請雙擊下方英文字幕播放視頻。
譯者: Bill Hsiung
審譯者: Calvin Chun-yu Chan
00:25
I do two things:
0
25476
1151
我有兩個職業。我設計行動電腦,而且我研究大腦。
00:26
I design mobile computers
and I study brains.
1
26651
2118
00:28
Today's talk is about brains
and -- (Audience member cheers)
2
28793
2930
今天的演講與大腦有關,
00:31
Yay! I have a brain fan out there.
3
31747
1817
耶,看來今天聽眾中有人是大腦迷。
00:33
(Laughter)
4
33588
3147
(笑聲)
如果我的投影片已經準備好了,
00:36
If I could have my first slide,
5
36759
1555
你將會看到今天的演講主題及我的兩個所屬機構,
00:38
you'll see the title of my talk
and my two affiliations.
6
38338
2849
00:41
So what I'm going to talk about is why
we don't have a good brain theory,
7
41211
3468
今天我將要談的是 — 為什麼我們沒有一個好的大腦理論,
00:44
why it is important
that we should develop one
8
44703
2277
為什麼發展大腦理論如此重要,還有,我們能利用這個理論做什麼?
00:47
and what we can do about it.
9
47004
1483
00:48
I'll try to do all that in 20 minutes.
10
48511
1824
我將會嘗試在廿分鐘內完成全部的主題。我參與兩家公司。
00:50
I have two affiliations.
11
50359
1151
00:51
Most of you know me
from my Palm and Handspring days,
12
51534
2532
你們大多數是因為我在 Palm 及 Handspring 的工作而認識我的,
00:54
but I also run a nonprofit
scientific research institute
13
54090
2683
但是我同時也經營一個非營利性的科學研究機構
00:56
called the Redwood Neuroscience
Institute in Menlo Park.
14
56797
2632
它位於加州門洛帕克,叫做「紅木神經科學研究所」,
00:59
We study theoretical neuroscience
and how the neocortex works.
15
59453
3388
我們專攻理論神經科學相關的研究,
我們對研究大腦新皮層如何運作有興趣。
01:02
I'm going to talk all about that.
16
62865
1598
我將談談這一方面。
01:04
I have one slide on my other life,
the computer life,
17
64487
2745
我將我的另一個生活面(電腦生活)做成了一張投影片,你現在可以看到。
01:07
and that's this slide here.
18
67256
1301
01:08
These are some of the products
I've worked on over the last 20 years,
19
68581
3268
我在過去的廿年間參與了一些產品的開發,
01:11
starting from the very original laptop
20
71873
1842
從第一台筆記型電腦到首批平板電腦等等,
01:13
to some of the first tablet computers
21
73739
1787
01:15
and so on, ending up
most recently with the Treo,
22
75550
2298
最新的一個產品是 Treo,
01:17
and we're continuing to do this.
23
77872
1532
我們將會繼續電子產品的開發。
01:19
I've done this because
I believe mobile computing
24
79428
2301
我之所以會參與這一行主要是因為我相信行動運算
01:21
is the future of personal computing,
25
81753
1724
是個人運算產品的未來,而我試著藉由開發這些產品
01:23
and I'm trying to make
the world a little bit better
26
83501
2454
來讓世界更美好。
01:25
by working on these things.
27
85979
1296
01:27
But this was, I admit, all an accident.
28
87299
1874
但是我必須承認,這一切都是個意外。
01:29
I really didn't want to do
any of these products.
29
89197
2308
我其實本來一點都沒有打算要開發這些產品
01:31
Very early in my career
30
91529
1382
而且在我事業剛剛開始的時候我還決定
01:32
I decided I was not going to be
in the computer industry.
31
92935
2690
我不要從事電腦相關產業。
01:35
Before that, I just have to tell you
32
95649
1721
但在我告訴你這個故事之前,我必須告訴你
01:37
about this picture of Graffiti
I picked off the web the other day.
33
97394
3108
我某天從網路上看到的一張關於 graffiti 輸入法照片的故事。
01:40
I was looking for a picture for Graffiti
that'll text input language.
34
100526
3253
當時我在網上尋找 graffiti 的照片,那是一種輸入法程式語言,
01:43
I found a website dedicated to teachers
who want to make script-writing things
35
103803
3689
然後我發現一個網站,它是為一群老師們所架設的,你知道的,
利用 script 來控制黑板上的跑馬燈,
01:47
across the top of their blackboard,
36
107516
1674
01:49
and they had added Graffiti to it,
and I'm sorry about that.
37
109214
2833
他們網站內容竟然包含 graffiti,我對此感到很抱歉。
01:52
(Laughter)
38
112071
2247
(笑聲)
01:54
So what happened was,
39
114342
1300
當我還年輕,剛剛從工學院畢業的時候,
01:55
when I was young and got out
of engineering school at Cornell in '79,
40
115666
4899
我是康乃爾 79 年畢業班,我決定去 Intel 工作。
02:00
I went to work for Intel
and was in the computer industry,
41
120589
3187
02:03
and three months into that,
I fell in love with something else.
42
123800
3402
我在電腦業奮鬥了三個月之後,
我愛上了另一個東西,我說:「我入錯行了」,
02:07
I said, "I made
the wrong career choice here,"
43
127226
3044
02:10
and I fell in love with brains.
44
130294
2239
因為我愛上了大腦。
02:12
This is not a real brain.
45
132557
1533
這不是真的大腦。這是大腦的描繪圖。
02:14
This is a picture of one, a line drawing.
46
134114
2719
02:16
And I don't remember
exactly how it happened,
47
136857
2119
我已經記不清當初是如何開始的了,
02:19
but I have one recollection,
which was pretty strong in my mind.
48
139000
3515
在我腦海中只有一個鮮明的回憶。
02:22
In September of 1979,
49
142539
1610
1979 年九月,新一期的科學美國人出刊
02:24
Scientific American came out
with a single-topic issue about the brain.
50
144173
3364
那是一期談論大腦的特刊。非常的棒。
02:27
It was one of their best issues ever.
51
147561
1938
那是有史以來最棒的一期雜誌之一。那期刊物中談論神經、
02:29
They talked about the neuron,
development, disease, vision
52
149523
2947
發育、疾病以及視力等等所有的
02:32
and all the things you might want
to know about brains.
53
152494
2596
跟大腦相關且你會感興趣的主題。真的非常令人印象深刻。
02:35
It was really quite impressive.
54
155114
1502
02:36
One might've had the impression
we knew a lot about brains.
55
156640
2772
而人會得到一種錯誤的印象,那就是我們已經非常了解我們的大腦了。
02:39
But the last article in that issue
was written by Francis Crick of DNA fame.
56
159436
4195
但是那一期的最後一篇文章是由發現 DNA 結構而成名的法蘭西斯•克里克所撰寫。
02:43
Today is, I think, the 50th anniversary
of the discovery of DNA.
57
163655
3024
今天,如果我沒記錯的話,剛好是發現 DNA 結構五十週年紀念日。
02:46
And he wrote a story basically saying,
this is all well and good,
58
166703
3075
他寫了一個故事,主要是告訴我們:
這個嘛~這些研究都很棒,可是你知道嗎?
02:49
but you know, we don't know
diddly squat about brains,
59
169802
2743
我們對大腦一點都不了解
02:52
and no one has a clue how they work,
60
172569
1739
沒有人知道大腦是如何運作的,
02:54
so don't believe what anyone tells you.
61
174332
1866
所以別相信其他人告訴你的事情。
02:56
This is a quote
from that article, he says:
62
176222
2165
這是從文章中摘錄下來的一句話。他說:「這裡顯著缺乏的是,」
02:58
"What is conspicuously lacking" --
he's a very proper British gentleman --
63
178411
4293
他是一個非常有禮的英國紳士,「我們會注意到可以用來解釋這些研究
03:02
"What is conspicuously lacking
is a broad framework of ideas
64
182728
2830
的廣泛概念架構是明顯地不足的。」
03:05
in which to interpret
these different approaches."
65
185582
2352
03:07
I thought the word "framework" was great.
66
187958
1968
我認為他用「架構」一詞用得非常洽當。
03:09
He didn't say we didn't have a theory.
67
189950
1817
他並沒有說我們連一個理論都沒有。他所說得是,
03:11
He says we don't even know
how to begin to think about it.
68
191791
2725
我們連如何開始建立理論都不知道該如何下手 —
我們連個架構都沒有。
03:14
We don't even have a framework.
69
194540
1492
如果你想要引用湯瑪斯•孔恩的說法,我們處在一個前典範的時代。
03:16
We are in the pre-paradigm days,
if you want to use Thomas Kuhn.
70
196056
3050
因此我愛上這個領域了,然後說:看看,
03:19
So I fell in love with this.
71
199130
1339
03:20
I said, look: We have all this knowledge
about brains -- how hard can it be?
72
200493
3575
我們已經知道這麼多關於腦的知識。這會有多難?
03:24
It's something we can work on
in my lifetime; I could make a difference.
73
204092
3438
而且這是個可以一輩子鑽研的題目。我認為我能對世界做出一點貢獻,
03:27
So I tried to get out of the computer
business, into the brain business.
74
207554
3619
因此我嘗試著離開電腦業,轉行到腦科學研究領域。
03:31
First, I went to MIT,
the AI lab was there.
75
211197
2004
首先,我跑去麻省理工裡的一間人工智慧實驗室,
03:33
I said, I want to build
intelligent machines too,
76
213225
2395
我說,嘿,我也想要建造智能機器,
03:35
but I want to study how brains work first.
77
215644
2517
但是我覺得達到這個目標前必須要先能了解大腦是如何運作的。
03:38
And they said, "Oh, you
don't need to do that.
78
218185
2306
然而他們說,喔,你並不需要知道那個。
03:40
You're just going to program
computers, that's all.
79
220515
2390
我們只需要設計電腦程式,不需要做其他不相干的事。
03:42
I said, you really ought to study brains.
80
222929
1963
我再說,不,你們真的應該研究大腦。他們說,喔,你知道嗎?
03:44
They said, "No, you're wrong."
81
224916
1432
03:46
I said, "No, you're wrong,"
and I didn't get in.
82
226372
2246
你錯了。然後我說,不,你才錯了,所以當然我沒被錄取。
03:48
(Laughter)
83
228642
1078
(笑聲)
03:49
I was a little disappointed --
pretty young --
84
229744
2155
但我有點失望 — 因為我還年輕,但幾年以後我又嘗試了一次
03:51
but I went back again a few years later,
85
231923
1936
這次是在加州,我跑去柏克萊。
03:53
this time in California,
and I went to Berkeley.
86
233883
2359
然後我說,我要從生物方面開始著手。
03:56
And I said, I'll go
in from the biological side.
87
236266
2430
03:58
So I got in the PhD program in biophysics.
88
238720
3089
所以我被錄取了,進入了生物物理博士班。然後我心想,太棒了,
04:01
I was like, I'm studying brains now.
Well, I want to study theory.
89
241833
3410
我現在開始研究大腦了,然後我說,好的,我想要鑽研理論。
04:05
They said, "You can't
study theory about brains.
90
245267
2269
但他們告訴我,喔,不,你不能研究關於腦的理論。
04:07
You can't get funded for that.
91
247560
1995
你不想做那個的。沒有人會給你經費支持你做這種研究。
04:09
And as a graduate student,
you can't do that."
92
249579
2155
身為一個研究生,你不能這麼做。所以我又說了,我的老天,
04:11
So I said, oh my gosh.
93
251758
1218
04:13
I was depressed; I said, but I can
make a difference in this field.
94
253000
3155
我非常沮喪。我說,但我能在這方面有所成就。
所以我唯一能做的是,我回到了電腦業
04:16
I went back in the computer industry
95
256179
2008
04:18
and said, I'll have to work
here for a while.
96
258211
2105
然後說,好吧,我將留下來工作一段時間,做出一番成就。
04:20
That's when I designed
all those computer products.
97
260340
2393
然後我就開始設計出所有這些電子產品。
04:22
(Laughter)
98
262757
1301
(笑聲)
04:24
I said, I want to do this
for four years, make some money,
99
264082
2894
我告訴自己,我在這邊待四年,賺些錢,
04:27
I was having a family,
and I would mature a bit,
100
267000
3976
我會成家,變得更成熟些,
04:31
and maybe the business
of neuroscience would mature a bit.
101
271000
2816
同時也許神經科學領域也會發展得成熟一點。
04:33
Well, it took longer than four years.
It's been about 16 years.
102
273840
3001
好吧,我花了超過四年的時間。時光飛逝,已經 16 年了。
04:36
But I'm doing it now,
and I'm going to tell you about it.
103
276865
2716
但是我終於在研究大腦了,而我將會跟你們談談我的研究。
04:39
So why should we have a good brain theory?
104
279605
2286
為什麼我們應該要有一個好的大腦理論?
04:41
Well, there's lots of reasons
people do science.
105
281915
3102
人們為了千百種不同的理由研究科學。
04:45
The most basic one is,
people like to know things.
106
285041
2917
其中一個理由 — 最基本的理由 — 是我們想要了解事物。
04:47
We're curious, and we go out
and get knowledge.
107
287982
2195
人類是好奇的,我們只是想要獲取新知而已,你了解嗎?
04:50
Why do we study ants? It's interesting.
108
290201
1866
為什麼我們要研究螞蟻?不為什麼,只因為它很有趣。
04:52
Maybe we'll learn something useful,
but it's interesting and fascinating.
109
292091
3466
也許我們能從中學到新知,但是研究本身既有趣又吸引人。
04:55
But sometimes a science
has other attributes
110
295581
2057
但有時,科學有一些其他的屬性
04:57
which makes it really interesting.
111
297662
1829
而這些屬性會讓它額外的吸引人。
04:59
Sometimes a science will tell
something about ourselves;
112
299515
2627
有時候科學能夠讓我們更加認識自己,
05:02
it'll tell us who we are.
113
302166
1224
它會讓我們知道我們是誰。
05:03
Evolution did this
and Copernicus did this,
114
303414
2752
雖然這極少發生,如你所知演化學說是一例,哥白尼也做到了,
05:06
where we have a new
understanding of who we are.
115
306190
2334
它們徹底地改變了我們對自己身份地位上的認知。
05:08
And after all, we are our brains.
My brain is talking to your brain.
116
308548
3428
但是最基本的,我們代表著我們的大腦。我的大腦正在和你的交談著。
05:12
Our bodies are hanging along for the ride,
117
312000
2030
雖然我們的身體隨時陪伴著我們,但是是我的腦在和你的腦交談。
05:14
but my brain is talking to your brain.
118
314054
1825
05:15
And if we want to understand
who we are and how we feel and perceive,
119
315903
3248
所以如果我們想要了解我們到底是誰,我們是如何感覺、理解事物,
我們真的需要了解大腦是什麼。
05:19
we need to understand brains.
120
319175
1391
05:20
Another thing is sometimes science leads
to big societal benefits, technologies,
121
320590
3784
另一方面,有時科學
能對社會利益、科技、
05:24
or businesses or whatever.
122
324398
1291
商業,各式各樣領域做出極大的貢獻。這也是其中之一,
05:25
This is one, too, because
when we understand how brains work,
123
325713
2878
因為當我們了解大腦是如何運作之後,我們將能夠
05:28
we'll be able to build
intelligent machines.
124
328615
2064
建造智慧機器,我相信整體來說,這會是件好事,
05:30
That's a good thing on the whole,
125
330703
1698
05:32
with tremendous benefits to society,
126
332425
1858
這將會對社會有極大助益
05:34
just like a fundamental technology.
127
334307
1669
就如同基礎科技一般。
05:36
So why don't we have
a good theory of brains?
128
336000
2850
所以,為什麼我們沒有一個好的大腦理論?
05:38
People have been working
on it for 100 years.
129
338874
2168
而且人們研究大腦的歷史已經有百來年了。
05:41
Let's first take a look
at what normal science looks like.
130
341066
2719
那麼,讓我們先來看看普通科學領域的狀況。
05:43
This is normal science.
131
343809
1187
這是普通科學領域。
05:45
Normal science is a nice balance
between theory and experimentalists.
132
345020
4074
普通科學領域中的理論與實作家呈現一個良好的平衡。
05:49
The theorist guy says,
"I think this is what's going on,"
133
349118
2691
因此當理論學者說,嗯,我認為事情是這般這般,
05:51
the experimentalist says, "You're wrong."
134
351833
1961
然後實驗科學家說,不,你錯了。
05:53
It goes back and forth,
this works in physics, this in geology.
135
353818
3004
然後就像這樣一直反覆來回,對吧?
這方法對物理適用。對地理適用。但這些是普通科學領域,
05:56
But if this is normal science,
what does neuroscience look like?
136
356846
3009
神經科學看起來是什麼樣子?這就是神經科學的狀況。
05:59
This is what neuroscience looks like.
137
359879
1795
我們的數據累積得比山還高,解剖學、生理學和行為學的數據。
06:01
We have this mountain of data,
138
361698
1442
06:03
which is anatomy, physiology and behavior.
139
363164
2070
06:05
You can't imagine how much detail
we know about brains.
140
365258
3194
你無法想像我們對大腦的枝微末節了解得如何透徹。
06:08
There were 28,000 people who went
to the neuroscience conference this year,
141
368476
3592
今年 (2003) 的神經科學研討會共有 28,000 人參加,
06:12
and every one of them
is doing research in brains.
142
372092
2363
每一個都在研究大腦。
06:14
A lot of data, but no theory.
143
374479
1694
太多資訊。但沒有理論。在上層的這一塊是如此的微小,搖搖欲墜。
06:16
There's a little wimpy box on top there.
144
376197
2000
06:18
And theory has not played a role
in any sort of grand way
145
378221
3382
而且理論在神經科學中尚未扮演任何重要的角色。
06:21
in the neurosciences.
146
381627
1429
06:23
And it's a real shame.
147
383080
1240
這真可恥。為什麼會這樣?
06:24
Now, why has this come about?
148
384344
1391
06:25
If you ask neuroscientists
why is this the state of affairs,
149
385759
2988
如果你問神經科學家,為什麼會是這種狀況?
06:28
first, they'll admit it.
150
388771
1246
一開始他們都會承認此事。但如果你接著問,他們會說,
06:30
But if you ask them, they say,
151
390041
1485
06:31
there's various reasons
we don't have a good brain theory.
152
391550
2732
這個嘛,有很多的原因使我們沒有一個好的大腦理論。
06:34
Some say we still don't have enough data,
153
394306
1969
有些人會說,呃,我們還沒有足夠的數據,
06:36
we need more information,
there's all these things we don't know.
154
396299
3059
我們還需要更多資訊,還有很多我們不知道的事。
06:39
Well, I just told you there's data
coming out of your ears.
155
399382
2841
我才剛剛告訴你們,我們有的數據多到你們的腦袋都裝不下。
06:42
We have so much information,
we don't even know how to organize it.
156
402247
3164
我們擁有如此多的資訊;我們不知道如何開始整理這些資訊。
06:45
What good is more going to do?
157
405435
1438
再有更多資訊又能怎樣?
06:46
Maybe we'll be lucky and discover
some magic thing, but I don't think so.
158
406897
3448
也許我們會幸運的發現某些寶藏,但我不這麼認為。
06:50
This is a symptom of the fact
that we just don't have a theory.
159
410369
2973
這其實只是因為我們沒有理論這個事實所導致的症狀罷了。
06:53
We don't need more data,
we need a good theory.
160
413366
2610
我們不需要更多數據 — 我們需要一個好理論。
06:56
Another one is sometimes people say,
161
416000
1798
有時候某些人會回答另一個說法,因為大腦是如此複雜,
06:57
"Brains are so complex,
it'll take another 50 years."
162
417822
3154
我們還需要 50 年的研究。
07:01
I even think Chris said something
like this yesterday, something like,
163
421000
3354
我甚至好像聽到 Chris 昨天才說了類似的話。
我不確定你說了什麼,Chris,但好像是類似
07:04
it's one of the most complicated
things in the universe.
164
424378
2627
— 大腦是宇宙中最複雜的事物之一。這不是真的。
07:07
That's not true -- you're more
complicated than your brain.
165
427029
2790
你比你的大腦還要複雜。腦只是你身體的一部分。
07:09
You've got a brain.
166
429843
1151
並且,雖然大腦看起來非常複雜,
07:11
And although the brain
looks very complicated,
167
431018
2150
但是我們常認為我們所不了解的事物是複雜的。
07:13
things look complicated
until you understand them.
168
433192
2336
07:15
That's always been the case.
169
435552
1335
總是這樣子的。我們能夠說的只是,這個嘛,
07:16
So we can say, my neocortex,
the part of the brain I'm interested in,
170
436911
3243
我的新皮層,大腦中我感興趣的部份,有三百億個細胞。
07:20
has 30 billion cells.
171
440178
1152
07:21
But, you know what?
It's very, very regular.
172
441354
2432
但你知道嗎?它非常、非常的規則。
07:23
In fact, it looks like it's the same thing
repeated over and over again.
173
443810
3394
事實上,它看起來像是同一個東西不斷的重複、重複再重複。
07:27
It's not as complex as it looks.
That's not the issue.
174
447228
2536
它不像看起來般如此複雜。所以這不是問題。
07:29
Some people say,
brains can't understand brains.
175
449788
2287
某些人說,大腦無法了解大腦。
07:32
Very Zen-like. Woo.
176
452099
1988
非常具有禪意。呼,是吧 —
07:34
(Laughter)
177
454111
2188
(笑聲)
07:36
You know, it sounds good, but why?
I mean, what's the point?
178
456323
2859
聽起來很有道理,但為什麼?我是說,真的有道理嗎?
07:39
It's just a bunch of cells.
You understand your liver.
179
459206
2569
大腦只不過是一堆細胞。你能了解你的肝臟呀。
07:41
It's got a lot of cells in it too, right?
180
461799
1977
肝臟中也有很多細胞,對吧?
07:43
So, you know, I don't think
there's anything to that.
181
463800
2494
所以,你知道,我不覺得這有什麼問題。
07:46
And finally, some people say,
182
466318
2112
最後,某些人會說,那麼,你知道,
07:48
"I don't feel like a bunch
of cells -- I'm conscious.
183
468454
2983
我不覺得我是一堆細胞,你能理解嗎?我有意識。
07:51
I've got this experience,
I'm in the world.
184
471461
2069
我能累積經驗,我生活在世界中,類似這些話。
07:53
I can't be just a bunch of cells."
185
473554
1910
我不可能只是一堆細胞。是的,你知道,
07:55
Well, people used to believe
there was a life force to be living,
186
475488
3223
人們總是相信生物體內存在某種「生命力」,
07:58
and we now know
that's really not true at all.
187
478735
2409
我們現在知道這一點都不是事實。
08:01
And there's really no evidence,
188
481168
1898
這一點都沒有事實根據,好吧,除了人們不想相信
08:03
other than that people just disbelieve
that cells can do what they do.
189
483090
3374
細胞可以做到人們平日在做的事情。
08:06
So some people have fallen
into the pit of metaphysical dualism,
190
486488
3041
因此,如果某些人們落入形而上學二元論的泥淖中,
08:09
some really smart people, too,
but we can reject all that.
191
489553
2730
一些很聰明的人也不例外,但是我們可以駁斥他們的所有說法。
08:12
(Laughter)
192
492307
2895
(笑聲)
不,我將要告訴你們還有別的,
08:15
No, there's something else,
193
495226
1741
08:16
something really fundamental, and it is:
194
496991
1985
而且非常基本,就是我下面要說的這句話:
08:19
another reason why we don't have
a good brain theory
195
499000
2451
我們沒有一個好的大腦理論的另一個理由是,
08:21
is because we have an intuitive,
strongly held but incorrect assumption
196
501475
5535
我們被一種直觀的、根深蒂固的
但是錯誤的假設所蒙蔽,因此一直無法找到問題的答案。
08:27
that has prevented us
from seeing the answer.
197
507034
2112
08:29
There's something we believe that just,
it's obvious, but it's wrong.
198
509170
3788
我們所相信的某些事情,雖然表面上很顯而易見,但是它是錯的。
08:32
Now, there's a history of this in science
and before I tell you what it is,
199
512982
3566
事實上,科學界的歷史中已經發生過同樣的事情,而在我告訴你以前,
08:36
I'll tell you about the history
of it in science.
200
516572
2299
我要先跟你談談科學界的歷史。
08:38
Look at other scientific revolutions --
201
518895
1910
你們看看其他的科學革命,
08:40
the solar system, that's Copernicus,
202
520829
1879
這邊,我們來談談太陽系,那是哥白尼的貢獻,
08:42
Darwin's evolution,
and tectonic plates, that's Wegener.
203
522732
2819
達爾文的演化還有魏格納的板塊構造論。
他們都與大腦科學有很多共通之處。
08:46
They all have a lot in common
with brain science.
204
526059
2295
08:48
First, they had a lot
of unexplained data. A lot of it.
205
528378
2666
首先,他們有很多無法解釋的數據,一堆數據。
08:51
But it got more manageable
once they had a theory.
206
531068
2794
但是當他們有了理論之後,這些數據變得容易處理的多。
08:53
The best minds were stumped --
really smart people.
207
533886
2807
偉大的心靈總是會遭遇許多困難,那些極端、極端聰明的人們。
08:56
We're not smarter now than they were then;
208
536717
2004
我們現在並不比他們當時聰明。
08:58
it just turns out it's really
hard to think of things,
209
538745
2527
思考問題是極端困難的,
09:01
but once you've thought of them,
it's easy to understand.
210
541296
2676
但一旦你想通了,事情就會得容易理解得多。
09:03
My daughters understood
these three theories,
211
543996
2106
我女兒能夠了解這三個理論
至少了解他們的基本架構,而那時她只是個幼稚園學童而已。
09:06
in their basic framework, in kindergarten.
212
546126
2518
09:08
It's not that hard --
here's the apple, here's the orange,
213
548668
3266
因此,這並沒有這麼難,就像這樣,這是蘋果,這是柳丁,
09:11
the Earth goes around, that kind of stuff.
214
551958
2018
你知道的,地球在公轉,類似的這種東西。
09:14
Another thing is the answer
was there all along,
215
554000
2586
最後,另一件事是答案始終在那邊,
09:16
but we kind of ignored it
because of this obvious thing.
216
556610
2779
但是我們卻因為錯誤而明顯的假設而忽略了它,這就是問題所在。
09:19
It was an intuitive,
strongly held belief that was wrong.
217
559413
2850
問題就是這個直觀且根深蒂固的認知是錯的。
09:22
In the case of the solar system,
218
562287
1690
拿太陽系的例子來說,地球自轉的概念
09:24
the idea that the Earth is spinning,
219
564001
1760
09:25
the surface is going
a thousand miles an hour,
220
565785
2191
還有地球表面以每小時幾千英哩的速度在轉動著,
09:28
and it's going through the solar system
at a million miles an hour --
221
568000
3249
不用說還有地球本身以幾百萬英哩的時速在太陽系中移動著。
09:31
this is lunacy; we all know
the Earth isn't moving.
222
571273
2476
這真是瘋了。我們都知道地球並沒有在動。
09:33
Do you feel like you're moving
a thousand miles an hour?
223
573773
2877
你覺得你有在以千哩的時速移動嗎?
當然沒有。你知道,當有人說,
09:36
If you said Earth was spinning
around in space and was huge --
224
576674
2919
地球在太空中自轉,而太空是如此之大,
09:39
they would lock you up,
that's what they did back then.
225
579617
2591
然後他們會把你關起來,這就是當時他們所做的事。
(笑聲)
09:42
So it was intuitive and obvious.
Now, what about evolution?
226
582232
3275
所以這是直觀且顯而易見的。現在,我們談談演化…
09:45
Evolution, same thing.
227
585531
1154
發生在演化上的情形是一樣的。我們教導孩子,嗯,聖經上說,
09:46
We taught our kids the Bible says
God created all these species,
228
586709
3080
你知道的,上帝創造了所有生命,貓是貓,狗是狗,
09:49
cats are cats; dogs are dogs;
people are people; plants are plants;
229
589813
3143
人是人,樹木是樹木,他們是不變的。
09:52
they don't change.
230
592980
1241
諾亞奉命將他們放到方舟內,如此這般。而且,你知道,
09:54
Noah put them on the ark
in that order, blah, blah.
231
594245
2649
09:56
The fact is, if you believe in evolution,
we all have a common ancestor.
232
596918
3395
事實上,如果你相信演化,我們都來自同一個祖先,
10:00
We all have a common ancestor
with the plant in the lobby!
233
600337
3282
則我們和大廳裡那些植物有共同的祖先。
10:03
This is what evolution tells us.
And it's true. It's kind of unbelievable.
234
603643
3686
這是演化告訴我們的。並且它是真的。儘管有點難令人相信。
10:07
And the same thing about tectonic plates.
235
607353
2557
板塊構造論也遭遇類似情形,不是嗎?
10:09
All the mountains and the continents
236
609934
1722
所有的山嶽與大陸都飄浮在地球的表面,
10:11
are kind of floating around
on top of the Earth.
237
611680
2344
你相信嗎?這真的一點都不合邏輯。
10:14
It doesn't make any sense.
238
614048
1246
10:15
So what is the intuitive,
but incorrect assumption,
239
615318
4601
所以什麼是我說的關於大腦直觀但是不正確的假設,
10:19
that's kept us from understanding brains?
240
619943
1967
並使我們不能真正的了解大腦?
10:21
I'll tell you. It'll seem obvious
that it's correct. That's the point.
241
621934
3293
現在我將要告訴你們,而且它將會看起來正確無誤不容懷疑,
但這就是我想要說明的,不是嗎?然後我將會作一番論述
10:25
Then I'll make an argument why
you're incorrect on the other assumption.
242
625251
3434
為什麼你們另一個假設也是錯的。
10:28
The intuitive but obvious thing is:
243
628709
1682
這個直觀且明顯的事情就是:智能可以藉由
10:30
somehow, intelligence
is defined by behavior;
244
630415
2314
行為來界定,
10:32
we're intelligent
because of how we do things
245
632753
2350
我們擁有智能乃是因為我們行事的方法
10:35
and how we behave intelligently.
246
635127
1572
還有我們展現智慧的行為,但是我要告訴你們這是錯的。
10:36
And I'm going to tell you that's wrong.
247
636723
1879
10:38
Intelligence is defined by prediction.
248
638626
2131
智能其實應該是由預測能力來界定的。
10:40
I'm going to work you
through this in a few slides,
249
640781
2415
接下來的幾張投影片,我將解釋我的論點,
10:43
and give you an example
of what this means.
250
643220
2094
給你們一個可以了解它的意義的例子。這裡有一個系統。
10:45
Here's a system.
251
645338
1301
10:46
Engineers and scientists
like to look at systems like this.
252
646663
2908
工程師喜歡這樣看待系統。科學家也喜歡這樣看待系統。
10:49
They say, we have a thing in a box.
We have its inputs and outputs.
253
649595
3163
他們說,嗯,這個箱子裡面有某種東西,然後我們有輸入跟輸出。
10:52
The AI people said, the thing in the box
is a programmable computer,
254
652782
3240
研究人工智慧的人說,我知道,箱子裡的東西是可編程的電腦
10:56
because it's equivalent to a brain.
255
656046
1679
因為它和腦是對等的,我們將會給它一些輸入訊號
10:57
We'll feed it some inputs and get it
to do something, have some behavior.
256
657749
3506
然後我們可以讓它做些事情,產生行為。
然後艾倫•涂林訂定了涂林測驗,這個測驗基本上是說,
11:01
Alan Turing defined the Turing test,
which essentially says,
257
661279
2822
如果某物的行為可以表現得跟人一模一樣,我們知道它有智能。
11:04
we'll know if something's intelligent
if it behaves identical to a human --
258
664125
3553
對於智能本質上的一個行為標準,
11:07
a behavioral metric
of what intelligence is
259
667702
2106
11:09
that has stuck in our minds
for a long time.
260
669832
2144
這個假設佔據了我們的想法很長的一段時間。
11:12
Reality, though --
I call it real intelligence.
261
672000
2392
但是事實上,我稱之為真實智慧。
11:14
Real intelligence
is built on something else.
262
674416
2175
真實智慧是建築在其它東西上。
11:16
We experience the world
through a sequence of patterns,
263
676615
3214
我們藉由一序列的模式來體驗這個世界,我們儲存這些模式,
11:19
and we store them, and we recall them.
264
679853
2149
我們也會回憶這些模式。當我們回憶時,我們會將現實與記憶中的
11:22
When we recall them,
we match them up against reality,
265
682026
2545
模式對照,並且我們無時無刻不在預測下一刻。
11:24
and we're making predictions all the time.
266
684595
2251
11:26
It's an internal metric;
there's an internal metric about us,
267
686870
2958
這是永恆的標準。有一個關於我們的外在標準大概是這樣的,
11:29
saying, do we understand the world,
am I making predictions, and so on.
268
689852
3342
我們了解這個世界嗎?我正在做預測嗎?等等這些。
11:33
You're all being intelligent now,
but you're not doing anything.
269
693218
3002
你們現在都顯示出智慧,但是你們並沒有在做任何事。
也許你剛剛正在搔癢,或者挖鼻孔,
11:36
Maybe you're scratching yourself,
but you're not doing anything.
270
696244
3002
我不知道,但是你現在並沒有在做任何事,
11:39
But you're being intelligent;
you're understanding what I'm saying.
271
699270
3156
但是你是有智慧的,你了解我在說什麼。
11:42
Because you're intelligent
and you speak English,
272
702450
2295
因為你有智慧而且你聽得懂英文,
11:44
you know the word at the end of this
273
704769
1751
你知道這句話最後一個 — (沉默)
字是什麼。
11:46
sentence.
274
706544
1159
11:47
The word came to you;
you make these predictions all the time.
275
707727
3152
這個字會自己顯現,你無時無刻不在做類似這種的預測。
11:50
What I'm saying is,
276
710903
1699
所以,我要說的是,
11:52
the internal prediction
is the output in the neocortex,
277
712626
2631
這個永恆的預測是我們大腦新皮層的訊號輸出。
不知怎麼的,預測最終導致智能行為。
11:55
and somehow, prediction
leads to intelligent behavior.
278
715281
2541
11:57
Here's how that happens:
279
717846
1151
這裡我來解釋它是如何發生的。讓我們先從非智能大腦開始看起。
11:59
Let's start with a non-intelligent brain.
280
719021
1955
其實我不贊成稱之為非智能大腦,這種原始的大腦也是我們的一部分,
12:01
I'll argue a non-intelligent brain,
we'll call it an old brain.
281
721000
3009
12:04
And we'll say it's
a non-mammal, like a reptile,
282
724033
2871
所以下面我們稱之為非哺乳動物的腦,例如爬蟲類,
12:06
say, an alligator; we have an alligator.
283
726928
1985
所以我說,就鱷魚吧,我們拿鱷魚來當例子。
12:08
And the alligator has
some very sophisticated senses.
284
728937
3371
鱷魚擁有一些非常複雜的感知能力。
12:12
It's got good eyes and ears
and touch senses and so on,
285
732332
3206
牠有非常好的視覺、聽覺、觸覺等等。
12:15
a mouth and a nose.
286
735562
1469
一張嘴一隻鼻子。牠擁有非常複雜的行為。
12:17
It has very complex behavior.
287
737055
1991
12:19
It can run and hide. It has fears
and emotions. It can eat you.
288
739070
3906
牠可以奔跑、躲藏。牠擁有恐懼與情緒。牠能將你吃了,你知道吧。
12:23
It can attack.
It can do all kinds of stuff.
289
743000
3590
牠可以攻擊。牠可以做各種事。
12:27
But we don't consider
the alligator very intelligent,
290
747193
2856
但是我們不認為鱷魚智力很高,跟人類一點都不能相比。
12:30
not in a human sort of way.
291
750073
1676
12:31
But it has all this complex
behavior already.
292
751773
2356
但是牠已經擁有如此複雜的行為了。
12:34
Now in evolution, what happened?
293
754510
1801
在演化過程中,到底發生了什麼事?
12:36
First thing that happened
in evolution with mammals
294
756335
2385
在哺乳類的演化過成中首先,
12:38
is we started to develop a thing
called the neocortex.
295
758744
2531
我們開始發展出所謂的新皮層。
12:41
I'm going to represent the neocortex
by this box on top of the old brain.
296
761299
3793
我將在這邊用此來表示新皮層,
用這個建基於原始大腦上方的方塊來表示。
12:45
Neocortex means "new layer."
It's a new layer on top of your brain.
297
765116
3353
新皮層就是一層新的組織。一層覆蓋在你大腦上方的新組織。
12:48
It's the wrinkly thing
on the top of your head
298
768493
2343
如果你不知道,它就是你頭裡面最外層那個充滿皺摺的東西,
12:50
that got wrinkly because it got shoved
in there and doesn't fit.
299
770860
3084
因為它不合身且被胡亂地塞在你的腦袋裡,所以它充滿了皺摺。
12:53
(Laughter)
300
773968
1008
(笑聲)
12:55
Literally, it's about the size
of a table napkin
301
775000
2242
不,我說真的,真的是這樣。它大約跟張桌巾一般大小。
12:57
and doesn't fit, so it's wrinkly.
302
777266
1574
它並不合身,所以它充滿皺摺。看看在這邊我是怎麼畫它的。
12:58
Now, look at how I've drawn this.
303
778864
1745
13:00
The old brain is still there.
304
780633
1386
原始大腦仍然在那邊。你還擁有著與鱷魚相似的腦。
13:02
You still have that alligator brain.
You do. It's your emotional brain.
305
782043
3655
是真的。那是你原始情緒的腦。
13:05
It's all those gut reactions you have.
306
785722
2730
就是那些東西,所有你會有的直覺反應。
13:08
On top of it, we have this memory system
called the neocortex.
307
788476
3270
而在那個上方。我們有一個稱為新皮層的記憶系統。
13:11
And the memory system is sitting
over the sensory part of the brain.
308
791770
4294
而這個記憶系統座落在大腦感知區的上方。
13:16
So as the sensory input
comes in and feeds from the old brain,
309
796088
3055
所以當感官訊號輸入進來並刺激了原始大腦,
13:19
it also goes up into the neocortex.
310
799167
2154
它開始往更上層的新皮層傳遞。而新皮層只是將之記憶下來。
13:21
And the neocortex is just memorizing.
311
801345
1913
13:23
It's sitting there saying, I'm going
to memorize all the things going on:
312
803282
3561
它待在那邊說,呃,我將要把正在發生的事情全部記下來,
13:26
where I've been, people I've seen,
things I've heard, and so on.
313
806867
3019
我去了哪裡,我見了哪些人,我聽到了什麼東西,如此這般。
13:29
And in the future, when it sees
something similar to that again,
314
809910
3362
到了未來,當它再次見到類似的東西,
13:33
in a similar environment,
or the exact same environment,
315
813296
2635
處於類似或者同樣的環境下,
13:35
it'll start playing it back:
"Oh, I've been here before,"
316
815955
3555
它就會重播。它會開始重播。
喔,我到過這裡。當你上次在這裡的時候,
13:39
and when you were here before,
this happened next.
317
819534
2364
接下來發生了這件事。它能讓你對未來產生預測。
13:41
It allows you to predict the future.
318
821922
1726
13:43
It literally feeds back
the signals into your brain;
319
823672
3396
它能讓你,就是它提供你腦部信號回饋,
13:47
they'll let you see
what's going to happen next,
320
827092
2265
他們能讓你了解即將會發生的事,
13:49
will let you hear the word
"sentence" before I said it.
321
829381
2595
能讓你聽到一句話的最後一個「字」,即使我還沒說出口。
13:52
And it's this feeding
back into the old brain
322
832000
3185
就是這種給原始大腦的回饋
13:55
that will allow you to make
more intelligent decisions.
323
835209
2577
能夠讓你做出更多有智慧的決定。
13:57
This is the most important slide
of my talk, so I'll dwell on it a little.
324
837810
3489
這是我這次演講中最重要的一張投影片,因此我會再花點時間來解釋。
14:01
And all the time you say,
"Oh, I can predict things,"
325
841323
3575
所以,每次當你說,喔,我能預測到這些事情。
14:04
so if you're a rat and you go
through a maze, and you learn the maze,
326
844922
3360
就像如果你是一隻迷宮中的老鼠,然後你認識了這個迷宮,
14:08
next time you're in one,
you have the same behavior.
327
848306
2439
下一次當你在迷宮中的時候,你會做一樣的事情,
14:10
But suddenly, you're smarter;
you say, "I recognize this maze,
328
850769
2991
但是突然間,你變聰明了
因為你會說,喔,我認得這個迷宮,我知道該往哪邊走,
14:13
I know which way to go; I've been here
before; I can envision the future."
329
853784
3542
我曾經到過這裡,我能夠預見未來。這就是智慧在做的事。
14:17
That's what it's doing.
330
857350
1168
14:18
This is true for all mammals --
331
858542
2840
在人身上,換句話說,這適用於所有哺乳動物,
14:21
in humans, it got a lot worse.
332
861406
2031
同樣適用於其他哺乳動物,但在人類身上,這個額外重要。
14:23
Humans actually developed
the front of the neocortex,
333
863461
2587
在人身上,我們事實上發展出了新皮層的前段部份
14:26
called the anterior part of the neocortex.
334
866072
2221
稱為新皮層前緣。自然界在這邊耍了一個小手段。
14:28
And nature did a little trick.
335
868317
1438
14:29
It copied the posterior,
the back part, which is sensory,
336
869779
2687
它複製了後緣部份,後段的感知部份,
14:32
and put it in the front.
337
872490
1151
然後把它放來前面。
14:33
Humans uniquely have
the same mechanism on the front,
338
873665
2480
因此人類很特殊的在腦前段也有此相同的構造,
14:36
but we use it for motor control.
339
876169
1554
但是我們使用它來控制運動功能。
14:37
So we're now able to do very sophisticated
motor planning, things like that.
340
877747
3581
所以現在我們能夠策劃非常複雜的運動計畫,和類似的事情。
14:41
I don't have time to explain,
but to understand how a brain works,
341
881352
3126
我沒有時間詳細解說所有的這些東西,但是如果你們想要了解大腦是如何運作的,
14:44
you have to understand how the first part
of the mammalian neocortex works,
342
884502
3537
你們必須了解上一段我所解釋的哺乳動物新皮層運作的原理,
它是如何的使我們具有儲存模式和進行預測的能力。
14:48
how it is we store patterns
and make predictions.
343
888063
2293
現在讓我給你們一些關於預測的實例。
14:50
Let me give you
a few examples of predictions.
344
890380
2188
14:52
I already said the word "sentence."
345
892592
1676
我已經說過那個關於「字」的例子了。在音樂中,
14:54
In music, if you've heard a song before,
346
894292
3206
如果你曾經聽過一首歌,如果你之前聽過 Jill 唱這些歌,
14:57
when you hear it, the next note
pops into your head already --
347
897522
2909
當她唱歌時,下一個音符就已經躍進你的耳朵了 —
15:00
you anticipate it.
348
900455
1151
當你一邊在聽歌的時候,你一邊在預期著。如果是一張音樂專輯,
15:01
With an album, at the end of a song,
the next song pops into your head.
349
901630
3354
當一首歌結束,下一首歌會自動在你腦海中浮現。
15:05
It happens all the time,
you make predictions.
350
905008
2305
而且這種事情一直不斷的在發生。你一直在做這些預測。
15:07
I have this thing called
the "altered door" thought experiment.
351
907337
3039
我聽過一個稱作「變更的門」的思想實驗。
15:10
It says, you have a door at home;
352
910400
2829
這個思想實驗指出,如果你在家裏有一個門,
15:13
when you're here, I'm changing it --
353
913253
1755
當你在這裡聽演講的時候,我去更動它,我找了一個人
15:15
I've got a guy back at your house
right now, moving the door around,
354
915032
3196
在這時候回到你家,任意對那扇門做變更,
15:18
moving your doorknob over two inches.
355
918252
1769
他們將把你們的門把移動約兩寸的距離。
15:20
When you go home tonight, you'll put
your hand out, reach for the doorknob,
356
920045
3584
然後當你今晚回到家的時候,你將會把你的手伸出,
然後你將會碰到門把,就在這時,你會注意到
15:23
notice it's in the wrong spot
357
923653
1514
門把的位置不對了,然後你會驚覺,哇,有事情發生了。
15:25
and go, "Whoa, something happened."
358
925191
1687
15:26
It may take a second,
but something happened.
359
926902
2101
你仍然需要一兩秒來思考到底發生了什麼事,但是一定有什麼不一樣。
15:29
I can change your doorknob
in other ways --
360
929027
2003
我可以任意更動你的門把。
15:31
make it larger, smaller, change
its brass to silver, make it a lever,
361
931054
3241
我可以使它變大或變小,我可以由黃銅改成鍍銀,
我可以將門把改為門桿。我可以改變你的門本身,為它上色,
15:34
I can change the door;
put colors on, put windows in.
362
934319
2576
或者加上窗戶。我有一千種以上的方法來變更你的門,
15:36
I can change a thousand things
about your door
363
936919
2151
然後在你開門的兩秒內,
15:39
and in the two seconds
you take to open it,
364
939094
2008
你將會注意到某些變更的存在。
15:41
you'll notice something has changed.
365
941126
1722
15:42
Now, the engineering approach,
the AI approach to this,
366
942872
2584
你沒辦法藉由工程學來完成這件事,人工智慧的解決途徑是,
15:45
is to build a door database
with all the door attributes.
367
945480
2675
建立一個門的資料庫。它擁有所有這些與門相關的特性表。
15:48
And as you go up to the door,
we check them off one at time:
368
948179
2819
然後當你走到門前時,你知道,讓我們按照表來一個個檢查這些項目。
15:51
door, door, color ...
369
951022
1346
門、門、門、你知道的、顏色,你知道我想說什麼嗎?
15:52
We don't do that.
Your brain doesn't do that.
370
952392
2100
我們不是這麼做的。你的大腦不是這樣運作的。
15:54
Your brain is making
constant predictions all the time
371
954516
2540
你的大腦事實上是一直在做預測
15:57
about what will happen
in your environment.
372
957080
2034
預測在你的環境中將會發生什麼事。
15:59
As I put my hand on this table,
I expect to feel it stop.
373
959138
2746
當我把我的手放上這張桌子,我會預期感覺到我的手停止。
16:01
When I walk, every step,
if I missed it by an eighth of an inch,
374
961908
3019
當我走路時,每一步,即使只差了 1/8 英吋,
16:04
I'll know something has changed.
375
964951
1533
我也會察覺某些事情不一樣了。
16:06
You're constantly making predictions
about your environment.
376
966508
2820
你持續的在對周遭的環境做預測。
16:09
I'll talk about vision, briefly.
377
969352
1593
我將簡短的談談視覺。這是一張女人的照片。
16:10
This is a picture of a woman.
378
970969
1383
16:12
When we look at people, our eyes saccade
over two to three times a second.
379
972376
3490
當你看著人時,你的眼睛大約會以
每秒兩至三次的頻率移動。
16:15
We're not aware of it,
but our eyes are always moving.
380
975890
2529
你不自覺,可是你的眼睛是不停的在移動著。
因此當你在看某人的臉時,
16:18
When we look at a face, we typically
go from eye to eye to nose to mouth.
381
978443
3435
一般來說你會從一隻眼睛看到另一隻眼睛,再從眼睛到鼻子到嘴巴。
16:21
When your eye moves from eye to eye,
382
981902
1869
現在,當你的眼睛在對方眼睛間移動的時候,
16:23
if there was something
else there like a nose,
383
983795
2158
如果一個鼻子出現在那邊,
16:25
you'd see a nose where an eye
is supposed to be and go, "Oh, shit!"
384
985977
3546
你會在本來應該出現眼睛的地方看到鼻子,
然後你會像,喔,天呀,你知道 —
16:29
(Laughter)
385
989547
1396
16:30
"There's something wrong
about this person."
386
990967
2109
(笑聲)
這個人不太對勁。
16:33
That's because you're making a prediction.
387
993100
2005
而這是因為你一直在做預測。
16:35
It's not like you just look over and say,
"What am I seeing? A nose? OK."
388
995129
3439
你不是只是往那邊看,然後說:我現在看到什麼東西?
一個鼻子,那沒什麼。不,你會預期你將看到的東西。
16:38
No, you have an expectation
of what you're going to see.
389
998592
2634
(笑聲)
16:41
Every single moment.
390
1001250
1151
無時無刻。最後,讓我們來想想我們是如何做智力測驗的。
16:42
And finally, let's think
about how we test intelligence.
391
1002425
2629
16:45
We test it by prediction:
What is the next word in this ...?
392
1005078
3081
我們用預測能力來測驗它。下一個字是什麼,對吧?
16:48
This is to this as this is to this.
What is the next number in this sentence?
393
1008183
3627
這個之於這個等於那個之於那個。這個序列的下一個數字是什麼?
16:51
Here's three visions of an object.
What's the fourth one?
394
1011834
2690
這是一個物體的三視圖。
第四面可能是什麼?這就是我們測驗智力的方法。全部都跟預測能力有關。
16:54
That's how we test it.
It's all about prediction.
395
1014548
2504
16:57
So what is the recipe for brain theory?
396
1017573
2194
那麼大腦理論的配方到底是什麼?
17:00
First of all, we have to have
the right framework.
397
1020219
2366
首先,我們必須要有正確的架構。
17:02
And the framework is a memory framework,
398
1022609
1913
而這個架構是記憶架構,
17:04
not a computational or behavior framework,
399
1024546
2024
而不是計算或是行為架構。是一個記憶架構。
17:06
it's a memory framework.
400
1026594
1163
17:07
How do you store and recall
these sequences of patterns?
401
1027781
2623
你如何儲存並回憶這些序列與模式?一個時間與空間的模式。
17:10
It's spatiotemporal patterns.
402
1030428
1442
17:11
Then, if in that framework,
you take a bunch of theoreticians --
403
1031894
3009
然後,如果在那個架構中,你有一群好的理論學者。
17:14
biologists generally
are not good theoreticians.
404
1034927
2246
現在的生物學家通常不是好的理論學者。
並不是總是這樣,但是通常是,生物學沒有建夠好理論的歷史習慣。
17:17
Not always, but generally, there's not
a good history of theory in biology.
405
1037197
3529
17:20
I've found the best people
to work with are physicists,
406
1040750
2574
我能找到最好的工作夥伴是物理學家,
17:23
engineers and mathematicians,
407
1043348
1383
工程師和數學家,他們習於演算思維模式。
17:24
who tend to think algorithmically.
408
1044755
1696
17:26
Then they have to learn
the anatomy and the physiology.
409
1046475
3264
然後他們必須學習解剖學和生理學。
17:29
You have to make these theories
very realistic in anatomical terms.
410
1049763
4496
你必須使這些理論在解剖層面上也是非常真實的。
任何人當他跳出來告訴你他們關於大腦運行的理論
17:34
Anyone who tells you their theory
about how the brain works
411
1054283
2765
17:37
and doesn't tell you exactly
how it's working
412
1057072
2097
但是不能解釋這些事情如何在腦內發生
17:39
and how the wiring works --
413
1059193
1303
還有腦內的連結關係是什麼,這就不是一個理論。
17:40
it's not a theory.
414
1060520
1267
17:41
And that's what we do
at the Redwood Neuroscience Institute.
415
1061811
2833
這就是我們在紅木神經科學研究所進行的研究。
17:44
I'd love to tell you we're making
fantastic progress in this thing,
416
1064668
3308
我希望我能有更多時間來告訴你們,我們已經在這方面有了驚人的進步,
17:48
and I expect to be back on this stage
sometime in the not too distant future,
417
1068000
3662
而我預期未來還能再回到這裡演講,
因此也許在不久的將來我將能有機會再次跟你們談談。
17:51
to tell you about it.
418
1071686
1164
17:52
I'm really excited;
this is not going to take 50 years.
419
1072874
2594
我真的非常、非常興奮。這絕對不需要再五十年。
17:55
What will brain theory look like?
420
1075492
1578
因此大腦理論究竟看起來會是什麼樣子?
17:57
First of all, it's going
to be about memory.
421
1077094
2055
首先,它會是一個關於記憶的理論。
17:59
Not like computer memory --
not at all like computer memory.
422
1079173
2822
跟電腦記憶體不一樣。它一點都不會像是電腦記憶體。
18:02
It's very different.
423
1082019
1151
會非常、非常的不同。它會是這些非常高維模式
18:03
It's a memory of very
high-dimensional patterns,
424
1083194
2257
的記憶,就跟你從眼睛看到的東西一般。
18:05
like the things that come from your eyes.
425
1085475
1962
18:07
It's also memory of sequences:
426
1087461
1437
它會是序列的記憶。
18:08
you cannot learn or recall anything
outside of a sequence.
427
1088922
2730
你不能學習或是回憶序列外的任何事物。
18:11
A song must be heard
in sequence over time,
428
1091676
2837
一首歌必須按照時間的順序來聽,
18:14
and you must play it back
in sequence over time.
429
1094537
2351
你也必須按照時間順序來播放。
18:16
And these sequences
are auto-associatively recalled,
430
1096912
2449
然後這些順序就會自動被相關連在一起重播,因此如果我看到某些東西,
18:19
so if I see something, I hear something,
it reminds me of it,
431
1099385
2873
聽到某些東西,它讓我回一起相關的事物,然後就會自動重播。
18:22
and it plays back automatically.
432
1102282
1533
18:23
It's an automatic playback.
433
1103839
1294
它是自動重播。然後對於未來所將輸入訊息的預測是我們所希望的輸出。
18:25
And prediction of future inputs
is the desired output.
434
1105157
2548
18:27
And as I said, the theory
must be biologically accurate,
435
1107729
2620
像我提過的,這個理論必須是生物學正確的。
18:30
it must be testable
and you must be able to build it.
436
1110373
2484
它必須能被測試,然且你必須能夠建造它。
18:32
If you don't build it,
you don't understand it.
437
1112881
2211
如果你不能建造它,你就是不了解它。因此,最後一張投影片。
18:35
One more slide.
438
1115116
1532
18:36
What is this going to result in?
439
1116672
2309
這最終會產生什麼結果?我們能夠真的建造出智能機器嗎?
18:39
Are we going to really build
intelligent machines?
440
1119005
2348
絕對可以。而且它會和一般人們所想的不同。
18:41
Absolutely. And it's going to be
different than people think.
441
1121377
3798
我認為這無疑的會發生。
18:45
No doubt that it's going
to happen, in my mind.
442
1125508
2392
18:47
First of all, we're going to build
this stuff out of silicon.
443
1127924
3116
首先,它會被建造,我們將會用矽建出這個東西。
18:51
The same techniques we use to build
silicon computer memories,
444
1131064
2912
跟我們用來建造以矽為原料的電腦記憶體同樣的技術,
18:54
we can use here.
445
1134000
1151
我們在這邊也同樣可以使用。
18:55
But they're very different
types of memories.
446
1135175
2109
但是它們會是非常不同種類的記憶體。
18:57
And we'll attach
these memories to sensors,
447
1137308
2023
然後我們將會將這些記憶體連結上感應器,
18:59
and the sensors will experience
real-live, real-world data,
448
1139355
2777
這些感應器將會經歷真實世界的即時數據,
19:02
and learn about their environment.
449
1142156
1752
然後這些東西將會認識它們的環境。
19:03
Now, it's very unlikely the first things
you'll see are like robots.
450
1143932
3445
而且你將會看到的第一批成品應該非常不可能會長得像個機器人。
19:07
Not that robots aren't useful;
people can build robots.
451
1147401
2575
不是因為機器人沒有用而且人們可以建造機器人。
19:10
But the robotics part is the hardest part.
That's old brain. That's really hard.
452
1150000
3767
但是機器人的部份是最難的部份。那是原始的大腦。非常的難。
19:13
The new brain is easier
than the old brain.
453
1153791
2007
這個新的腦袋要比原始腦袋簡單一些。
19:15
So first we'll do things
that don't require a lot of robotics.
454
1155822
3082
所以我們將建造的第一個東西將會是不需要太多機器人特徵的東西。
19:18
So you're not going to see C-3PO.
455
1158928
2179
所以你將不會看到 C-3PO。
19:21
You're going to see things
more like intelligent cars
456
1161131
2485
你可能會比較常看到類似,例如,智慧車
19:23
that really understand
what traffic is, what driving is
457
1163640
2808
真的能了解交通狀況和駕駛
19:26
and have learned that cars
with the blinkers on for half a minute
458
1166472
3278
而且能夠解讀某些方向燈在閃的車輛過半分鐘後
19:29
probably aren't going to turn.
459
1169774
1574
也許即將轉彎,如此這般的事情。
19:31
(Laughter)
460
1171372
1291
(笑聲)
19:32
We can also do intelligent
security systems.
461
1172687
2064
我們也可以設計智慧型保全系統。
19:34
Anytime we're basically using our brain
but not doing a lot of mechanics --
462
1174775
3573
任何我們需要動用到腦力,但是不會執行太多機械動作的場合。
19:38
those are the things
that will happen first.
463
1178372
2059
這些將會是首先發生的情況。
19:40
But ultimately, the world's the limit.
464
1180455
1820
但是最終,沒什麼是不可能的。
19:42
I don't know how this will turn out.
465
1182299
1732
我不知道這將會發展的如何。
19:44
I know a lot of people who invented
the microprocessor.
466
1184055
2591
我知道許多發明微處理器的人
19:46
And if you talk to them,
467
1186670
2164
如果你問他們,他們知道他們是在從事一些非常重要的事情,
19:48
they knew what they were doing
was really significant,
468
1188858
2575
19:51
but they didn't really know
what was going to happen.
469
1191457
2500
但是他們不知道將會發生什麼事。
19:53
They couldn't anticipate
cell phones and the Internet
470
1193981
2768
他們不能預測到手機、網路等等這些事情的發生。
19:56
and all this kind of stuff.
471
1196773
1735
19:58
They just knew like,
"We're going to build calculators
472
1198532
2621
他們只知道像,嘿,他們將要建造計算機
20:01
and traffic-light controllers.
473
1201177
1440
和交通號誌燈。但是這將會很重要。
20:02
But it's going to be big!"
474
1202641
1299
20:03
In the same way, brain science
and these memories
475
1203964
2341
同樣的道理,大腦理論和這些記憶體
20:06
are going to be a very
fundamental technology,
476
1206329
2225
將會是非常基礎的科技,而且會
20:08
and it will lead to unbelievable changes
in the next 100 years.
477
1208578
3442
在未來的一百年內帶來非常不可思議的改變。
20:12
And I'm most excited about
how we're going to use them in science.
478
1212044
3405
我最興奮的是我們將會如何將它們應用到科學研究上。
20:15
So I think that's all my time -- I'm over,
479
1215473
2837
我想我的時間已經到了,我超時了,所以我將要結束這次演講
20:18
and I'm going to end my talk right there.
480
1218334
2277
就在這裡結束。
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。