原本運行在
02:11
a collision course with the Earth
44
131547
1931
會撞擊到地球的軌道上,
02:13
that otherwise would have collided
45
133478
1975
但是那個軌道
02:15
mysteriously get deflected
46
135453
2415
神奇地偏移了,
02:17
or they detonate before they can hit the Earth.
47
137868
3072
或者小行星在撞到地球前爆炸了。
02:20
Now of course, as earthlings,
48
140940
2083
當然,身為地球人,
02:23
we know the reason would be
49
143023
1544
我們知道那是因為
02:24
that we're trying to save ourselves.
50
144567
1756
我們試著拯救人類,
02:26
We're trying to prevent an impact.
51
146323
3080
試著避免撞擊發生。
02:29
But if you're an alien race
52
149403
1711
但如果你是外星人,
02:31
who doesn't know any of this,
53
151114
1146
不知道這些,
02:32
doesn't have any concept of Earth intelligence,
54
152260
2514
對地球上的智慧沒有任何概念,
02:34
you'd be forced to put together
55
154774
1728
那麼你只好勉強拼湊出一個
02:36
a physical theory that explains how,
56
156502
2918
物理理論來解釋,
02:39
up until a certain point in time,
57
159420
2538
直到某一個時刻,
02:41
asteroids that would demolish the surface of a planet
58
161958
4449
應該毀滅地表一切的小行星
02:46
mysteriously stop doing that.
59
166407
3231
神奇地不再發生。
02:49
And so I claim that this is the same question
60
169638
4204
而我認為這跟要了解
02:53
as understanding the physical nature of intelligence.
61
173842
3998
智慧的物理機制是一樣的問題。
02:57
So in this program that I undertook several years ago,
62
177840
3882
因此,在這項我幾年前開始進行的計劃中,
03:01
I looked at a variety of different threads
63
181722
2765
我研究各式各樣的想法,
03:04
across science, across a variety of disciplines,
64
184487
3162
橫跨科學以及不同領域,
03:07
that were pointing, I think,
65
187649
1892
我認為,
03:09
towards a single, underlying mechanism
66
189541
2548
這些都指向智慧的一個單一
03:12
for intelligence.
67
192089
1581
基本機制。
03:13
In cosmology, for example,
68
193670
2546
以宇宙論為例,
03:16
there have been a variety of different threads of evidence
69
196216
2747
有各種不同的證據顯示
03:18
that our universe appears to be finely tuned
70
198963
3407
我們所在的宇宙是被精心調整到
03:22
for the development of intelligence,
71
202370
2153
適合發展出智慧的,
03:24
and, in particular, for the development
72
204523
2389
尤其是發展出一個
03:26
of universal states
73
206912
1886
普遍性的狀態
03:28
that maximize the diversity of possible futures.
74
208798
4098
能使未來的可能性上做最大化。
03:32
In game play, for example, in Go --
75
212896
2344
以圍棋為例,
03:35
everyone remembers in 1997
76
215240
3025
大家都記得1997年
03:38
when IBM's Deep Blue beat Garry Kasparov at chess --
77
218265
3951
IBM 的深藍電腦打敗棋王卡斯帕羅夫,
03:42
fewer people are aware
78
222216
1523
但只有少數人知道
03:43
that in the past 10 years or so,
79
223739
2018
在過去的十年,
03:45
the game of Go,
80
225757
1198
圍棋,
03:46
arguably a much more challenging game
81
226955
1956
被視為是非常具挑戰性的遊戲,
03:48
because it has a much higher branching factor,
82
228911
2425
因為它有更多的分歧因素,
03:51
has also started to succumb
83
231336
1702
同時也開始讓
03:53
to computer game players
84
233038
1865
電腦玩家臣服,
03:54
for the same reason:
85
234903
1573
這些都是同樣的理由:
03:56
the best techniques right now for computers playing Go
86
236476
2800
現在讓電腦下棋最好的技巧
03:59
are techniques that try to maximize future options
87
239276
3696
就是將下棋過程可能發生的事件數
04:02
during game play.
88
242972
2014
最大化。
04:04
Finally, in robotic motion planning,
89
244986
3581
最後,在機器人的行動規劃中,
04:08
there have been a variety of recent techniques
90
248567
2182
最近的各種技術
04:10
that have tried to take advantage
91
250749
1902
都是試圖讓機器人
04:12
of abilities of robots to maximize
92
252651
3146
在未來能自由行動的可能性
04:15
future freedom of action
93
255797
1506
做最大化,
04:17
in order to accomplish complex tasks.
94
257303
3097
以完成某些複雜的任務。
04:20
And so, taking all of these different threads
95
260400
2355
所以,用這些不同的想法,
04:22
and putting them together,
96
262755
1622
把它們拼湊在一起,
04:24
I asked, starting several years ago,
97
264377
2640
在幾年前我開始問,
04:27
is there an underlying mechanism for intelligence
98
267017
2850
有沒有一個關於智慧的基本機制
04:29
that we can factor out
99
269867
1673
是我們可以從這些不同的想法中
04:31
of all of these different threads?
100
271540
1774
分解出來的?
04:33
Is there a single equation for intelligence?
101
273314
4593
有沒有一個屬於智慧的方程式?
04:37
And the answer, I believe, is yes. ["F = T ∇ Sτ"]
102
277907
3371
我相信答案是,有的。 ["F = T ∇ Sτ"]
04:41
What you're seeing is probably
103
281278
1913
你現在看到的
04:43
the closest equivalent to an E = mc²
104
283191
3294
或許是我看過最接近 E = mc²
04:46
for intelligence that I've seen.
105
286485
2830
的屬於智慧的方程式。
04:49
So what you're seeing here
106
289315
1702
你所看到的
04:51
is a statement of correspondence
107
291017
2669
是相對應的詮釋,
04:53
that intelligence is a force, F,
108
293686
4435
智慧是一種力量,F
04:58
that acts so as to maximize future freedom of action.
109
298121
4650
它的作用是最大化行動的自由度。
05:02
It acts to maximize future freedom of action,
110
302771
2375
它的作用會最大化行動的自由度
05:05
or keep options open,
111
305146
1628
或是一直保有開放的選擇,
05:06
with some strength T,
112
306774
2225
配合某一強度 T,
05:08
with the diversity of possible accessible futures, S,
113
308999
4777
和可能發生的未來多樣性,S
05:13
up to some future time horizon, tau.
114
313776
2550
直到未來的某一個時間點,t。
05:16
In short, intelligence doesn't like to get trapped.
115
316326
3209
簡單地說,智慧不喜歡被約束住。
05:19
Intelligence tries to maximize future freedom of action
116
319535
3055
智慧希望最大化未來行動的自由度,
05:22
and keep options open.
117
322590
2673
保持開放的選項。
05:25
And so, given this one equation,
118
325263
2433
所以,有了這一個方程式,
05:27
it's natural to ask, so what can you do with this?
119
327696
2532
很自然地就會問,你能用它做甚麼?
05:30
How predictive is it?
120
330228
1351
它的預測能力如何?
05:31
Does it predict human-level intelligence?
121
331579
2135
它能否預測人類的智慧?
05:33
Does it predict artificial intelligence?
122
333714
2818
它能否預測人工智慧?
05:36
So I'm going to show you now a video
123
336532
2042
現在我要給各位看一段影片,
05:38
that will, I think, demonstrate
124
338574
3420
我認為可以說明
05:41
some of the amazing applications
125
341994
2288
一些令人驚訝的應用,
05:44
of just this single equation.
126
344282
2319
而且都只來自這一個方程式。
05:46
(Video) Narrator: Recent research in cosmology
127
346601
1979
(影片) 旁白:宇宙學最近的研究
05:48
has suggested that universes that produce
128
348580
2047
推論宇宙會產生愈來愈多的
05:50
more disorder, or "entropy," over their lifetimes
129
350627
3481
失序,或是熵 (entropy),
05:54
should tend to have more favorable conditions
130
354108
2478
應該更容易擁有有利的環境,
05:56
for the existence of intelligent beings such as ourselves.
131
356586
3016
讓智慧存在。
05:59
But what if that tentative cosmological connection
132
359602
2574
但如果把這個宇宙學待驗證的
06:02
between entropy and intelligence
133
362176
1843
亂度和智慧的關係
06:04
hints at a deeper relationship?
134
364019
1771
再進一步加深會怎樣?
06:05
What if intelligent behavior doesn't just correlate
135
365790
2564
如果智慧和長期亂度的增加
06:08
with the production of long-term entropy,
136
368354
1844
不只是有正相關性,
06:10
but actually emerges directly from it?
137
370198
2318
而且是從中發展出來的呢?
06:12
To find out, we developed a software engine
138
372516
2406
為了解答這問題,我們開發了一個軟體
06:14
called Entropica, designed to maximize
139
374922
2503
叫做 "Entropica",
06:17
the production of long-term entropy
140
377425
1768
可以把任何系統中
06:19
of any system that it finds itself in.
141
379193
2576
熵的長期成長最大化。
06:21
Amazingly, Entropica was able to pass
142
381769
2155
令人驚訝的是,Entropica 能夠通過
06:23
multiple animal intelligence tests, play human games,
143
383924
3456
多項動物智慧測試,玩人類的遊戲,
06:27
and even earn money trading stocks,
144
387380
2146
甚至從股票交易中賺到錢,
06:29
all without being instructed to do so.
145
389526
2111
而且事前完全不用去教導它。
06:31
Here are some examples of Entropica in action.
146
391637
2518
這裡有幾個 Entropica 的實例。
06:34
Just like a human standing upright without falling over,
147
394155
3205
像人可以直立站著不會跌倒,
06:37
here we see Entropica
148
397360
1230
我們可以看到,
06:38
automatically balancing a pole using a cart.
149
398590
2885
Entropica使用一台車來自動平衡桿子。
06:41
This behavior is remarkable in part
150
401475
2012
這個表現在某方面很了不起,
06:43
because we never gave Entropica a goal.
151
403487
2331
因為我們從來沒有為Entropica設定一個目標。
06:45
It simply decided on its own to balance the pole.
152
405818
3157
由它自己決定要去平衡這個桿子。
06:48
This balancing ability will have appliactions
153
408975
2132
這個平衡的能力可以應用在
06:51
for humanoid robotics
154
411107
1397
機器人上,
06:52
and human assistive technologies.
155
412504
2515
以及人類行動輔助技術。
06:55
Just as some animals can use objects
156
415019
2001
就像有些動物
06:57
in their environments as tools
157
417020
1442
會使用週遭的物品當作工具,
06:58
to reach into narrow spaces,
158
418462
1987
以便能伸及到窄小的地方,
07:00
here we see that Entropica,
159
420449
1882
我們可以再次看到 Entropica
07:02
again on its own initiative,
160
422331
1838
由它自己決定,
07:04
was able to move a large disk representing an animal
161
424169
2910
可以移動代表動物的大圓圈,
07:07
around so as to cause a small disk,
162
427079
2345
讓代表工具的小圓圈
07:09
representing a tool, to reach into a confined space
163
429424
2771
進入一個有第三個圓圈的
07:12
holding a third disk
164
432195
1537
狹小空間,
07:13
and release the third disk from its initially fixed position.
165
433732
2972
然後把第三個圓圈從裡面擠出來。
07:16
This tool use ability will have applications
166
436704
2189
這個使用工具的能力可以應用在
07:18
for smart manufacturing and agriculture.
167
438893
2359
智慧製造和農業上。
07:21
In addition, just as some other animals
168
441252
1944
另外,就像其它動物
07:23
are able to cooperate by pulling opposite ends of a rope
169
443196
2696
會同時合力拉下繩索的兩端,
07:25
at the same time to release food,
170
445892
2053
讓食物掉出來,
07:27
here we see that Entropica is able to accomplish
171
447945
2295
我們看到 Entropica 可以完成
07:30
a model version of that task.
172
450240
1988
模組化後的同樣任務。
07:32
This cooperative ability has interesting implications
173
452228
2522
這個合作的能力可以應用在
07:34
for economic planning and a variety of other fields.
174
454750
3435
經濟規劃和其它各樣的領域。
07:38
Entropica is broadly applicable
175
458185
2071
Entropica 可以廣泛的應用在
07:40
to a variety of domains.
176
460256
1943
各樣的領域。
07:42
For example, here we see it successfully
177
462199
2442
例如,我們可以看到它
07:44
playing a game of pong against itself,
178
464641
2559
成功地和自己玩 "乓" (Pong),
07:47
illustrating its potential for gaming.
179
467200
2343
代表它能玩遊戲的潛力。
07:49
Here we see Entropica orchestrating
180
469543
1919
我們看到 Entropica 精心地
07:51
new connections on a social network
181
471462
1839
建立起社群的新連結,
07:53
where friends are constantly falling out of touch
182
473301
2760
當朋友們不時地失去聯繫,
07:56
and successfully keeping the network well connected.
183
476061
2856
它會成功地維持這個網絡。
07:58
This same network orchestration ability
184
478917
2298
這樣的網絡連結能力
08:01
also has applications in health care,
185
481215
2328
同樣可以應用在醫療照顧,
08:03
energy, and intelligence.
186
483543
3232
能源和智慧發展上。
08:06
Here we see Entropica directing the paths
187
486775
2085
這裡我們看到 Entropica
08:08
of a fleet of ships,
188
488860
1486
為海洋中的船隊指引路徑,
08:10
successfully discovering and utilizing the Panama Canal
189
490346
3175
成功地發現並使用巴拿馬運河,
08:13
to globally extend its reach from the Atlantic
190
493521
2458
使它的足跡遍及全球每個角落,從大西洋
08:15
to the Pacific.
191
495979
1529
到太平洋。
08:17
By the same token, Entropica
192
497508
1727
同樣的,Entropica
08:19
is broadly applicable to problems
193
499235
1620
可以廣泛地應用在
08:20
in autonomous defense, logistics and transportation.
194
500855
5302
自主防衛和物流運輸上。
08:26
Finally, here we see Entropica
195
506173
2030
最後,我們看到 Entropica
08:28
spontaneously discovering and executing
196
508203
2723
自己發現並且執行
08:30
a buy-low, sell-high strategy
197
510926
2067
"低買高賣"的策略,
08:32
on a simulated range traded stock,
198
512993
2178
在一個區間交易的股票模擬市場中,
08:35
successfully growing assets under management
199
515171
2331
成功地將管理資產規模
08:37
exponentially.
200
517502
1424
指數性成長。
08:38
This risk management ability
201
518926
1308
這樣的風險管理能力
08:40
will have broad applications in finance
202
520234
2487
可以應用在財務
08:42
and insurance.
203
522721
3328
和保險上。
08:46
Alex Wissner-Gross: So what you've just seen
204
526049
2091
艾力克斯·威斯奈-格羅斯: 以上你們所看到的
08:48
is that a variety of signature human intelligent
205
528140
4392
是一個代表人類智慧的
08:52
cognitive behaviors
206
532532
1757
認知行為能力,
08:54
such as tool use and walking upright
207
534289
2831
像是工具的使用、直立行走、
08:57
and social cooperation
208
537120
2029
以及群體合作,
08:59
all follow from a single equation,
209
539149
2972
全部都遵行一個方程式,
09:02
which drives a system
210
542121
1932
這個方程式驅使一個系統
09:04
to maximize its future freedom of action.
211
544053
3911
可以最大化未來行動的自由。
09:07
Now, there's a profound irony here.
212
547964
3007
然而,有一個很大的諷刺是,
09:10
Going back to the beginning
213
550971
2024
回顧最初
09:12
of the usage of the term robot,
214
552995
3273
使用”機器人”這個名詞時,
09:16
the play "RUR,"
215
556268
2903
在舞台劇《羅梭的萬能工人》(R.U.R,) 中,
09:19
there was always a concept
216
559171
2235
一直有一個概念:
09:21
that if we developed machine intelligence,
217
561406
3226
如果我們發展了人工智慧,
09:24
there would be a cybernetic revolt.
218
564632
3027
機器人將會起義反抗,
09:27
The machines would rise up against us.
219
567659
3551
對抗我們人類。
09:31
One major consequence of this work
220
571210
2319
我們這個研究主要的結論之一是,
09:33
is that maybe all of these decades,
221
573529
2769
或許在過去這幾十年來,
09:36
we've had the whole concept of cybernetic revolt
222
576298
2976
我們在逆向思考"機器人反抗”
09:39
in reverse.
223
579274
2011
這個概念。
09:41
It's not that machines first become intelligent
224
581285
3279
並不是機器先變聰明,
09:44
and then megalomaniacal
225
584564
2015
然後自大,
09:46
and try to take over the world.
226
586579
2224
然後才企圖統治全世界,
09:48
It's quite the opposite,
227
588803
1434
而是應該反過來看,
09:50
that the urge to take control
228
590237
2906
想要控制所有未來可能性
09:53
of all possible futures
229
593143
2261
的慾望,
09:55
is a more fundamental principle
230
595404
2118
比控制智慧
09:57
than that of intelligence,
231
597522
1363
是更加基本的原則,
09:58
that general intelligence may in fact emerge
232
598885
3700
一般的智慧或許是
10:02
directly from this sort of control-grabbing,
233
602585
3559
直接從操控中產生的,
10:06
rather than vice versa.
234
606144
4185
並非反過來。
10:10
Another important consequence is goal seeking.
235
610329
3769
另一個重要的結論是尋找目標。
10:14
I'm often asked, how does the ability to seek goals
236
614098
4360
我經常被問到,尋找目標的能力
10:18
follow from this sort of framework?
237
618458
1620
是如何從這個架構中產生的?
10:20
And the answer is, the ability to seek goals
238
620078
3028
答案是,尋找目標的能力
10:23
will follow directly from this
239
623106
1882
會直接來自於
10:24
in the following sense:
240
624988
1834
以下這個想法:
10:26
just like you would travel through a tunnel,
241
626822
2865
就像你行經一個隧道,
10:29
a bottleneck in your future path space,
242
629687
2505
一個在你未來道路上的瓶頸,
10:32
in order to achieve many other
243
632192
1871
是為了到達許多
10:34
diverse objectives later on,
244
634063
2021
在未來的不同目的地,
10:36
or just like you would invest
245
636084
2372
或者,就像你在證券上的
10:38
in a financial security,
246
638456
1787
投資,
10:40
reducing your short-term liquidity
247
640243
2237
降低短期的流動性,
10:42
in order to increase your wealth over the long term,
248
642480
2400
是為了增加長期的財富,
10:44
goal seeking emerges directly
249
644880
2337
而尋找目標是來自於
10:47
from a long-term drive
250
647217
1729
一個長期的趨動力
10:48
to increase future freedom of action.
251
648946
4037
用來增加未來的行動自由。
10:52
Finally, Richard Feynman, famous physicist,
252
652983
3528
最後,知名的物理學家理察費曼曾說,
10:56
once wrote that if human civilization were destroyed
253
656511
3672
如果人類文明要被毀滅了,
11:00
and you could pass only a single concept
254
660183
1893
而你只能留下一個概念
11:02
on to our descendants
255
662076
1371
給後世的子孫,
11:03
to help them rebuild civilization,
256
663447
2307
以便協助他們重建文明,
11:05
that concept should be
257
665754
1686
那麼這個概念應該是:
11:07
that all matter around us
258
667440
1852
所有我們週遭的物質
11:09
is made out of tiny elements
259
669292
2323
是是由微小的元素組成,
11:11
that attract each other when they're far apart
260
671615
2508
當它們相隔很遠時會互相吸引,
11:14
but repel each other when they're close together.
261
674123
3330
但靠近時會互相排斥。
11:17
My equivalent of that statement
262
677453
1781
而我同樣要
11:19
to pass on to descendants
263
679234
1268
留給後世的想法
11:20
to help them build artificial intelligences
264
680502
2712
以便幫助他們發展人工智慧,
11:23
or to help them understand human intelligence,
265
683214
2949
或是幫助他們了解人類的智慧,
11:26
is the following:
266
686163
1267
我會說:
11:27
Intelligence should be viewed
267
687430
2053
智慧應該被視為
11:29
as a physical process
268
689483
1413
一個物理程序,
11:30
that tries to maximize future freedom of action
269
690896
2965
它將試著最大化未來的行動自由,
11:33
and avoid constraints in its own future.
270
693861
3616
避免將自己侷限住。
11:37
Thank you very much.
271
697477
1358
謝謝大家。
11:38
(Applause)
272
698835
4000
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog