Jeff Hawkins: How brain science will change computing

208,781 views ・ 2007-05-23

TED


請雙擊下方英文字幕播放視頻。

譯者: Bill Hsiung 審譯者: Calvin Chun-yu Chan
00:25
I do two things:
0
25476
1151
我有兩個職業。我設計行動電腦,而且我研究大腦。
00:26
I design mobile computers and I study brains.
1
26651
2118
00:28
Today's talk is about brains and -- (Audience member cheers)
2
28793
2930
今天的演講與大腦有關,
00:31
Yay! I have a brain fan out there.
3
31747
1817
耶,看來今天聽眾中有人是大腦迷。
00:33
(Laughter)
4
33588
3147
(笑聲)
如果我的投影片已經準備好了,
00:36
If I could have my first slide,
5
36759
1555
你將會看到今天的演講主題及我的兩個所屬機構,
00:38
you'll see the title of my talk and my two affiliations.
6
38338
2849
00:41
So what I'm going to talk about is why we don't have a good brain theory,
7
41211
3468
今天我將要談的是 — 為什麼我們沒有一個好的大腦理論,
00:44
why it is important that we should develop one
8
44703
2277
為什麼發展大腦理論如此重要,還有,我們能利用這個理論做什麼?
00:47
and what we can do about it.
9
47004
1483
00:48
I'll try to do all that in 20 minutes.
10
48511
1824
我將會嘗試在廿分鐘內完成全部的主題。我參與兩家公司。
00:50
I have two affiliations.
11
50359
1151
00:51
Most of you know me from my Palm and Handspring days,
12
51534
2532
你們大多數是因為我在 Palm 及 Handspring 的工作而認識我的,
00:54
but I also run a nonprofit scientific research institute
13
54090
2683
但是我同時也經營一個非營利性的科學研究機構
00:56
called the Redwood Neuroscience Institute in Menlo Park.
14
56797
2632
它位於加州門洛帕克,叫做「紅木神經科學研究所」,
00:59
We study theoretical neuroscience and how the neocortex works.
15
59453
3388
我們專攻理論神經科學相關的研究,
我們對研究大腦新皮層如何運作有興趣。
01:02
I'm going to talk all about that.
16
62865
1598
我將談談這一方面。
01:04
I have one slide on my other life, the computer life,
17
64487
2745
我將我的另一個生活面(電腦生活)做成了一張投影片,你現在可以看到。
01:07
and that's this slide here.
18
67256
1301
01:08
These are some of the products I've worked on over the last 20 years,
19
68581
3268
我在過去的廿年間參與了一些產品的開發,
01:11
starting from the very original laptop
20
71873
1842
從第一台筆記型電腦到首批平板電腦等等,
01:13
to some of the first tablet computers
21
73739
1787
01:15
and so on, ending up most recently with the Treo,
22
75550
2298
最新的一個產品是 Treo,
01:17
and we're continuing to do this.
23
77872
1532
我們將會繼續電子產品的開發。
01:19
I've done this because I believe mobile computing
24
79428
2301
我之所以會參與這一行主要是因為我相信行動運算
01:21
is the future of personal computing,
25
81753
1724
是個人運算產品的未來,而我試著藉由開發這些產品
01:23
and I'm trying to make the world a little bit better
26
83501
2454
來讓世界更美好。
01:25
by working on these things.
27
85979
1296
01:27
But this was, I admit, all an accident.
28
87299
1874
但是我必須承認,這一切都是個意外。
01:29
I really didn't want to do any of these products.
29
89197
2308
我其實本來一點都沒有打算要開發這些產品
01:31
Very early in my career
30
91529
1382
而且在我事業剛剛開始的時候我還決定
01:32
I decided I was not going to be in the computer industry.
31
92935
2690
我不要從事電腦相關產業。
01:35
Before that, I just have to tell you
32
95649
1721
但在我告訴你這個故事之前,我必須告訴你
01:37
about this picture of Graffiti I picked off the web the other day.
33
97394
3108
我某天從網路上看到的一張關於 graffiti 輸入法照片的故事。
01:40
I was looking for a picture for Graffiti that'll text input language.
34
100526
3253
當時我在網上尋找 graffiti 的照片,那是一種輸入法程式語言,
01:43
I found a website dedicated to teachers who want to make script-writing things
35
103803
3689
然後我發現一個網站,它是為一群老師們所架設的,你知道的,
利用 script 來控制黑板上的跑馬燈,
01:47
across the top of their blackboard,
36
107516
1674
01:49
and they had added Graffiti to it, and I'm sorry about that.
37
109214
2833
他們網站內容竟然包含 graffiti,我對此感到很抱歉。
01:52
(Laughter)
38
112071
2247
(笑聲)
01:54
So what happened was,
39
114342
1300
當我還年輕,剛剛從工學院畢業的時候,
01:55
when I was young and got out of engineering school at Cornell in '79,
40
115666
4899
我是康乃爾 79 年畢業班,我決定去 Intel 工作。
02:00
I went to work for Intel and was in the computer industry,
41
120589
3187
02:03
and three months into that, I fell in love with something else.
42
123800
3402
我在電腦業奮鬥了三個月之後,
我愛上了另一個東西,我說:「我入錯行了」,
02:07
I said, "I made the wrong career choice here,"
43
127226
3044
02:10
and I fell in love with brains.
44
130294
2239
因為我愛上了大腦。
02:12
This is not a real brain.
45
132557
1533
這不是真的大腦。這是大腦的描繪圖。
02:14
This is a picture of one, a line drawing.
46
134114
2719
02:16
And I don't remember exactly how it happened,
47
136857
2119
我已經記不清當初是如何開始的了,
02:19
but I have one recollection, which was pretty strong in my mind.
48
139000
3515
在我腦海中只有一個鮮明的回憶。
02:22
In September of 1979,
49
142539
1610
1979 年九月,新一期的科學美國人出刊
02:24
Scientific American came out with a single-topic issue about the brain.
50
144173
3364
那是一期談論大腦的特刊。非常的棒。
02:27
It was one of their best issues ever.
51
147561
1938
那是有史以來最棒的一期雜誌之一。那期刊物中談論神經、
02:29
They talked about the neuron, development, disease, vision
52
149523
2947
發育、疾病以及視力等等所有的
02:32
and all the things you might want to know about brains.
53
152494
2596
跟大腦相關且你會感興趣的主題。真的非常令人印象深刻。
02:35
It was really quite impressive.
54
155114
1502
02:36
One might've had the impression we knew a lot about brains.
55
156640
2772
而人會得到一種錯誤的印象,那就是我們已經非常了解我們的大腦了。
02:39
But the last article in that issue was written by Francis Crick of DNA fame.
56
159436
4195
但是那一期的最後一篇文章是由發現 DNA 結構而成名的法蘭西斯•克里克所撰寫。
02:43
Today is, I think, the 50th anniversary of the discovery of DNA.
57
163655
3024
今天,如果我沒記錯的話,剛好是發現 DNA 結構五十週年紀念日。
02:46
And he wrote a story basically saying, this is all well and good,
58
166703
3075
他寫了一個故事,主要是告訴我們:
這個嘛~這些研究都很棒,可是你知道嗎?
02:49
but you know, we don't know diddly squat about brains,
59
169802
2743
我們對大腦一點都不了解
02:52
and no one has a clue how they work,
60
172569
1739
沒有人知道大腦是如何運作的,
02:54
so don't believe what anyone tells you.
61
174332
1866
所以別相信其他人告訴你的事情。
02:56
This is a quote from that article, he says:
62
176222
2165
這是從文章中摘錄下來的一句話。他說:「這裡顯著缺乏的是,」
02:58
"What is conspicuously lacking" -- he's a very proper British gentleman --
63
178411
4293
他是一個非常有禮的英國紳士,「我們會注意到可以用來解釋這些研究
03:02
"What is conspicuously lacking is a broad framework of ideas
64
182728
2830
的廣泛概念架構是明顯地不足的。」
03:05
in which to interpret these different approaches."
65
185582
2352
03:07
I thought the word "framework" was great.
66
187958
1968
我認為他用「架構」一詞用得非常洽當。
03:09
He didn't say we didn't have a theory.
67
189950
1817
他並沒有說我們連一個理論都沒有。他所說得是,
03:11
He says we don't even know how to begin to think about it.
68
191791
2725
我們連如何開始建立理論都不知道該如何下手 —
我們連個架構都沒有。
03:14
We don't even have a framework.
69
194540
1492
如果你想要引用湯瑪斯•孔恩的說法,我們處在一個前典範的時代。
03:16
We are in the pre-paradigm days, if you want to use Thomas Kuhn.
70
196056
3050
因此我愛上這個領域了,然後說:看看,
03:19
So I fell in love with this.
71
199130
1339
03:20
I said, look: We have all this knowledge about brains -- how hard can it be?
72
200493
3575
我們已經知道這麼多關於腦的知識。這會有多難?
03:24
It's something we can work on in my lifetime; I could make a difference.
73
204092
3438
而且這是個可以一輩子鑽研的題目。我認為我能對世界做出一點貢獻,
03:27
So I tried to get out of the computer business, into the brain business.
74
207554
3619
因此我嘗試著離開電腦業,轉行到腦科學研究領域。
03:31
First, I went to MIT, the AI lab was there.
75
211197
2004
首先,我跑去麻省理工裡的一間人工智慧實驗室,
03:33
I said, I want to build intelligent machines too,
76
213225
2395
我說,嘿,我也想要建造智能機器,
03:35
but I want to study how brains work first.
77
215644
2517
但是我覺得達到這個目標前必須要先能了解大腦是如何運作的。
03:38
And they said, "Oh, you don't need to do that.
78
218185
2306
然而他們說,喔,你並不需要知道那個。
03:40
You're just going to program computers, that's all.
79
220515
2390
我們只需要設計電腦程式,不需要做其他不相干的事。
03:42
I said, you really ought to study brains.
80
222929
1963
我再說,不,你們真的應該研究大腦。他們說,喔,你知道嗎?
03:44
They said, "No, you're wrong."
81
224916
1432
03:46
I said, "No, you're wrong," and I didn't get in.
82
226372
2246
你錯了。然後我說,不,你才錯了,所以當然我沒被錄取。
03:48
(Laughter)
83
228642
1078
(笑聲)
03:49
I was a little disappointed -- pretty young --
84
229744
2155
但我有點失望 — 因為我還年輕,但幾年以後我又嘗試了一次
03:51
but I went back again a few years later,
85
231923
1936
這次是在加州,我跑去柏克萊。
03:53
this time in California, and I went to Berkeley.
86
233883
2359
然後我說,我要從生物方面開始著手。
03:56
And I said, I'll go in from the biological side.
87
236266
2430
03:58
So I got in the PhD program in biophysics.
88
238720
3089
所以我被錄取了,進入了生物物理博士班。然後我心想,太棒了,
04:01
I was like, I'm studying brains now. Well, I want to study theory.
89
241833
3410
我現在開始研究大腦了,然後我說,好的,我想要鑽研理論。
04:05
They said, "You can't study theory about brains.
90
245267
2269
但他們告訴我,喔,不,你不能研究關於腦的理論。
04:07
You can't get funded for that.
91
247560
1995
你不想做那個的。沒有人會給你經費支持你做這種研究。
04:09
And as a graduate student, you can't do that."
92
249579
2155
身為一個研究生,你不能這麼做。所以我又說了,我的老天,
04:11
So I said, oh my gosh.
93
251758
1218
04:13
I was depressed; I said, but I can make a difference in this field.
94
253000
3155
我非常沮喪。我說,但我能在這方面有所成就。
所以我唯一能做的是,我回到了電腦業
04:16
I went back in the computer industry
95
256179
2008
04:18
and said, I'll have to work here for a while.
96
258211
2105
然後說,好吧,我將留下來工作一段時間,做出一番成就。
04:20
That's when I designed all those computer products.
97
260340
2393
然後我就開始設計出所有這些電子產品。
04:22
(Laughter)
98
262757
1301
(笑聲)
04:24
I said, I want to do this for four years, make some money,
99
264082
2894
我告訴自己,我在這邊待四年,賺些錢,
04:27
I was having a family, and I would mature a bit,
100
267000
3976
我會成家,變得更成熟些,
04:31
and maybe the business of neuroscience would mature a bit.
101
271000
2816
同時也許神經科學領域也會發展得成熟一點。
04:33
Well, it took longer than four years. It's been about 16 years.
102
273840
3001
好吧,我花了超過四年的時間。時光飛逝,已經 16 年了。
04:36
But I'm doing it now, and I'm going to tell you about it.
103
276865
2716
但是我終於在研究大腦了,而我將會跟你們談談我的研究。
04:39
So why should we have a good brain theory?
104
279605
2286
為什麼我們應該要有一個好的大腦理論?
04:41
Well, there's lots of reasons people do science.
105
281915
3102
人們為了千百種不同的理由研究科學。
04:45
The most basic one is, people like to know things.
106
285041
2917
其中一個理由 — 最基本的理由 — 是我們想要了解事物。
04:47
We're curious, and we go out and get knowledge.
107
287982
2195
人類是好奇的,我們只是想要獲取新知而已,你了解嗎?
04:50
Why do we study ants? It's interesting.
108
290201
1866
為什麼我們要研究螞蟻?不為什麼,只因為它很有趣。
04:52
Maybe we'll learn something useful, but it's interesting and fascinating.
109
292091
3466
也許我們能從中學到新知,但是研究本身既有趣又吸引人。
04:55
But sometimes a science has other attributes
110
295581
2057
但有時,科學有一些其他的屬性
04:57
which makes it really interesting.
111
297662
1829
而這些屬性會讓它額外的吸引人。
04:59
Sometimes a science will tell something about ourselves;
112
299515
2627
有時候科學能夠讓我們更加認識自己,
05:02
it'll tell us who we are.
113
302166
1224
它會讓我們知道我們是誰。
05:03
Evolution did this and Copernicus did this,
114
303414
2752
雖然這極少發生,如你所知演化學說是一例,哥白尼也做到了,
05:06
where we have a new understanding of who we are.
115
306190
2334
它們徹底地改變了我們對自己身份地位上的認知。
05:08
And after all, we are our brains. My brain is talking to your brain.
116
308548
3428
但是最基本的,我們代表著我們的大腦。我的大腦正在和你的交談著。
05:12
Our bodies are hanging along for the ride,
117
312000
2030
雖然我們的身體隨時陪伴著我們,但是是我的腦在和你的腦交談。
05:14
but my brain is talking to your brain.
118
314054
1825
05:15
And if we want to understand who we are and how we feel and perceive,
119
315903
3248
所以如果我們想要了解我們到底是誰,我們是如何感覺、理解事物,
我們真的需要了解大腦是什麼。
05:19
we need to understand brains.
120
319175
1391
05:20
Another thing is sometimes science leads to big societal benefits, technologies,
121
320590
3784
另一方面,有時科學
能對社會利益、科技、
05:24
or businesses or whatever.
122
324398
1291
商業,各式各樣領域做出極大的貢獻。這也是其中之一,
05:25
This is one, too, because when we understand how brains work,
123
325713
2878
因為當我們了解大腦是如何運作之後,我們將能夠
05:28
we'll be able to build intelligent machines.
124
328615
2064
建造智慧機器,我相信整體來說,這會是件好事,
05:30
That's a good thing on the whole,
125
330703
1698
05:32
with tremendous benefits to society,
126
332425
1858
這將會對社會有極大助益
05:34
just like a fundamental technology.
127
334307
1669
就如同基礎科技一般。
05:36
So why don't we have a good theory of brains?
128
336000
2850
所以,為什麼我們沒有一個好的大腦理論?
05:38
People have been working on it for 100 years.
129
338874
2168
而且人們研究大腦的歷史已經有百來年了。
05:41
Let's first take a look at what normal science looks like.
130
341066
2719
那麼,讓我們先來看看普通科學領域的狀況。
05:43
This is normal science.
131
343809
1187
這是普通科學領域。
05:45
Normal science is a nice balance between theory and experimentalists.
132
345020
4074
普通科學領域中的理論與實作家呈現一個良好的平衡。
05:49
The theorist guy says, "I think this is what's going on,"
133
349118
2691
因此當理論學者說,嗯,我認為事情是這般這般,
05:51
the experimentalist says, "You're wrong."
134
351833
1961
然後實驗科學家說,不,你錯了。
05:53
It goes back and forth, this works in physics, this in geology.
135
353818
3004
然後就像這樣一直反覆來回,對吧?
這方法對物理適用。對地理適用。但這些是普通科學領域,
05:56
But if this is normal science, what does neuroscience look like?
136
356846
3009
神經科學看起來是什麼樣子?這就是神經科學的狀況。
05:59
This is what neuroscience looks like.
137
359879
1795
我們的數據累積得比山還高,解剖學、生理學和行為學的數據。
06:01
We have this mountain of data,
138
361698
1442
06:03
which is anatomy, physiology and behavior.
139
363164
2070
06:05
You can't imagine how much detail we know about brains.
140
365258
3194
你無法想像我們對大腦的枝微末節了解得如何透徹。
06:08
There were 28,000 people who went to the neuroscience conference this year,
141
368476
3592
今年 (2003) 的神經科學研討會共有 28,000 人參加,
06:12
and every one of them is doing research in brains.
142
372092
2363
每一個都在研究大腦。
06:14
A lot of data, but no theory.
143
374479
1694
太多資訊。但沒有理論。在上層的這一塊是如此的微小,搖搖欲墜。
06:16
There's a little wimpy box on top there.
144
376197
2000
06:18
And theory has not played a role in any sort of grand way
145
378221
3382
而且理論在神經科學中尚未扮演任何重要的角色。
06:21
in the neurosciences.
146
381627
1429
06:23
And it's a real shame.
147
383080
1240
這真可恥。為什麼會這樣?
06:24
Now, why has this come about?
148
384344
1391
06:25
If you ask neuroscientists why is this the state of affairs,
149
385759
2988
如果你問神經科學家,為什麼會是這種狀況?
06:28
first, they'll admit it.
150
388771
1246
一開始他們都會承認此事。但如果你接著問,他們會說,
06:30
But if you ask them, they say,
151
390041
1485
06:31
there's various reasons we don't have a good brain theory.
152
391550
2732
這個嘛,有很多的原因使我們沒有一個好的大腦理論。
06:34
Some say we still don't have enough data,
153
394306
1969
有些人會說,呃,我們還沒有足夠的數據,
06:36
we need more information, there's all these things we don't know.
154
396299
3059
我們還需要更多資訊,還有很多我們不知道的事。
06:39
Well, I just told you there's data coming out of your ears.
155
399382
2841
我才剛剛告訴你們,我們有的數據多到你們的腦袋都裝不下。
06:42
We have so much information, we don't even know how to organize it.
156
402247
3164
我們擁有如此多的資訊;我們不知道如何開始整理這些資訊。
06:45
What good is more going to do?
157
405435
1438
再有更多資訊又能怎樣?
06:46
Maybe we'll be lucky and discover some magic thing, but I don't think so.
158
406897
3448
也許我們會幸運的發現某些寶藏,但我不這麼認為。
06:50
This is a symptom of the fact that we just don't have a theory.
159
410369
2973
這其實只是因為我們沒有理論這個事實所導致的症狀罷了。
06:53
We don't need more data, we need a good theory.
160
413366
2610
我們不需要更多數據 — 我們需要一個好理論。
06:56
Another one is sometimes people say,
161
416000
1798
有時候某些人會回答另一個說法,因為大腦是如此複雜,
06:57
"Brains are so complex, it'll take another 50 years."
162
417822
3154
我們還需要 50 年的研究。
07:01
I even think Chris said something like this yesterday, something like,
163
421000
3354
我甚至好像聽到 Chris 昨天才說了類似的話。
我不確定你說了什麼,Chris,但好像是類似
07:04
it's one of the most complicated things in the universe.
164
424378
2627
— 大腦是宇宙中最複雜的事物之一。這不是真的。
07:07
That's not true -- you're more complicated than your brain.
165
427029
2790
你比你的大腦還要複雜。腦只是你身體的一部分。
07:09
You've got a brain.
166
429843
1151
並且,雖然大腦看起來非常複雜,
07:11
And although the brain looks very complicated,
167
431018
2150
但是我們常認為我們所不了解的事物是複雜的。
07:13
things look complicated until you understand them.
168
433192
2336
07:15
That's always been the case.
169
435552
1335
總是這樣子的。我們能夠說的只是,這個嘛,
07:16
So we can say, my neocortex, the part of the brain I'm interested in,
170
436911
3243
我的新皮層,大腦中我感興趣的部份,有三百億個細胞。
07:20
has 30 billion cells.
171
440178
1152
07:21
But, you know what? It's very, very regular.
172
441354
2432
但你知道嗎?它非常、非常的規則。
07:23
In fact, it looks like it's the same thing repeated over and over again.
173
443810
3394
事實上,它看起來像是同一個東西不斷的重複、重複再重複。
07:27
It's not as complex as it looks. That's not the issue.
174
447228
2536
它不像看起來般如此複雜。所以這不是問題。
07:29
Some people say, brains can't understand brains.
175
449788
2287
某些人說,大腦無法了解大腦。
07:32
Very Zen-like. Woo.
176
452099
1988
非常具有禪意。呼,是吧 —
07:34
(Laughter)
177
454111
2188
(笑聲)
07:36
You know, it sounds good, but why? I mean, what's the point?
178
456323
2859
聽起來很有道理,但為什麼?我是說,真的有道理嗎?
07:39
It's just a bunch of cells. You understand your liver.
179
459206
2569
大腦只不過是一堆細胞。你能了解你的肝臟呀。
07:41
It's got a lot of cells in it too, right?
180
461799
1977
肝臟中也有很多細胞,對吧?
07:43
So, you know, I don't think there's anything to that.
181
463800
2494
所以,你知道,我不覺得這有什麼問題。
07:46
And finally, some people say,
182
466318
2112
最後,某些人會說,那麼,你知道,
07:48
"I don't feel like a bunch of cells -- I'm conscious.
183
468454
2983
我不覺得我是一堆細胞,你能理解嗎?我有意識。
07:51
I've got this experience, I'm in the world.
184
471461
2069
我能累積經驗,我生活在世界中,類似這些話。
07:53
I can't be just a bunch of cells."
185
473554
1910
我不可能只是一堆細胞。是的,你知道,
07:55
Well, people used to believe there was a life force to be living,
186
475488
3223
人們總是相信生物體內存在某種「生命力」,
07:58
and we now know that's really not true at all.
187
478735
2409
我們現在知道這一點都不是事實。
08:01
And there's really no evidence,
188
481168
1898
這一點都沒有事實根據,好吧,除了人們不想相信
08:03
other than that people just disbelieve that cells can do what they do.
189
483090
3374
細胞可以做到人們平日在做的事情。
08:06
So some people have fallen into the pit of metaphysical dualism,
190
486488
3041
因此,如果某些人們落入形而上學二元論的泥淖中,
08:09
some really smart people, too, but we can reject all that.
191
489553
2730
一些很聰明的人也不例外,但是我們可以駁斥他們的所有說法。
08:12
(Laughter)
192
492307
2895
(笑聲)
不,我將要告訴你們還有別的,
08:15
No, there's something else,
193
495226
1741
08:16
something really fundamental, and it is:
194
496991
1985
而且非常基本,就是我下面要說的這句話:
08:19
another reason why we don't have a good brain theory
195
499000
2451
我們沒有一個好的大腦理論的另一個理由是,
08:21
is because we have an intuitive, strongly held but incorrect assumption
196
501475
5535
我們被一種直觀的、根深蒂固的
但是錯誤的假設所蒙蔽,因此一直無法找到問題的答案。
08:27
that has prevented us from seeing the answer.
197
507034
2112
08:29
There's something we believe that just, it's obvious, but it's wrong.
198
509170
3788
我們所相信的某些事情,雖然表面上很顯而易見,但是它是錯的。
08:32
Now, there's a history of this in science and before I tell you what it is,
199
512982
3566
事實上,科學界的歷史中已經發生過同樣的事情,而在我告訴你以前,
08:36
I'll tell you about the history of it in science.
200
516572
2299
我要先跟你談談科學界的歷史。
08:38
Look at other scientific revolutions --
201
518895
1910
你們看看其他的科學革命,
08:40
the solar system, that's Copernicus,
202
520829
1879
這邊,我們來談談太陽系,那是哥白尼的貢獻,
08:42
Darwin's evolution, and tectonic plates, that's Wegener.
203
522732
2819
達爾文的演化還有魏格納的板塊構造論。
他們都與大腦科學有很多共通之處。
08:46
They all have a lot in common with brain science.
204
526059
2295
08:48
First, they had a lot of unexplained data. A lot of it.
205
528378
2666
首先,他們有很多無法解釋的數據,一堆數據。
08:51
But it got more manageable once they had a theory.
206
531068
2794
但是當他們有了理論之後,這些數據變得容易處理的多。
08:53
The best minds were stumped -- really smart people.
207
533886
2807
偉大的心靈總是會遭遇許多困難,那些極端、極端聰明的人們。
08:56
We're not smarter now than they were then;
208
536717
2004
我們現在並不比他們當時聰明。
08:58
it just turns out it's really hard to think of things,
209
538745
2527
思考問題是極端困難的,
09:01
but once you've thought of them, it's easy to understand.
210
541296
2676
但一旦你想通了,事情就會得容易理解得多。
09:03
My daughters understood these three theories,
211
543996
2106
我女兒能夠了解這三個理論
至少了解他們的基本架構,而那時她只是個幼稚園學童而已。
09:06
in their basic framework, in kindergarten.
212
546126
2518
09:08
It's not that hard -- here's the apple, here's the orange,
213
548668
3266
因此,這並沒有這麼難,就像這樣,這是蘋果,這是柳丁,
09:11
the Earth goes around, that kind of stuff.
214
551958
2018
你知道的,地球在公轉,類似的這種東西。
09:14
Another thing is the answer was there all along,
215
554000
2586
最後,另一件事是答案始終在那邊,
09:16
but we kind of ignored it because of this obvious thing.
216
556610
2779
但是我們卻因為錯誤而明顯的假設而忽略了它,這就是問題所在。
09:19
It was an intuitive, strongly held belief that was wrong.
217
559413
2850
問題就是這個直觀且根深蒂固的認知是錯的。
09:22
In the case of the solar system,
218
562287
1690
拿太陽系的例子來說,地球自轉的概念
09:24
the idea that the Earth is spinning,
219
564001
1760
09:25
the surface is going a thousand miles an hour,
220
565785
2191
還有地球表面以每小時幾千英哩的速度在轉動著,
09:28
and it's going through the solar system at a million miles an hour --
221
568000
3249
不用說還有地球本身以幾百萬英哩的時速在太陽系中移動著。
09:31
this is lunacy; we all know the Earth isn't moving.
222
571273
2476
這真是瘋了。我們都知道地球並沒有在動。
09:33
Do you feel like you're moving a thousand miles an hour?
223
573773
2877
你覺得你有在以千哩的時速移動嗎?
當然沒有。你知道,當有人說,
09:36
If you said Earth was spinning around in space and was huge --
224
576674
2919
地球在太空中自轉,而太空是如此之大,
09:39
they would lock you up, that's what they did back then.
225
579617
2591
然後他們會把你關起來,這就是當時他們所做的事。
(笑聲)
09:42
So it was intuitive and obvious. Now, what about evolution?
226
582232
3275
所以這是直觀且顯而易見的。現在,我們談談演化…
09:45
Evolution, same thing.
227
585531
1154
發生在演化上的情形是一樣的。我們教導孩子,嗯,聖經上說,
09:46
We taught our kids the Bible says God created all these species,
228
586709
3080
你知道的,上帝創造了所有生命,貓是貓,狗是狗,
09:49
cats are cats; dogs are dogs; people are people; plants are plants;
229
589813
3143
人是人,樹木是樹木,他們是不變的。
09:52
they don't change.
230
592980
1241
諾亞奉命將他們放到方舟內,如此這般。而且,你知道,
09:54
Noah put them on the ark in that order, blah, blah.
231
594245
2649
09:56
The fact is, if you believe in evolution, we all have a common ancestor.
232
596918
3395
事實上,如果你相信演化,我們都來自同一個祖先,
10:00
We all have a common ancestor with the plant in the lobby!
233
600337
3282
則我們和大廳裡那些植物有共同的祖先。
10:03
This is what evolution tells us. And it's true. It's kind of unbelievable.
234
603643
3686
這是演化告訴我們的。並且它是真的。儘管有點難令人相信。
10:07
And the same thing about tectonic plates.
235
607353
2557
板塊構造論也遭遇類似情形,不是嗎?
10:09
All the mountains and the continents
236
609934
1722
所有的山嶽與大陸都飄浮在地球的表面,
10:11
are kind of floating around on top of the Earth.
237
611680
2344
你相信嗎?這真的一點都不合邏輯。
10:14
It doesn't make any sense.
238
614048
1246
10:15
So what is the intuitive, but incorrect assumption,
239
615318
4601
所以什麼是我說的關於大腦直觀但是不正確的假設,
10:19
that's kept us from understanding brains?
240
619943
1967
並使我們不能真正的了解大腦?
10:21
I'll tell you. It'll seem obvious that it's correct. That's the point.
241
621934
3293
現在我將要告訴你們,而且它將會看起來正確無誤不容懷疑,
但這就是我想要說明的,不是嗎?然後我將會作一番論述
10:25
Then I'll make an argument why you're incorrect on the other assumption.
242
625251
3434
為什麼你們另一個假設也是錯的。
10:28
The intuitive but obvious thing is:
243
628709
1682
這個直觀且明顯的事情就是:智能可以藉由
10:30
somehow, intelligence is defined by behavior;
244
630415
2314
行為來界定,
10:32
we're intelligent because of how we do things
245
632753
2350
我們擁有智能乃是因為我們行事的方法
10:35
and how we behave intelligently.
246
635127
1572
還有我們展現智慧的行為,但是我要告訴你們這是錯的。
10:36
And I'm going to tell you that's wrong.
247
636723
1879
10:38
Intelligence is defined by prediction.
248
638626
2131
智能其實應該是由預測能力來界定的。
10:40
I'm going to work you through this in a few slides,
249
640781
2415
接下來的幾張投影片,我將解釋我的論點,
10:43
and give you an example of what this means.
250
643220
2094
給你們一個可以了解它的意義的例子。這裡有一個系統。
10:45
Here's a system.
251
645338
1301
10:46
Engineers and scientists like to look at systems like this.
252
646663
2908
工程師喜歡這樣看待系統。科學家也喜歡這樣看待系統。
10:49
They say, we have a thing in a box. We have its inputs and outputs.
253
649595
3163
他們說,嗯,這個箱子裡面有某種東西,然後我們有輸入跟輸出。
10:52
The AI people said, the thing in the box is a programmable computer,
254
652782
3240
研究人工智慧的人說,我知道,箱子裡的東西是可編程的電腦
10:56
because it's equivalent to a brain.
255
656046
1679
因為它和腦是對等的,我們將會給它一些輸入訊號
10:57
We'll feed it some inputs and get it to do something, have some behavior.
256
657749
3506
然後我們可以讓它做些事情,產生行為。
然後艾倫•涂林訂定了涂林測驗,這個測驗基本上是說,
11:01
Alan Turing defined the Turing test, which essentially says,
257
661279
2822
如果某物的行為可以表現得跟人一模一樣,我們知道它有智能。
11:04
we'll know if something's intelligent if it behaves identical to a human --
258
664125
3553
對於智能本質上的一個行為標準,
11:07
a behavioral metric of what intelligence is
259
667702
2106
11:09
that has stuck in our minds for a long time.
260
669832
2144
這個假設佔據了我們的想法很長的一段時間。
11:12
Reality, though -- I call it real intelligence.
261
672000
2392
但是事實上,我稱之為真實智慧。
11:14
Real intelligence is built on something else.
262
674416
2175
真實智慧是建築在其它東西上。
11:16
We experience the world through a sequence of patterns,
263
676615
3214
我們藉由一序列的模式來體驗這個世界,我們儲存這些模式,
11:19
and we store them, and we recall them.
264
679853
2149
我們也會回憶這些模式。當我們回憶時,我們會將現實與記憶中的
11:22
When we recall them, we match them up against reality,
265
682026
2545
模式對照,並且我們無時無刻不在預測下一刻。
11:24
and we're making predictions all the time.
266
684595
2251
11:26
It's an internal metric; there's an internal metric about us,
267
686870
2958
這是永恆的標準。有一個關於我們的外在標準大概是這樣的,
11:29
saying, do we understand the world, am I making predictions, and so on.
268
689852
3342
我們了解這個世界嗎?我正在做預測嗎?等等這些。
11:33
You're all being intelligent now, but you're not doing anything.
269
693218
3002
你們現在都顯示出智慧,但是你們並沒有在做任何事。
也許你剛剛正在搔癢,或者挖鼻孔,
11:36
Maybe you're scratching yourself, but you're not doing anything.
270
696244
3002
我不知道,但是你現在並沒有在做任何事,
11:39
But you're being intelligent; you're understanding what I'm saying.
271
699270
3156
但是你是有智慧的,你了解我在說什麼。
11:42
Because you're intelligent and you speak English,
272
702450
2295
因為你有智慧而且你聽得懂英文,
11:44
you know the word at the end of this
273
704769
1751
你知道這句話最後一個 — (沉默)
字是什麼。
11:46
sentence.
274
706544
1159
11:47
The word came to you; you make these predictions all the time.
275
707727
3152
這個字會自己顯現,你無時無刻不在做類似這種的預測。
11:50
What I'm saying is,
276
710903
1699
所以,我要說的是,
11:52
the internal prediction is the output in the neocortex,
277
712626
2631
這個永恆的預測是我們大腦新皮層的訊號輸出。
不知怎麼的,預測最終導致智能行為。
11:55
and somehow, prediction leads to intelligent behavior.
278
715281
2541
11:57
Here's how that happens:
279
717846
1151
這裡我來解釋它是如何發生的。讓我們先從非智能大腦開始看起。
11:59
Let's start with a non-intelligent brain.
280
719021
1955
其實我不贊成稱之為非智能大腦,這種原始的大腦也是我們的一部分,
12:01
I'll argue a non-intelligent brain, we'll call it an old brain.
281
721000
3009
12:04
And we'll say it's a non-mammal, like a reptile,
282
724033
2871
所以下面我們稱之為非哺乳動物的腦,例如爬蟲類,
12:06
say, an alligator; we have an alligator.
283
726928
1985
所以我說,就鱷魚吧,我們拿鱷魚來當例子。
12:08
And the alligator has some very sophisticated senses.
284
728937
3371
鱷魚擁有一些非常複雜的感知能力。
12:12
It's got good eyes and ears and touch senses and so on,
285
732332
3206
牠有非常好的視覺、聽覺、觸覺等等。
12:15
a mouth and a nose.
286
735562
1469
一張嘴一隻鼻子。牠擁有非常複雜的行為。
12:17
It has very complex behavior.
287
737055
1991
12:19
It can run and hide. It has fears and emotions. It can eat you.
288
739070
3906
牠可以奔跑、躲藏。牠擁有恐懼與情緒。牠能將你吃了,你知道吧。
12:23
It can attack. It can do all kinds of stuff.
289
743000
3590
牠可以攻擊。牠可以做各種事。
12:27
But we don't consider the alligator very intelligent,
290
747193
2856
但是我們不認為鱷魚智力很高,跟人類一點都不能相比。
12:30
not in a human sort of way.
291
750073
1676
12:31
But it has all this complex behavior already.
292
751773
2356
但是牠已經擁有如此複雜的行為了。
12:34
Now in evolution, what happened?
293
754510
1801
在演化過程中,到底發生了什麼事?
12:36
First thing that happened in evolution with mammals
294
756335
2385
在哺乳類的演化過成中首先,
12:38
is we started to develop a thing called the neocortex.
295
758744
2531
我們開始發展出所謂的新皮層。
12:41
I'm going to represent the neocortex by this box on top of the old brain.
296
761299
3793
我將在這邊用此來表示新皮層,
用這個建基於原始大腦上方的方塊來表示。
12:45
Neocortex means "new layer." It's a new layer on top of your brain.
297
765116
3353
新皮層就是一層新的組織。一層覆蓋在你大腦上方的新組織。
12:48
It's the wrinkly thing on the top of your head
298
768493
2343
如果你不知道,它就是你頭裡面最外層那個充滿皺摺的東西,
12:50
that got wrinkly because it got shoved in there and doesn't fit.
299
770860
3084
因為它不合身且被胡亂地塞在你的腦袋裡,所以它充滿了皺摺。
12:53
(Laughter)
300
773968
1008
(笑聲)
12:55
Literally, it's about the size of a table napkin
301
775000
2242
不,我說真的,真的是這樣。它大約跟張桌巾一般大小。
12:57
and doesn't fit, so it's wrinkly.
302
777266
1574
它並不合身,所以它充滿皺摺。看看在這邊我是怎麼畫它的。
12:58
Now, look at how I've drawn this.
303
778864
1745
13:00
The old brain is still there.
304
780633
1386
原始大腦仍然在那邊。你還擁有著與鱷魚相似的腦。
13:02
You still have that alligator brain. You do. It's your emotional brain.
305
782043
3655
是真的。那是你原始情緒的腦。
13:05
It's all those gut reactions you have.
306
785722
2730
就是那些東西,所有你會有的直覺反應。
13:08
On top of it, we have this memory system called the neocortex.
307
788476
3270
而在那個上方。我們有一個稱為新皮層的記憶系統。
13:11
And the memory system is sitting over the sensory part of the brain.
308
791770
4294
而這個記憶系統座落在大腦感知區的上方。
13:16
So as the sensory input comes in and feeds from the old brain,
309
796088
3055
所以當感官訊號輸入進來並刺激了原始大腦,
13:19
it also goes up into the neocortex.
310
799167
2154
它開始往更上層的新皮層傳遞。而新皮層只是將之記憶下來。
13:21
And the neocortex is just memorizing.
311
801345
1913
13:23
It's sitting there saying, I'm going to memorize all the things going on:
312
803282
3561
它待在那邊說,呃,我將要把正在發生的事情全部記下來,
13:26
where I've been, people I've seen, things I've heard, and so on.
313
806867
3019
我去了哪裡,我見了哪些人,我聽到了什麼東西,如此這般。
13:29
And in the future, when it sees something similar to that again,
314
809910
3362
到了未來,當它再次見到類似的東西,
13:33
in a similar environment, or the exact same environment,
315
813296
2635
處於類似或者同樣的環境下,
13:35
it'll start playing it back: "Oh, I've been here before,"
316
815955
3555
它就會重播。它會開始重播。
喔,我到過這裡。當你上次在這裡的時候,
13:39
and when you were here before, this happened next.
317
819534
2364
接下來發生了這件事。它能讓你對未來產生預測。
13:41
It allows you to predict the future.
318
821922
1726
13:43
It literally feeds back the signals into your brain;
319
823672
3396
它能讓你,就是它提供你腦部信號回饋,
13:47
they'll let you see what's going to happen next,
320
827092
2265
他們能讓你了解即將會發生的事,
13:49
will let you hear the word "sentence" before I said it.
321
829381
2595
能讓你聽到一句話的最後一個「字」,即使我還沒說出口。
13:52
And it's this feeding back into the old brain
322
832000
3185
就是這種給原始大腦的回饋
13:55
that will allow you to make more intelligent decisions.
323
835209
2577
能夠讓你做出更多有智慧的決定。
13:57
This is the most important slide of my talk, so I'll dwell on it a little.
324
837810
3489
這是我這次演講中最重要的一張投影片,因此我會再花點時間來解釋。
14:01
And all the time you say, "Oh, I can predict things,"
325
841323
3575
所以,每次當你說,喔,我能預測到這些事情。
14:04
so if you're a rat and you go through a maze, and you learn the maze,
326
844922
3360
就像如果你是一隻迷宮中的老鼠,然後你認識了這個迷宮,
14:08
next time you're in one, you have the same behavior.
327
848306
2439
下一次當你在迷宮中的時候,你會做一樣的事情,
14:10
But suddenly, you're smarter; you say, "I recognize this maze,
328
850769
2991
但是突然間,你變聰明了
因為你會說,喔,我認得這個迷宮,我知道該往哪邊走,
14:13
I know which way to go; I've been here before; I can envision the future."
329
853784
3542
我曾經到過這裡,我能夠預見未來。這就是智慧在做的事。
14:17
That's what it's doing.
330
857350
1168
14:18
This is true for all mammals --
331
858542
2840
在人身上,換句話說,這適用於所有哺乳動物,
14:21
in humans, it got a lot worse.
332
861406
2031
同樣適用於其他哺乳動物,但在人類身上,這個額外重要。
14:23
Humans actually developed the front of the neocortex,
333
863461
2587
在人身上,我們事實上發展出了新皮層的前段部份
14:26
called the anterior part of the neocortex.
334
866072
2221
稱為新皮層前緣。自然界在這邊耍了一個小手段。
14:28
And nature did a little trick.
335
868317
1438
14:29
It copied the posterior, the back part, which is sensory,
336
869779
2687
它複製了後緣部份,後段的感知部份,
14:32
and put it in the front.
337
872490
1151
然後把它放來前面。
14:33
Humans uniquely have the same mechanism on the front,
338
873665
2480
因此人類很特殊的在腦前段也有此相同的構造,
14:36
but we use it for motor control.
339
876169
1554
但是我們使用它來控制運動功能。
14:37
So we're now able to do very sophisticated motor planning, things like that.
340
877747
3581
所以現在我們能夠策劃非常複雜的運動計畫,和類似的事情。
14:41
I don't have time to explain, but to understand how a brain works,
341
881352
3126
我沒有時間詳細解說所有的這些東西,但是如果你們想要了解大腦是如何運作的,
14:44
you have to understand how the first part of the mammalian neocortex works,
342
884502
3537
你們必須了解上一段我所解釋的哺乳動物新皮層運作的原理,
它是如何的使我們具有儲存模式和進行預測的能力。
14:48
how it is we store patterns and make predictions.
343
888063
2293
現在讓我給你們一些關於預測的實例。
14:50
Let me give you a few examples of predictions.
344
890380
2188
14:52
I already said the word "sentence."
345
892592
1676
我已經說過那個關於「字」的例子了。在音樂中,
14:54
In music, if you've heard a song before,
346
894292
3206
如果你曾經聽過一首歌,如果你之前聽過 Jill 唱這些歌,
14:57
when you hear it, the next note pops into your head already --
347
897522
2909
當她唱歌時,下一個音符就已經躍進你的耳朵了 —
15:00
you anticipate it.
348
900455
1151
當你一邊在聽歌的時候,你一邊在預期著。如果是一張音樂專輯,
15:01
With an album, at the end of a song, the next song pops into your head.
349
901630
3354
當一首歌結束,下一首歌會自動在你腦海中浮現。
15:05
It happens all the time, you make predictions.
350
905008
2305
而且這種事情一直不斷的在發生。你一直在做這些預測。
15:07
I have this thing called the "altered door" thought experiment.
351
907337
3039
我聽過一個稱作「變更的門」的思想實驗。
15:10
It says, you have a door at home;
352
910400
2829
這個思想實驗指出,如果你在家裏有一個門,
15:13
when you're here, I'm changing it --
353
913253
1755
當你在這裡聽演講的時候,我去更動它,我找了一個人
15:15
I've got a guy back at your house right now, moving the door around,
354
915032
3196
在這時候回到你家,任意對那扇門做變更,
15:18
moving your doorknob over two inches.
355
918252
1769
他們將把你們的門把移動約兩寸的距離。
15:20
When you go home tonight, you'll put your hand out, reach for the doorknob,
356
920045
3584
然後當你今晚回到家的時候,你將會把你的手伸出,
然後你將會碰到門把,就在這時,你會注意到
15:23
notice it's in the wrong spot
357
923653
1514
門把的位置不對了,然後你會驚覺,哇,有事情發生了。
15:25
and go, "Whoa, something happened."
358
925191
1687
15:26
It may take a second, but something happened.
359
926902
2101
你仍然需要一兩秒來思考到底發生了什麼事,但是一定有什麼不一樣。
15:29
I can change your doorknob in other ways --
360
929027
2003
我可以任意更動你的門把。
15:31
make it larger, smaller, change its brass to silver, make it a lever,
361
931054
3241
我可以使它變大或變小,我可以由黃銅改成鍍銀,
我可以將門把改為門桿。我可以改變你的門本身,為它上色,
15:34
I can change the door; put colors on, put windows in.
362
934319
2576
或者加上窗戶。我有一千種以上的方法來變更你的門,
15:36
I can change a thousand things about your door
363
936919
2151
然後在你開門的兩秒內,
15:39
and in the two seconds you take to open it,
364
939094
2008
你將會注意到某些變更的存在。
15:41
you'll notice something has changed.
365
941126
1722
15:42
Now, the engineering approach, the AI approach to this,
366
942872
2584
你沒辦法藉由工程學來完成這件事,人工智慧的解決途徑是,
15:45
is to build a door database with all the door attributes.
367
945480
2675
建立一個門的資料庫。它擁有所有這些與門相關的特性表。
15:48
And as you go up to the door, we check them off one at time:
368
948179
2819
然後當你走到門前時,你知道,讓我們按照表來一個個檢查這些項目。
15:51
door, door, color ...
369
951022
1346
門、門、門、你知道的、顏色,你知道我想說什麼嗎?
15:52
We don't do that. Your brain doesn't do that.
370
952392
2100
我們不是這麼做的。你的大腦不是這樣運作的。
15:54
Your brain is making constant predictions all the time
371
954516
2540
你的大腦事實上是一直在做預測
15:57
about what will happen in your environment.
372
957080
2034
預測在你的環境中將會發生什麼事。
15:59
As I put my hand on this table, I expect to feel it stop.
373
959138
2746
當我把我的手放上這張桌子,我會預期感覺到我的手停止。
16:01
When I walk, every step, if I missed it by an eighth of an inch,
374
961908
3019
當我走路時,每一步,即使只差了 1/8 英吋,
16:04
I'll know something has changed.
375
964951
1533
我也會察覺某些事情不一樣了。
16:06
You're constantly making predictions about your environment.
376
966508
2820
你持續的在對周遭的環境做預測。
16:09
I'll talk about vision, briefly.
377
969352
1593
我將簡短的談談視覺。這是一張女人的照片。
16:10
This is a picture of a woman.
378
970969
1383
16:12
When we look at people, our eyes saccade over two to three times a second.
379
972376
3490
當你看著人時,你的眼睛大約會以
每秒兩至三次的頻率移動。
16:15
We're not aware of it, but our eyes are always moving.
380
975890
2529
你不自覺,可是你的眼睛是不停的在移動著。
因此當你在看某人的臉時,
16:18
When we look at a face, we typically go from eye to eye to nose to mouth.
381
978443
3435
一般來說你會從一隻眼睛看到另一隻眼睛,再從眼睛到鼻子到嘴巴。
16:21
When your eye moves from eye to eye,
382
981902
1869
現在,當你的眼睛在對方眼睛間移動的時候,
16:23
if there was something else there like a nose,
383
983795
2158
如果一個鼻子出現在那邊,
16:25
you'd see a nose where an eye is supposed to be and go, "Oh, shit!"
384
985977
3546
你會在本來應該出現眼睛的地方看到鼻子,
然後你會像,喔,天呀,你知道 —
16:29
(Laughter)
385
989547
1396
16:30
"There's something wrong about this person."
386
990967
2109
(笑聲)
這個人不太對勁。
16:33
That's because you're making a prediction.
387
993100
2005
而這是因為你一直在做預測。
16:35
It's not like you just look over and say, "What am I seeing? A nose? OK."
388
995129
3439
你不是只是往那邊看,然後說:我現在看到什麼東西?
一個鼻子,那沒什麼。不,你會預期你將看到的東西。
16:38
No, you have an expectation of what you're going to see.
389
998592
2634
(笑聲)
16:41
Every single moment.
390
1001250
1151
無時無刻。最後,讓我們來想想我們是如何做智力測驗的。
16:42
And finally, let's think about how we test intelligence.
391
1002425
2629
16:45
We test it by prediction: What is the next word in this ...?
392
1005078
3081
我們用預測能力來測驗它。下一個字是什麼,對吧?
16:48
This is to this as this is to this. What is the next number in this sentence?
393
1008183
3627
這個之於這個等於那個之於那個。這個序列的下一個數字是什麼?
16:51
Here's three visions of an object. What's the fourth one?
394
1011834
2690
這是一個物體的三視圖。
第四面可能是什麼?這就是我們測驗智力的方法。全部都跟預測能力有關。
16:54
That's how we test it. It's all about prediction.
395
1014548
2504
16:57
So what is the recipe for brain theory?
396
1017573
2194
那麼大腦理論的配方到底是什麼?
17:00
First of all, we have to have the right framework.
397
1020219
2366
首先,我們必須要有正確的架構。
17:02
And the framework is a memory framework,
398
1022609
1913
而這個架構是記憶架構,
17:04
not a computational or behavior framework,
399
1024546
2024
而不是計算或是行為架構。是一個記憶架構。
17:06
it's a memory framework.
400
1026594
1163
17:07
How do you store and recall these sequences of patterns?
401
1027781
2623
你如何儲存並回憶這些序列與模式?一個時間與空間的模式。
17:10
It's spatiotemporal patterns.
402
1030428
1442
17:11
Then, if in that framework, you take a bunch of theoreticians --
403
1031894
3009
然後,如果在那個架構中,你有一群好的理論學者。
17:14
biologists generally are not good theoreticians.
404
1034927
2246
現在的生物學家通常不是好的理論學者。
並不是總是這樣,但是通常是,生物學沒有建夠好理論的歷史習慣。
17:17
Not always, but generally, there's not a good history of theory in biology.
405
1037197
3529
17:20
I've found the best people to work with are physicists,
406
1040750
2574
我能找到最好的工作夥伴是物理學家,
17:23
engineers and mathematicians,
407
1043348
1383
工程師和數學家,他們習於演算思維模式。
17:24
who tend to think algorithmically.
408
1044755
1696
17:26
Then they have to learn the anatomy and the physiology.
409
1046475
3264
然後他們必須學習解剖學和生理學。
17:29
You have to make these theories very realistic in anatomical terms.
410
1049763
4496
你必須使這些理論在解剖層面上也是非常真實的。
任何人當他跳出來告訴你他們關於大腦運行的理論
17:34
Anyone who tells you their theory about how the brain works
411
1054283
2765
17:37
and doesn't tell you exactly how it's working
412
1057072
2097
但是不能解釋這些事情如何在腦內發生
17:39
and how the wiring works --
413
1059193
1303
還有腦內的連結關係是什麼,這就不是一個理論。
17:40
it's not a theory.
414
1060520
1267
17:41
And that's what we do at the Redwood Neuroscience Institute.
415
1061811
2833
這就是我們在紅木神經科學研究所進行的研究。
17:44
I'd love to tell you we're making fantastic progress in this thing,
416
1064668
3308
我希望我能有更多時間來告訴你們,我們已經在這方面有了驚人的進步,
17:48
and I expect to be back on this stage sometime in the not too distant future,
417
1068000
3662
而我預期未來還能再回到這裡演講,
因此也許在不久的將來我將能有機會再次跟你們談談。
17:51
to tell you about it.
418
1071686
1164
17:52
I'm really excited; this is not going to take 50 years.
419
1072874
2594
我真的非常、非常興奮。這絕對不需要再五十年。
17:55
What will brain theory look like?
420
1075492
1578
因此大腦理論究竟看起來會是什麼樣子?
17:57
First of all, it's going to be about memory.
421
1077094
2055
首先,它會是一個關於記憶的理論。
17:59
Not like computer memory -- not at all like computer memory.
422
1079173
2822
跟電腦記憶體不一樣。它一點都不會像是電腦記憶體。
18:02
It's very different.
423
1082019
1151
會非常、非常的不同。它會是這些非常高維模式
18:03
It's a memory of very high-dimensional patterns,
424
1083194
2257
的記憶,就跟你從眼睛看到的東西一般。
18:05
like the things that come from your eyes.
425
1085475
1962
18:07
It's also memory of sequences:
426
1087461
1437
它會是序列的記憶。
18:08
you cannot learn or recall anything outside of a sequence.
427
1088922
2730
你不能學習或是回憶序列外的任何事物。
18:11
A song must be heard in sequence over time,
428
1091676
2837
一首歌必須按照時間的順序來聽,
18:14
and you must play it back in sequence over time.
429
1094537
2351
你也必須按照時間順序來播放。
18:16
And these sequences are auto-associatively recalled,
430
1096912
2449
然後這些順序就會自動被相關連在一起重播,因此如果我看到某些東西,
18:19
so if I see something, I hear something, it reminds me of it,
431
1099385
2873
聽到某些東西,它讓我回一起相關的事物,然後就會自動重播。
18:22
and it plays back automatically.
432
1102282
1533
18:23
It's an automatic playback.
433
1103839
1294
它是自動重播。然後對於未來所將輸入訊息的預測是我們所希望的輸出。
18:25
And prediction of future inputs is the desired output.
434
1105157
2548
18:27
And as I said, the theory must be biologically accurate,
435
1107729
2620
像我提過的,這個理論必須是生物學正確的。
18:30
it must be testable and you must be able to build it.
436
1110373
2484
它必須能被測試,然且你必須能夠建造它。
18:32
If you don't build it, you don't understand it.
437
1112881
2211
如果你不能建造它,你就是不了解它。因此,最後一張投影片。
18:35
One more slide.
438
1115116
1532
18:36
What is this going to result in?
439
1116672
2309
這最終會產生什麼結果?我們能夠真的建造出智能機器嗎?
18:39
Are we going to really build intelligent machines?
440
1119005
2348
絕對可以。而且它會和一般人們所想的不同。
18:41
Absolutely. And it's going to be different than people think.
441
1121377
3798
我認為這無疑的會發生。
18:45
No doubt that it's going to happen, in my mind.
442
1125508
2392
18:47
First of all, we're going to build this stuff out of silicon.
443
1127924
3116
首先,它會被建造,我們將會用矽建出這個東西。
18:51
The same techniques we use to build silicon computer memories,
444
1131064
2912
跟我們用來建造以矽為原料的電腦記憶體同樣的技術,
18:54
we can use here.
445
1134000
1151
我們在這邊也同樣可以使用。
18:55
But they're very different types of memories.
446
1135175
2109
但是它們會是非常不同種類的記憶體。
18:57
And we'll attach these memories to sensors,
447
1137308
2023
然後我們將會將這些記憶體連結上感應器,
18:59
and the sensors will experience real-live, real-world data,
448
1139355
2777
這些感應器將會經歷真實世界的即時數據,
19:02
and learn about their environment.
449
1142156
1752
然後這些東西將會認識它們的環境。
19:03
Now, it's very unlikely the first things you'll see are like robots.
450
1143932
3445
而且你將會看到的第一批成品應該非常不可能會長得像個機器人。
19:07
Not that robots aren't useful; people can build robots.
451
1147401
2575
不是因為機器人沒有用而且人們可以建造機器人。
19:10
But the robotics part is the hardest part. That's old brain. That's really hard.
452
1150000
3767
但是機器人的部份是最難的部份。那是原始的大腦。非常的難。
19:13
The new brain is easier than the old brain.
453
1153791
2007
這個新的腦袋要比原始腦袋簡單一些。
19:15
So first we'll do things that don't require a lot of robotics.
454
1155822
3082
所以我們將建造的第一個東西將會是不需要太多機器人特徵的東西。
19:18
So you're not going to see C-3PO.
455
1158928
2179
所以你將不會看到 C-3PO。
19:21
You're going to see things more like intelligent cars
456
1161131
2485
你可能會比較常看到類似,例如,智慧車
19:23
that really understand what traffic is, what driving is
457
1163640
2808
真的能了解交通狀況和駕駛
19:26
and have learned that cars with the blinkers on for half a minute
458
1166472
3278
而且能夠解讀某些方向燈在閃的車輛過半分鐘後
19:29
probably aren't going to turn.
459
1169774
1574
也許即將轉彎,如此這般的事情。
19:31
(Laughter)
460
1171372
1291
(笑聲)
19:32
We can also do intelligent security systems.
461
1172687
2064
我們也可以設計智慧型保全系統。
19:34
Anytime we're basically using our brain but not doing a lot of mechanics --
462
1174775
3573
任何我們需要動用到腦力,但是不會執行太多機械動作的場合。
19:38
those are the things that will happen first.
463
1178372
2059
這些將會是首先發生的情況。
19:40
But ultimately, the world's the limit.
464
1180455
1820
但是最終,沒什麼是不可能的。
19:42
I don't know how this will turn out.
465
1182299
1732
我不知道這將會發展的如何。
19:44
I know a lot of people who invented the microprocessor.
466
1184055
2591
我知道許多發明微處理器的人
19:46
And if you talk to them,
467
1186670
2164
如果你問他們,他們知道他們是在從事一些非常重要的事情,
19:48
they knew what they were doing was really significant,
468
1188858
2575
19:51
but they didn't really know what was going to happen.
469
1191457
2500
但是他們不知道將會發生什麼事。
19:53
They couldn't anticipate cell phones and the Internet
470
1193981
2768
他們不能預測到手機、網路等等這些事情的發生。
19:56
and all this kind of stuff.
471
1196773
1735
19:58
They just knew like, "We're going to build calculators
472
1198532
2621
他們只知道像,嘿,他們將要建造計算機
20:01
and traffic-light controllers.
473
1201177
1440
和交通號誌燈。但是這將會很重要。
20:02
But it's going to be big!"
474
1202641
1299
20:03
In the same way, brain science and these memories
475
1203964
2341
同樣的道理,大腦理論和這些記憶體
20:06
are going to be a very fundamental technology,
476
1206329
2225
將會是非常基礎的科技,而且會
20:08
and it will lead to unbelievable changes in the next 100 years.
477
1208578
3442
在未來的一百年內帶來非常不可思議的改變。
20:12
And I'm most excited about how we're going to use them in science.
478
1212044
3405
我最興奮的是我們將會如何將它們應用到科學研究上。
20:15
So I think that's all my time -- I'm over,
479
1215473
2837
我想我的時間已經到了,我超時了,所以我將要結束這次演講
20:18
and I'm going to end my talk right there.
480
1218334
2277
就在這裡結束。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog