請雙擊下方英文字幕播放視頻。
譯者: Willy Feng
審譯者: Rowena Weng
00:12
Intelligence -- what is it?
0
12899
3667
智慧,是什麽?
00:16
If we take a look back at the history
1
16566
2291
如果我們回顧歷史
00:18
of how intelligence has been viewed,
2
18857
2624
對智慧的定義,
00:21
one seminal example has been
3
21481
3618
有一個基本的例子是,
00:25
Edsger Dijkstra's famous quote that
4
25099
3477
艾茲赫爾·戴克斯特拉說過的一句話:
(註:著名電腦科學家)
00:28
"the question of whether a machine can think
5
28576
3111
“關於機械是否能思考的問題
00:31
is about as interesting
6
31687
1310
就有如在問
00:32
as the question of whether a submarine
7
32997
2971
潛水艇是否能游泳
00:35
can swim."
8
35968
1790
一樣有意思。”
00:37
Now, Edsger Dijkstra, when he wrote this,
9
37758
3844
當艾茲赫爾·戴克斯特拉寫下這句話,
00:41
intended it as a criticism
10
41602
2054
是在質疑
00:43
of the early pioneers of computer science,
11
43656
3000
早期的電腦科學先驅,
00:46
like Alan Turing.
12
46656
1747
譬如艾倫·圖靈。
00:48
However, if you take a look back
13
48403
2499
然而,如果你回顧
00:50
and think about what have been
14
50902
1965
並思考,
00:52
the most empowering innovations
15
52867
1996
是什麼重大的創新
00:54
that enabled us to build
16
54863
1879
使我們能夠製造出
00:56
artificial machines that swim
17
56742
2234
會游泳和會飛的
00:58
and artificial machines that [fly],
18
58976
2573
人造機器,
01:01
you find that it was only through understanding
19
61549
3547
你就會發現,
01:05
the underlying physical mechanisms
20
65096
2608
唯有透過了解
01:07
of swimming and flight
21
67704
2779
游泳和飛翔的基本物理機制,
01:10
that we were able to build these machines.
22
70483
3172
我們才能製造出這些機器。
01:13
And so, several years ago,
23
73655
2256
因此,幾年前,
01:15
I undertook a program to try to understand
24
75911
3249
我著手進行一個計劃,
01:19
the fundamental physical mechanisms
25
79160
2634
試圖去了解什麼是
01:21
underlying intelligence.
26
81794
2768
智慧的基本物理機制。
01:24
Let's take a step back.
27
84562
1860
先讓我們退一步,
01:26
Let's first begin with a thought experiment.
28
86422
3149
先從一個發想實驗開始。
01:29
Pretend that you're an alien race
29
89571
2854
假設你是一個外星人,
01:32
that doesn't know anything about Earth biology
30
92425
3041
對地球的生物完全不了解,
01:35
or Earth neuroscience or Earth intelligence,
31
95466
3116
也不了解地球的神經學和生物智慧,
01:38
but you have amazing telescopes
32
98582
2192
但你有很棒的望遠鏡,
01:40
and you're able to watch the Earth,
33
100774
2362
可以直接看到地球,
01:43
and you have amazingly long lives,
34
103136
2332
而且你有很長很長的壽命,
01:45
so you're able to watch the Earth
35
105468
1499
所以你有好幾百萬年甚至好幾十億年的時間
01:46
over millions, even billions of years.
36
106967
3442
來觀察地球。
01:50
And you observe a really strange effect.
37
110409
3015
你發現一個很怪異的事情。
01:53
You observe that, over the course of the millennia,
38
113424
4312
你發現,在千禧年這個過程中,
01:57
Earth is continually bombarded with asteroids
39
117736
4285
地球不斷地遭到小行星的撞擊,
02:02
up until a point,
40
122021
2087
直到某一天,
02:04
and that at some point,
41
124108
1531
在某一個時刻,
02:05
corresponding roughly to our year, 2000 AD,
42
125639
4192
大約就是我們現在的西元兩千年左右,
02:09
asteroids that are on
43
129831
1716
小行星原本運行在
02:11
a collision course with the Earth
44
131547
1931
會撞擊到地球的軌道上,
02:13
that otherwise would have collided
45
133478
1975
但是那個軌道
02:15
mysteriously get deflected
46
135453
2415
神奇地偏移了,
02:17
or they detonate before they can hit the Earth.
47
137868
3072
或者小行星在撞到地球前爆炸了。
02:20
Now of course, as earthlings,
48
140940
2083
當然,身為地球人,
02:23
we know the reason would be
49
143023
1544
我們知道那是因為
02:24
that we're trying to save ourselves.
50
144567
1756
我們試著拯救人類,
02:26
We're trying to prevent an impact.
51
146323
3080
試著避免撞擊發生。
02:29
But if you're an alien race
52
149403
1711
但如果你是外星人,
02:31
who doesn't know any of this,
53
151114
1146
不知道這些,
02:32
doesn't have any concept of Earth intelligence,
54
152260
2514
對地球上的智慧沒有任何概念,
02:34
you'd be forced to put together
55
154774
1728
那麼你只好勉強拼湊出一個
02:36
a physical theory that explains how,
56
156502
2918
物理理論來解釋,
02:39
up until a certain point in time,
57
159420
2538
直到某一個時刻,
02:41
asteroids that would demolish the surface of a planet
58
161958
4449
應該毀滅地表一切的小行星
02:46
mysteriously stop doing that.
59
166407
3231
神奇地不再發生。
02:49
And so I claim that this is the same question
60
169638
4204
而我認為這跟要了解
02:53
as understanding the physical nature of intelligence.
61
173842
3998
智慧的物理機制是一樣的問題。
02:57
So in this program that I
undertook several years ago,
62
177840
3882
因此,在這項我幾年前開始進行的計劃中,
03:01
I looked at a variety of different threads
63
181722
2765
我研究各式各樣的想法,
03:04
across science, across a variety of disciplines,
64
184487
3162
橫跨科學以及不同領域,
03:07
that were pointing, I think,
65
187649
1892
我認為,
03:09
towards a single, underlying mechanism
66
189541
2548
這些都指向智慧的一個單一
03:12
for intelligence.
67
192089
1581
基本機制。
03:13
In cosmology, for example,
68
193670
2546
以宇宙論為例,
03:16
there have been a variety of
different threads of evidence
69
196216
2747
有各種不同的證據顯示
03:18
that our universe appears to be finely tuned
70
198963
3407
我們所在的宇宙是被精心調整到
03:22
for the development of intelligence,
71
202370
2153
適合發展出智慧的,
03:24
and, in particular, for the development
72
204523
2389
尤其是發展出一個
03:26
of universal states
73
206912
1886
普遍性的狀態
03:28
that maximize the diversity of possible futures.
74
208798
4098
能使未來的可能性上做最大化。
03:32
In game play, for example, in Go --
75
212896
2344
以圍棋為例,
03:35
everyone remembers in 1997
76
215240
3025
大家都記得1997年
03:38
when IBM's Deep Blue beat
Garry Kasparov at chess --
77
218265
3951
IBM 的深藍電腦打敗棋王卡斯帕羅夫,
03:42
fewer people are aware
78
222216
1523
但只有少數人知道
03:43
that in the past 10 years or so,
79
223739
2018
在過去的十年,
03:45
the game of Go,
80
225757
1198
圍棋,
03:46
arguably a much more challenging game
81
226955
1956
被視為是非常具挑戰性的遊戲,
03:48
because it has a much higher branching factor,
82
228911
2425
因為它有更多的分歧因素,
03:51
has also started to succumb
83
231336
1702
同時也開始讓
03:53
to computer game players
84
233038
1865
電腦玩家臣服,
03:54
for the same reason:
85
234903
1573
這些都是同樣的理由:
03:56
the best techniques right now
for computers playing Go
86
236476
2800
現在讓電腦下棋最好的技巧
03:59
are techniques that try to maximize future options
87
239276
3696
就是將下棋過程可能發生的事件數
04:02
during game play.
88
242972
2014
最大化。
04:04
Finally, in robotic motion planning,
89
244986
3581
最後,在機器人的行動規劃中,
04:08
there have been a variety of recent techniques
90
248567
2182
最近的各種技術
04:10
that have tried to take advantage
91
250749
1902
都是試圖讓機器人
04:12
of abilities of robots to maximize
92
252651
3146
在未來能自由行動的可能性
04:15
future freedom of action
93
255797
1506
做最大化,
04:17
in order to accomplish complex tasks.
94
257303
3097
以完成某些複雜的任務。
04:20
And so, taking all of these different threads
95
260400
2355
所以,用這些不同的想法,
04:22
and putting them together,
96
262755
1622
把它們拼湊在一起,
04:24
I asked, starting several years ago,
97
264377
2640
在幾年前我開始問,
04:27
is there an underlying mechanism for intelligence
98
267017
2850
有沒有一個關於智慧的基本機制
04:29
that we can factor out
99
269867
1673
是我們可以從這些不同的想法中
04:31
of all of these different threads?
100
271540
1774
分解出來的?
04:33
Is there a single equation for intelligence?
101
273314
4593
有沒有一個屬於智慧的方程式?
04:37
And the answer, I believe, is yes.
["F = T ∇ Sτ"]
102
277907
3371
我相信答案是,有的。
["F = T ∇ Sτ"]
04:41
What you're seeing is probably
103
281278
1913
你現在看到的
04:43
the closest equivalent to an E = mc²
104
283191
3294
或許是我看過最接近 E = mc²
04:46
for intelligence that I've seen.
105
286485
2830
的屬於智慧的方程式。
04:49
So what you're seeing here
106
289315
1702
你所看到的
04:51
is a statement of correspondence
107
291017
2669
是相對應的詮釋,
04:53
that intelligence is a force, F,
108
293686
4435
智慧是一種力量,F
04:58
that acts so as to maximize future freedom of action.
109
298121
4650
它的作用是最大化行動的自由度。
05:02
It acts to maximize future freedom of action,
110
302771
2375
它的作用會最大化行動的自由度
05:05
or keep options open,
111
305146
1628
或是一直保有開放的選擇,
05:06
with some strength T,
112
306774
2225
配合某一強度 T,
05:08
with the diversity of possible accessible futures, S,
113
308999
4777
和可能發生的未來多樣性,S
05:13
up to some future time horizon, tau.
114
313776
2550
直到未來的某一個時間點,t。
05:16
In short, intelligence doesn't like to get trapped.
115
316326
3209
簡單地說,智慧不喜歡被約束住。
05:19
Intelligence tries to maximize
future freedom of action
116
319535
3055
智慧希望最大化未來行動的自由度,
05:22
and keep options open.
117
322590
2673
保持開放的選項。
05:25
And so, given this one equation,
118
325263
2433
所以,有了這一個方程式,
05:27
it's natural to ask, so what can you do with this?
119
327696
2532
很自然地就會問,你能用它做甚麼?
05:30
How predictive is it?
120
330228
1351
它的預測能力如何?
05:31
Does it predict human-level intelligence?
121
331579
2135
它能否預測人類的智慧?
05:33
Does it predict artificial intelligence?
122
333714
2818
它能否預測人工智慧?
05:36
So I'm going to show you now a video
123
336532
2042
現在我要給各位看一段影片,
05:38
that will, I think, demonstrate
124
338574
3420
我認為可以說明
05:41
some of the amazing applications
125
341994
2288
一些令人驚訝的應用,
05:44
of just this single equation.
126
344282
2319
而且都只來自這一個方程式。
05:46
(Video) Narrator: Recent research in cosmology
127
346601
1979
(影片) 旁白:宇宙學最近的研究
05:48
has suggested that universes that produce
128
348580
2047
推論宇宙會產生愈來愈多的
05:50
more disorder, or "entropy," over their lifetimes
129
350627
3481
失序,或是熵 (entropy),
05:54
should tend to have more favorable conditions
130
354108
2478
應該更容易擁有有利的環境,
05:56
for the existence of intelligent
beings such as ourselves.
131
356586
3016
讓智慧存在。
05:59
But what if that tentative cosmological connection
132
359602
2574
但如果把這個宇宙學待驗證的
06:02
between entropy and intelligence
133
362176
1843
亂度和智慧的關係
06:04
hints at a deeper relationship?
134
364019
1771
再進一步加深會怎樣?
06:05
What if intelligent behavior doesn't just correlate
135
365790
2564
如果智慧和長期亂度的增加
06:08
with the production of long-term entropy,
136
368354
1844
不只是有正相關性,
06:10
but actually emerges directly from it?
137
370198
2318
而且是從中發展出來的呢?
06:12
To find out, we developed a software engine
138
372516
2406
為了解答這問題,我們開發了一個軟體
06:14
called Entropica, designed to maximize
139
374922
2503
叫做 "Entropica",
06:17
the production of long-term entropy
140
377425
1768
可以把任何系統中
06:19
of any system that it finds itself in.
141
379193
2576
熵的長期成長最大化。
06:21
Amazingly, Entropica was able to pass
142
381769
2155
令人驚訝的是,Entropica 能夠通過
06:23
multiple animal intelligence
tests, play human games,
143
383924
3456
多項動物智慧測試,玩人類的遊戲,
06:27
and even earn money trading stocks,
144
387380
2146
甚至從股票交易中賺到錢,
06:29
all without being instructed to do so.
145
389526
2111
而且事前完全不用去教導它。
06:31
Here are some examples of Entropica in action.
146
391637
2518
這裡有幾個 Entropica 的實例。
06:34
Just like a human standing
upright without falling over,
147
394155
3205
像人可以直立站著不會跌倒,
06:37
here we see Entropica
148
397360
1230
我們可以看到,
06:38
automatically balancing a pole using a cart.
149
398590
2885
Entropica使用一台車來自動平衡桿子。
06:41
This behavior is remarkable in part
150
401475
2012
這個表現在某方面很了不起,
06:43
because we never gave Entropica a goal.
151
403487
2331
因為我們從來沒有為Entropica設定一個目標。
06:45
It simply decided on its own to balance the pole.
152
405818
3157
由它自己決定要去平衡這個桿子。
06:48
This balancing ability will have appliactions
153
408975
2132
這個平衡的能力可以應用在
06:51
for humanoid robotics
154
411107
1397
機器人上,
06:52
and human assistive technologies.
155
412504
2515
以及人類行動輔助技術。
06:55
Just as some animals can use objects
156
415019
2001
就像有些動物
06:57
in their environments as tools
157
417020
1442
會使用週遭的物品當作工具,
06:58
to reach into narrow spaces,
158
418462
1987
以便能伸及到窄小的地方,
07:00
here we see that Entropica,
159
420449
1882
我們可以再次看到 Entropica
07:02
again on its own initiative,
160
422331
1838
由它自己決定,
07:04
was able to move a large
disk representing an animal
161
424169
2910
可以移動代表動物的大圓圈,
07:07
around so as to cause a small disk,
162
427079
2345
讓代表工具的小圓圈
07:09
representing a tool, to reach into a confined space
163
429424
2771
進入一個有第三個圓圈的
07:12
holding a third disk
164
432195
1537
狹小空間,
07:13
and release the third disk
from its initially fixed position.
165
433732
2972
然後把第三個圓圈從裡面擠出來。
07:16
This tool use ability will have applications
166
436704
2189
這個使用工具的能力可以應用在
07:18
for smart manufacturing and agriculture.
167
438893
2359
智慧製造和農業上。
07:21
In addition, just as some other animals
168
441252
1944
另外,就像其它動物
07:23
are able to cooperate by pulling
opposite ends of a rope
169
443196
2696
會同時合力拉下繩索的兩端,
07:25
at the same time to release food,
170
445892
2053
讓食物掉出來,
07:27
here we see that Entropica is able to accomplish
171
447945
2295
我們看到 Entropica 可以完成
07:30
a model version of that task.
172
450240
1988
模組化後的同樣任務。
07:32
This cooperative ability has interesting implications
173
452228
2522
這個合作的能力可以應用在
07:34
for economic planning and a variety of other fields.
174
454750
3435
經濟規劃和其它各樣的領域。
07:38
Entropica is broadly applicable
175
458185
2071
Entropica 可以廣泛的應用在
07:40
to a variety of domains.
176
460256
1943
各樣的領域。
07:42
For example, here we see it successfully
177
462199
2442
例如,我們可以看到它
07:44
playing a game of pong against itself,
178
464641
2559
成功地和自己玩 "乓" (Pong),
07:47
illustrating its potential for gaming.
179
467200
2343
代表它能玩遊戲的潛力。
07:49
Here we see Entropica orchestrating
180
469543
1919
我們看到 Entropica 精心地
07:51
new connections on a social network
181
471462
1839
建立起社群的新連結,
07:53
where friends are constantly falling out of touch
182
473301
2760
當朋友們不時地失去聯繫,
07:56
and successfully keeping
the network well connected.
183
476061
2856
它會成功地維持這個網絡。
07:58
This same network orchestration ability
184
478917
2298
這樣的網絡連結能力
08:01
also has applications in health care,
185
481215
2328
同樣可以應用在醫療照顧,
08:03
energy, and intelligence.
186
483543
3232
能源和智慧發展上。
08:06
Here we see Entropica directing the paths
187
486775
2085
這裡我們看到 Entropica
08:08
of a fleet of ships,
188
488860
1486
為海洋中的船隊指引路徑,
08:10
successfully discovering and
utilizing the Panama Canal
189
490346
3175
成功地發現並使用巴拿馬運河,
08:13
to globally extend its reach from the Atlantic
190
493521
2458
使它的足跡遍及全球每個角落,從大西洋
08:15
to the Pacific.
191
495979
1529
到太平洋。
08:17
By the same token, Entropica
192
497508
1727
同樣的,Entropica
08:19
is broadly applicable to problems
193
499235
1620
可以廣泛地應用在
08:20
in autonomous defense, logistics and transportation.
194
500855
5302
自主防衛和物流運輸上。
08:26
Finally, here we see Entropica
195
506173
2030
最後,我們看到 Entropica
08:28
spontaneously discovering and executing
196
508203
2723
自己發現並且執行
08:30
a buy-low, sell-high strategy
197
510926
2067
"低買高賣"的策略,
08:32
on a simulated range traded stock,
198
512993
2178
在一個區間交易的股票模擬市場中,
08:35
successfully growing assets under management
199
515171
2331
成功地將管理資產規模
08:37
exponentially.
200
517502
1424
指數性成長。
08:38
This risk management ability
201
518926
1308
這樣的風險管理能力
08:40
will have broad applications in finance
202
520234
2487
可以應用在財務
08:42
and insurance.
203
522721
3328
和保險上。
08:46
Alex Wissner-Gross: So what you've just seen
204
526049
2091
艾力克斯·威斯奈-格羅斯:
以上你們所看到的
08:48
is that a variety of signature human intelligent
205
528140
4392
是一個代表人類智慧的
08:52
cognitive behaviors
206
532532
1757
認知行為能力,
08:54
such as tool use and walking upright
207
534289
2831
像是工具的使用、直立行走、
08:57
and social cooperation
208
537120
2029
以及群體合作,
08:59
all follow from a single equation,
209
539149
2972
全部都遵行一個方程式,
09:02
which drives a system
210
542121
1932
這個方程式驅使一個系統
09:04
to maximize its future freedom of action.
211
544053
3911
可以最大化未來行動的自由。
09:07
Now, there's a profound irony here.
212
547964
3007
然而,有一個很大的諷刺是,
09:10
Going back to the beginning
213
550971
2024
回顧最初
09:12
of the usage of the term robot,
214
552995
3273
使用”機器人”這個名詞時,
09:16
the play "RUR,"
215
556268
2903
在舞台劇《羅梭的萬能工人》(R.U.R,) 中,
09:19
there was always a concept
216
559171
2235
一直有一個概念:
09:21
that if we developed machine intelligence,
217
561406
3226
如果我們發展了人工智慧,
09:24
there would be a cybernetic revolt.
218
564632
3027
機器人將會起義反抗,
09:27
The machines would rise up against us.
219
567659
3551
對抗我們人類。
09:31
One major consequence of this work
220
571210
2319
我們這個研究主要的結論之一是,
09:33
is that maybe all of these decades,
221
573529
2769
或許在過去這幾十年來,
09:36
we've had the whole concept of cybernetic revolt
222
576298
2976
我們在逆向思考"機器人反抗”
09:39
in reverse.
223
579274
2011
這個概念。
09:41
It's not that machines first become intelligent
224
581285
3279
並不是機器先變聰明,
09:44
and then megalomaniacal
225
584564
2015
然後自大,
09:46
and try to take over the world.
226
586579
2224
然後才企圖統治全世界,
09:48
It's quite the opposite,
227
588803
1434
而是應該反過來看,
09:50
that the urge to take control
228
590237
2906
想要控制所有未來可能性
09:53
of all possible futures
229
593143
2261
的慾望,
09:55
is a more fundamental principle
230
595404
2118
比控制智慧
09:57
than that of intelligence,
231
597522
1363
是更加基本的原則,
09:58
that general intelligence may in fact emerge
232
598885
3700
一般的智慧或許是
10:02
directly from this sort of control-grabbing,
233
602585
3559
直接從操控中產生的,
10:06
rather than vice versa.
234
606144
4185
並非反過來。
10:10
Another important consequence is goal seeking.
235
610329
3769
另一個重要的結論是尋找目標。
10:14
I'm often asked, how does the ability to seek goals
236
614098
4360
我經常被問到,尋找目標的能力
10:18
follow from this sort of framework?
237
618458
1620
是如何從這個架構中產生的?
10:20
And the answer is, the ability to seek goals
238
620078
3028
答案是,尋找目標的能力
10:23
will follow directly from this
239
623106
1882
會直接來自於
10:24
in the following sense:
240
624988
1834
以下這個想法:
10:26
just like you would travel through a tunnel,
241
626822
2865
就像你行經一個隧道,
10:29
a bottleneck in your future path space,
242
629687
2505
一個在你未來道路上的瓶頸,
10:32
in order to achieve many other
243
632192
1871
是為了到達許多
10:34
diverse objectives later on,
244
634063
2021
在未來的不同目的地,
10:36
or just like you would invest
245
636084
2372
或者,就像你在證券上的
10:38
in a financial security,
246
638456
1787
投資,
10:40
reducing your short-term liquidity
247
640243
2237
降低短期的流動性,
10:42
in order to increase your wealth over the long term,
248
642480
2400
是為了增加長期的財富,
10:44
goal seeking emerges directly
249
644880
2337
而尋找目標是來自於
10:47
from a long-term drive
250
647217
1729
一個長期的趨動力
10:48
to increase future freedom of action.
251
648946
4037
用來增加未來的行動自由。
10:52
Finally, Richard Feynman, famous physicist,
252
652983
3528
最後,知名的物理學家理察費曼曾說,
10:56
once wrote that if human civilization were destroyed
253
656511
3672
如果人類文明要被毀滅了,
11:00
and you could pass only a single concept
254
660183
1893
而你只能留下一個概念
11:02
on to our descendants
255
662076
1371
給後世的子孫,
11:03
to help them rebuild civilization,
256
663447
2307
以便協助他們重建文明,
11:05
that concept should be
257
665754
1686
那麼這個概念應該是:
11:07
that all matter around us
258
667440
1852
所有我們週遭的物質
11:09
is made out of tiny elements
259
669292
2323
是是由微小的元素組成,
11:11
that attract each other when they're far apart
260
671615
2508
當它們相隔很遠時會互相吸引,
11:14
but repel each other when they're close together.
261
674123
3330
但靠近時會互相排斥。
11:17
My equivalent of that statement
262
677453
1781
而我同樣要
11:19
to pass on to descendants
263
679234
1268
留給後世的想法
11:20
to help them build artificial intelligences
264
680502
2712
以便幫助他們發展人工智慧,
11:23
or to help them understand human intelligence,
265
683214
2949
或是幫助他們了解人類的智慧,
11:26
is the following:
266
686163
1267
我會說:
11:27
Intelligence should be viewed
267
687430
2053
智慧應該被視為
11:29
as a physical process
268
689483
1413
一個物理程序,
11:30
that tries to maximize future freedom of action
269
690896
2965
它將試著最大化未來的行動自由,
11:33
and avoid constraints in its own future.
270
693861
3616
避免將自己侷限住。
11:37
Thank you very much.
271
697477
1358
謝謝大家。
11:38
(Applause)
272
698835
4000
(掌聲)
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。