Can we learn to talk to sperm whales? | David Gruber | TED

77,690 views ・ 2021-04-28

TED


请双击下面的英文字幕来播放视频。

翻译人员: Qingyue Sun 校对人员: Helen Chang
00:12
You are about to hear the sounds of the largest-toothed predator
0
12375
3309
你即将听到
地球上最大的有齿肉食动物的声音。
00:15
on the planet:
1
15708
1268
这种比校车还大的动物,
00:17
an animal bigger than a school bus
2
17000
2351
00:19
with perhaps the most sophisticated form of communication
3
19375
3059
也许拥有现有的
00:22
that has ever existed.
4
22458
2310
最复杂的交流方式。
00:24
(Video: whale clicking)
5
24792
6000
(视频:鲸鱼发出的滴答声)
00:43
These are the sounds of the mighty sperm whale,
6
43833
2518
这是健壮的抹香鲸的声音。
00:46
a fellow mammal that can dive almost a mile,
7
46375
2893
它是一种能下潜 将近一英里的哺乳动物,
00:49
hold its breath for more than an hour
8
49292
2267
能屏住呼吸超过一小时,
00:51
and lives in these amazingly complex, matriarchal societies.
9
51583
3851
并且住在奇迹般复杂的母系社会里。
00:55
These clicks you heard,
10
55458
1310
你所听到的这些滴答声
00:56
called codas,
11
56792
1267
被称作尾波,
00:58
are just a facet of what we know of their communication.
12
58083
3101
只是我们所知的 它们交流方式的一部分。
01:01
We know these animals are communicating,
13
61208
2393
我们知道这些动物在交流,
01:03
we just don't yet know what they're saying.
14
63625
2976
但只是还不知道它们在说什么。
01:06
Project CETI aims to find out.
15
66625
2268
CETI项目希望发现这个奥秘。
01:08
Over the next five years,
16
68917
1559
在未来的五年里,
01:10
our team of AI specialists,
17
70500
1684
我们团队的AI专家们,
01:12
roboticists, linguists
18
72208
1768
机器专家们,语言学家们,
和海洋生物学家们,
01:14
and marine biologists
19
74000
1434
01:15
aim to use the most cutting-edge technologies
20
75458
2310
希望用最先进的技术
01:17
to make contact with another species,
21
77792
1892
来和其他物交流,
01:19
and hopefully communicate back.
22
79708
3476
希望得到回应。
01:23
We believe that by listening deeply to nature,
23
83208
2518
我们相信,通过用心地聆听自然,
01:25
we can change our perspective of ourselves
24
85750
2476
我们能改变我们对自身的看法,
01:28
and reshape our relationship with all life on this planet.
25
88250
5059
并重塑我们与地球上其他生物的关系。
01:33
This of course seems like an impossible goal.
26
93333
3393
这当然听起来是个不可能实现的目标。
01:36
People have been trying to make contact with other animals
27
96750
2768
数百年里,人们尝试着 和其他动物沟通。
01:39
for hundreds of years.
28
99542
1309
01:40
How could we do what others could not,
29
100875
2393
我们如何做到别人做不到的,
01:43
especially given that I'm sitting here on my couch in New York City
30
103292
4142
特别是当我现在坐在 纽约市里我的沙发上,
01:47
in the middle of a pandemic and protests?
31
107458
2476
在疫情和抗议之中?
01:49
I've spent the last 20 years as a marine biologist and oceanographer,
32
109958
3810
二十年来我一直是个 海洋生物学家和海洋摄影师,
01:53
studying the ocean from all different perspectives,
33
113792
3059
从不同角度学习着海洋,
01:56
from microbes to sharks.
34
116875
1851
包括从微生物到鲨鱼的角度。
01:58
I've assembled interdisciplinary teams
35
118750
1893
我组织过跨学科的团队,
02:00
that have built the first shark-eye camera
36
120667
2142
建造了第一个鲨鱼眼摄像机
02:02
to see the world from a shark's perspective,
37
122833
2226
来通过鲨鱼的视角看世界,
02:05
and have collaborated with engineers
38
125083
1851
并且和工程师们合作过
02:06
to design robots so gentle that they don't even stress a jellyfish.
39
126958
4893
来设计轻柔到不会让水母紧张的机器。
02:11
But it wasn't until 2018
40
131875
2143
但直到2018年,当我在
02:14
when I was on fellowship
41
134042
1309
拉德克利夫高等研究所做研究员时,
02:15
at the Radcliffe Institute for Advanced Study
42
135375
2434
02:17
that I realized that perhaps the best way to understand the ocean
43
137833
3060
我才意识到也许理解海洋
02:20
and its inhabitants
44
140917
1267
和它的居民的最好方式
02:22
wasn't just by seeing the world through their eyes,
45
142208
3101
不只是通过它们的视角看世界,
02:25
but by listening --
46
145333
1310
而是通过倾听——
02:26
by really, deeply listening.
47
146667
2142
通过真正、用心的聆听。
02:28
I became interested in sperm whales when I heard their sounds.
48
148833
3060
当我听到抹香鲸的声音时 我开始对它们感兴趣。
02:31
They sounded like they were coming from another universe;
49
151917
2726
它们听起来像来自另一个宇宙,
02:34
a siren song being broadcast from the darkest reaches of the sea.
50
154667
4434
是海洋至黑处传来的海妖的歌声。
02:39
These weren't the typical harmonious whale songs
51
159125
3393
这些不是我所习惯的,
02:42
that I had been accustomed to.
52
162542
1559
鲸鱼典型的和谐歌声。
02:44
These sounded more like digital data transfer.
53
164125
3268
这些听起来更像电子数据传播声。
02:47
We assembled the future Project CETI team
54
167417
2434
我们组建了现在的CETI项目团队,
02:49
and began discussing how to use the most advanced technologies
55
169875
3351
并开始讨论如何使用最先进的技术
02:53
to communicate with whales.
56
173250
2101
来与鲸鱼沟通。
02:55
One of the principal conclusions
57
175375
1559
主要结论之一是
02:56
was that machine learning had a really good chance
58
176958
2685
机器学习有很好的机会
02:59
of understanding the patterns of sperm whale communication.
59
179667
2934
去理解抹香鲸交流的规律。
03:02
And the time to apply these technologies was now.
60
182625
3684
现在是应用这些技术的时候了。
03:06
Cracking the interspecies communication code
61
186333
2726
破解物种间的通讯密码
03:09
didn't just seem possible,
62
189083
3018
不仅看起来有可能实现,
03:12
it almost seemed inevitable.
63
192125
2268
并且几乎是不可避免的。
03:14
But how can analyzing patterns help us converse with whales
64
194417
2851
但是分析规律如何帮助我们与鲸鱼
03:17
and other animals?
65
197292
1267
和其他动物沟通呢?
03:18
Well, step one is to understand the elements of sperm whale communication.
66
198583
4393
第一步是了解抹香鲸交流的要素。
你们听到的这些尾波 不是我们所认为的句子,
03:23
These codas you heard don't appear to be sentences as we know them,
67
203000
4059
03:27
but there's clear structure in how these animals communicate.
68
207083
2935
但这些动物的交流方式有明确的结构。
03:30
Sperm whales send codas back and forth to each other
69
210042
2934
抹香鲸有序地互相发送
尾波,
03:33
in sequences,
70
213000
1309
03:34
and there are regional dialects like British and Australian accents.
71
214333
3976
还有地域方言, 就像英国和澳大利亚的口音。
03:38
This is exactly why machine learning is such a powerful tool.
72
218333
3768
这就是为什么机器学习 是如此强大的工具。
03:42
These approaches analyze patterns in relationship and map meaning to them.
73
222125
4018
这些方法分析规律间的关联 并得出意义。
03:46
Just a few years ago, scientists used machine learning
74
226167
2767
就在几年前,科学家们通过机器学习
03:48
to translate between two totally unknown human languages.
75
228958
3810
翻译了两种完全未知的人类语言。
03:52
Not by using a Rosetta Stone or a dictionary,
76
232792
2767
不是用罗塞塔石碑或字典,
03:55
but by mapping them on patterns in higher-dimensional space.
77
235583
4435
而是将它们映射到高维空间的规律中。
04:00
But for machine learning to work effectively,
78
240042
2267
但是为了让机器学习有效,
04:02
it needs data --
79
242333
1310
它需要数据——
04:03
it needs lots and lots of data.
80
243667
2767
它需要非常、非常多的数据。
04:06
In the past half-century,
81
246458
1726
在过去的半个世纪里,
04:08
marine researchers have painstakingly collected
82
248208
3476
海洋研究人员煞费苦心地收集
04:11
and hand annotated just a few thousand sperm whale vocalizations,
83
251708
4601
并手工注释了几千种抹香鲸的叫声,
04:16
but in order to learn sperm whale communication,
84
256333
2310
但是为了学习抹香鲸的交流,
04:18
we'll need to collect millions,
85
258667
2392
我们需要收集数以百万计、
04:21
if not tens of millions
86
261083
1976
甚至数以千万计
04:23
of carefully annotated sperm whale vocalizations
87
263083
2893
仔细注释的抹香鲸的声音
并和其行为相对应。
04:26
correlated with behaviors.
88
266000
1893
04:27
We'll do it with noninvasive, autonomous, free-swimming robots,
89
267917
3142
我们将使用非侵入式、 自主、自由游泳的机器人、
04:31
aerial-aquatic drones,
90
271083
1685
航空-潜水式无人机、
04:32
bottom-mounted hydrophone arrays
91
272792
1601
海底水听器阵列
04:34
and more.
92
274417
1267
等等。
04:35
We'll work with our close partners at the Dominica Sperm Whale Project
93
275708
3351
我们将与多米尼加 抹香鲸项目的亲密伙伴合作
04:39
to cover a 20-square-kilometer area
94
279083
2101
来覆盖20平方公里,
04:41
that is frequented by over 25 well-known families of sperm whales.
95
281208
4560
那里有超过25个著名的 抹香鲸家族经常出没。
04:45
We're going to put specific focus on the interactions of mothers and calfs,
96
285792
4642
我们将把重点放在 母亲和幼崽之间的互动上,
04:50
training our machine learning algorithms
97
290458
2185
来训练我们机器学习算法
04:52
to learn whale language from the bottom up.
98
292667
2601
从下往上学习鲸鱼的语言。
04:55
All this data we'll have sent through a pipeline
99
295292
2309
所有这些数据都是通过管道传输的,
04:57
and analyzed by the Project CETI translation team.
100
297625
2434
并由CETI项目翻译团队进行分析。
05:00
The raw audio and context data will go through our machine learning engine
101
300083
3976
原始音频和环境数据 将通过我们的机器学习引擎,
05:04
where it's going to be first sorted by structure.
102
304083
2351
在那里它首先要被按结构排序。
05:06
The linguistics team will then search for things like syntax
103
306458
2893
然后语言学团队 将搜索诸如语法之类的东西
05:09
and time displacement.
104
309375
1268
和时间位移。
05:10
For example,
105
310667
1267
例如,
05:11
if we find an event where a whale was talking about something yesterday,
106
311958
3810
如果我们发现一条鲸鱼 在讨论着昨天发生的事情,
05:15
that alone would be a major finding,
107
315792
2142
光是这个就能成为一个重大发现了,
05:17
something that has thus far only been shown in humans.
108
317958
3268
那是目前为止只在人类中发生的事情。
05:21
And once we've really mastered listening,
109
321250
2309
一旦我们真正掌握了聆听,
05:23
we're going to try really carefully to talk back
110
323583
3226
我们会尝试很小心地回应,
05:26
even on the most simplistic level.
111
326833
2185
即使在最简单的层面上。
05:29
Finally, Project CETI will build an open-source platform
112
329042
2726
最后,CETI项目 将构建一个开源平台,
05:31
where we will make our data sets available to the public,
113
331792
2809
我们将在那向公众提供我们的数据集,
05:34
encouraging the global community
114
334625
2059
鼓励全球社会
05:36
to come along on this journey for understanding.
115
336708
2393
都参与进这段理解的旅程中。
05:39
These animals could be the most intelligent beings on this planet.
116
339125
4393
这些动物可能是 这个星球上最聪明的生物。
05:43
They have a neocortex and spindle cells --
117
343542
2851
它们有一个新皮层和梭形细胞——
05:46
structure that in humans control our higher thoughts,
118
346417
3101
那是在人类身上控制高级思想的结构,
05:49
emotions, memory, language and love.
119
349542
3226
包括情感、记忆、语言和爱。
05:52
And all the platforms that we develop can be cross-applied to other animals:
120
352792
3684
我们开发的所有平台 都可以交叉应用于其他动物:
05:56
to elephants, birds,
121
356500
1601
在大象、鸟类、
05:58
primates, dolphins --
122
358125
1643
灵长类、海豚——
05:59
essentially any animal.
123
359792
1517
几乎所有动物身上。
06:01
In the late 1960s,
124
361333
1643
在20世纪60年代末,
我们的团队成员 罗杰·佩恩发现鲸鱼会唱歌。
06:03
our team member, Roger Payne, discovered that whales sing.
125
363000
3976
(录音:鲸鱼歌唱)
06:07
(Recording: whale singing)
126
367000
1268
06:08
A finding that sparked the Save the Whales movement
127
368292
2642
这一发现引发了拯救鲸鱼运动,
06:10
led to the end of large-scale whaling
128
370958
2643
终结了大规模的捕鲸,
06:13
and prevented several whale species from extinction
129
373625
3476
并阻止了一些鲸鱼物种的灭绝。
06:17
just by showing that whales sing.
130
377125
3143
这光是展示鲸鱼能唱歌就能做到的。
06:20
Imagine if we could understand what they're saying.
131
380292
2476
想象一下如果我们能理解 它们在说什么。
06:22
Now is the time to open this larger dialogue.
132
382792
3642
现在是开启这一更大对话的时候了。
06:26
Now is the time to listen deeply
133
386458
2643
现在是时候用心聆听
06:29
and show these magical animals,
134
389125
1893
来向这些神奇的动物,
06:31
and each other,
135
391042
1851
和彼此,
06:32
newfound respect.
136
392917
1375
展示新建立的尊重。
06:35
Thank you.
137
395417
1250
谢谢。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog