Can we learn to talk to sperm whales? | David Gruber | TED

77,690 views ・ 2021-04-28

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Helen Chang
00:12
You are about to hear the sounds of the largest-toothed predator
0
12375
3309
你將要聽到的聲音,是來自 地球上牙齒最大的捕食性動物:
00:15
on the planet:
1
15708
1268
這種動物比校車還大,
00:17
an animal bigger than a school bus
2
17000
2351
00:19
with perhaps the most sophisticated form of communication
3
19375
3059
其溝通方式可能是 有史以來最複雜的。
00:22
that has ever existed.
4
22458
2310
00:24
(Video: whale clicking)
5
24792
6000
(影片:鯨魚發出卡嗒聲)
00:43
These are the sounds of the mighty sperm whale,
6
43833
2518
這些是巨型抹香鯨發出的聲音,
00:46
a fellow mammal that can dive almost a mile,
7
46375
2893
這種哺乳類夥伴可以下潛近一哩深,
00:49
hold its breath for more than an hour
8
49292
2267
閉氣超過一小時,
00:51
and lives in these amazingly complex, matriarchal societies.
9
51583
3851
生活在這種極複雜的母系社會中。
00:55
These clicks you heard,
10
55458
1310
你聽到的這些卡嗒聲 叫做「尾聲音節」,
00:56
called codas,
11
56792
1267
只是我們所了解的抹香鯨 溝通的其中一個面向。
00:58
are just a facet of what we know of their communication.
12
58083
3101
01:01
We know these animals are communicating,
13
61208
2393
我們知道這些動物正在溝通,
01:03
we just don't yet know what they're saying.
14
63625
2976
我們只是還不知道牠們在說什麼。
01:06
Project CETI aims to find out.
15
66625
2268
CETI 計畫的目標 就是解答這個問題。
01:08
Over the next five years,
16
68917
1559
在接下來的五年間,
01:10
our team of AI specialists,
17
70500
1684
我們的團隊,包括 人工智慧專家、機器人專家、
01:12
roboticists, linguists
18
72208
1768
語言學家,及海洋生物學家,
01:14
and marine biologists
19
74000
1434
01:15
aim to use the most cutting-edge technologies
20
75458
2310
打算要用最尖端的技術 與其他的物種接觸,
01:17
to make contact with another species,
21
77792
1892
01:19
and hopefully communicate back.
22
79708
3476
希望牠們會回應溝通。
01:23
We believe that by listening deeply to nature,
23
83208
2518
我們相信藉由深刻傾聽大自然,
01:25
we can change our perspective of ourselves
24
85750
2476
我們就能改變我們對自己的看法,
01:28
and reshape our relationship with all life on this planet.
25
88250
5059
並重新塑造
我們與地球上所有生命的關係。
01:33
This of course seems like an impossible goal.
26
93333
3393
當然,這似乎是個 不可能達成的目標。
01:36
People have been trying to make contact with other animals
27
96750
2768
數百年來,人類一直 在嘗試和動物溝通。
01:39
for hundreds of years.
28
99542
1309
01:40
How could we do what others could not,
29
100875
2393
我們要怎麼做到別人做不到的事?
01:43
especially given that I'm sitting here on my couch in New York City
30
103292
4142
尤其是,我還在紐約市裡, 坐在我家的沙發上,
01:47
in the middle of a pandemic and protests?
31
107458
2476
現在還正值疫情和抗議?
01:49
I've spent the last 20 years as a marine biologist and oceanographer,
32
109958
3810
以海洋生物學家和海洋學家的 身分,我在過去二十年間,
01:53
studying the ocean from all different perspectives,
33
113792
3059
從各種不同的角度研究海洋,
01:56
from microbes to sharks.
34
116875
1851
從微生物到鯊魚。
01:58
I've assembled interdisciplinary teams
35
118750
1893
我組織了跨領域團隊, 打造了第一個鯊魚眼攝影機,
02:00
that have built the first shark-eye camera
36
120667
2142
02:02
to see the world from a shark's perspective,
37
122833
2226
讓我們從鯊魚的視角看世界,
02:05
and have collaborated with engineers
38
125083
1851
我也與工程師合作,
02:06
to design robots so gentle that they don't even stress a jellyfish.
39
126958
4893
設計非常溫柔的機器人,
溫柔到甚至不會驚動水母。
02:11
But it wasn't until 2018
40
131875
2143
但直到 2018 年,
02:14
when I was on fellowship
41
134042
1309
我在拉德克利夫研究所 擔任研究員時,
02:15
at the Radcliffe Institute for Advanced Study
42
135375
2434
02:17
that I realized that perhaps the best way to understand the ocean
43
137833
3060
我才了解,也許,了解海洋 及其居民的最佳方式,
02:20
and its inhabitants
44
140917
1267
不是僅透過牠們的視角看世界,
02:22
wasn't just by seeing the world through their eyes,
45
142208
3101
02:25
but by listening --
46
145333
1310
而是要傾聽——
02:26
by really, deeply listening.
47
146667
2142
真正的、深刻的傾聽。
02:28
I became interested in sperm whales when I heard their sounds.
48
148833
3060
我聽見抹香鯨的聲音後, 便對牠們十分感興趣。
02:31
They sounded like they were coming from another universe;
49
151917
2726
牠們聽起來就像是來自另一個宇宙;
02:34
a siren song being broadcast from the darkest reaches of the sea.
50
154667
4434
從海洋最黑暗的深處 傳出來的美妙歌曲。
02:39
These weren't the typical harmonious whale songs
51
159125
3393
這些聲音並不是我熟悉的 典型和諧鯨魚歌聲。
02:42
that I had been accustomed to.
52
162542
1559
02:44
These sounded more like digital data transfer.
53
164125
3268
它們聽起來更像數位資料傳輸。
02:47
We assembled the future Project CETI team
54
167417
2434
我們為未來的計畫 CETI 組織了一個團隊,
02:49
and began discussing how to use the most advanced technologies
55
169875
3351
開始討論要如何運用 最先進的科技與鯨魚溝通。
02:53
to communicate with whales.
56
173250
2101
02:55
One of the principal conclusions
57
175375
1559
主要的結論之一是: 機器學習很有機會
02:56
was that machine learning had a really good chance
58
176958
2685
02:59
of understanding the patterns of sperm whale communication.
59
179667
2934
了解抹香鯨溝通的模式。
03:02
And the time to apply these technologies was now.
60
182625
3684
而現在該是使用這些技術的時候了。
03:06
Cracking the interspecies communication code
61
186333
2726
破解物種之間的溝通密碼
03:09
didn't just seem possible,
62
189083
3018
不僅是有可能的,
03:12
it almost seemed inevitable.
63
192125
2268
似乎還是無可避免的。
03:14
But how can analyzing patterns help us converse with whales
64
194417
2851
但,分析模式怎麼能協助我們 與鯨魚或其他動物交談?
03:17
and other animals?
65
197292
1267
03:18
Well, step one is to understand the elements of sperm whale communication.
66
198583
4393
這個嘛,第一步是要了解 抹香鯨溝通的元素。
你聽到這些的尾聲音節 似乎不是我們所知的句子,
03:23
These codas you heard don't appear to be sentences as we know them,
67
203000
4059
03:27
but there's clear structure in how these animals communicate.
68
207083
2935
但這些動物溝通的方式 有著清楚的架構。
03:30
Sperm whales send codas back and forth to each other
69
210042
2934
抹香鯨之間會來回傳送 一連串尾聲音節,
03:33
in sequences,
70
213000
1309
03:34
and there are regional dialects like British and Australian accents.
71
214333
3976
牠們也有區域性的方言, 就像英國和澳洲口音。
03:38
This is exactly why machine learning is such a powerful tool.
72
218333
3768
這正是為什麼機器學習 是如此強大的工具。
03:42
These approaches analyze patterns in relationship and map meaning to them.
73
222125
4018
這些方法可以用關聯性來分析模式,
並找到對應的意義。
03:46
Just a few years ago, scientists used machine learning
74
226167
2767
幾年前,科學家用機械學習
03:48
to translate between two totally unknown human languages.
75
228958
3810
將兩種完全未知的 人類語言互相翻譯。
03:52
Not by using a Rosetta Stone or a dictionary,
76
232792
2767
不是用羅塞塔語言學習軟體或字典,
03:55
but by mapping them on patterns in higher-dimensional space.
77
235583
4435
而是把它們投射到 更高維度空間中的模式上。
04:00
But for machine learning to work effectively,
78
240042
2267
但若要讓機械學習能發揮效果,
04:02
it needs data --
79
242333
1310
就需要資料——
04:03
it needs lots and lots of data.
80
243667
2767
需要很多很多資料。
04:06
In the past half-century,
81
246458
1726
在前五十年間,
04:08
marine researchers have painstakingly collected
82
248208
3476
海洋研究者煞費苦心地收集了
04:11
and hand annotated just a few thousand sperm whale vocalizations,
83
251708
4601
幾千筆抹香鯨的發聲資料 並手動加上註記,
04:16
but in order to learn sperm whale communication,
84
256333
2310
但,為了學習抹香鯨的溝通, 我們需要收集到
04:18
we'll need to collect millions,
85
258667
2392
數百萬筆,甚至數千萬筆,
04:21
if not tens of millions
86
261083
1976
04:23
of carefully annotated sperm whale vocalizations
87
263083
2893
加上仔細註記的抹香鯨發聲資料,
搭配和行為的關聯。
04:26
correlated with behaviors.
88
266000
1893
04:27
We'll do it with noninvasive, autonomous, free-swimming robots,
89
267917
3142
我們用非侵略性、自動化、 自由游動的機器人、
04:31
aerial-aquatic drones,
90
271083
1685
空中-水底無人機、
04:32
bottom-mounted hydrophone arrays
91
272792
1601
底部水下麥克風陣列 等工具來做這項工作。
04:34
and more.
92
274417
1267
04:35
We'll work with our close partners at the Dominica Sperm Whale Project
93
275708
3351
我們將會與多明尼克抹香鯨 計畫的密切夥伴合作,
以涵蓋二十平方公里的區域,
04:39
to cover a 20-square-kilometer area
94
279083
2101
04:41
that is frequented by over 25 well-known families of sperm whales.
95
281208
4560
有至少二十五個知名的抹香鯨 家庭經常出入這塊區域。
04:45
We're going to put specific focus on the interactions of mothers and calfs,
96
285792
4642
我們將把焦點明確放在 母鯨和幼鯨的互動上,
04:50
training our machine learning algorithms
97
290458
2185
訓練我們的機械學習演算法,
04:52
to learn whale language from the bottom up.
98
292667
2601
由下而上學習鯨魚的語言。
04:55
All this data we'll have sent through a pipeline
99
295292
2309
這些資料會透過一條管道線傳輸,
04:57
and analyzed by the Project CETI translation team.
100
297625
2434
交由 CETI 計畫的翻譯團隊來分析。
05:00
The raw audio and context data will go through our machine learning engine
101
300083
3976
原始聲音以及情境資料
則會交給我們的機械學習引擎,
05:04
where it's going to be first sorted by structure.
102
304083
2351
首先會依結構來分類。
05:06
The linguistics team will then search for things like syntax
103
306458
2893
語言學團隊接著會試著尋找 如語法及時間移位。
05:09
and time displacement.
104
309375
1268
05:10
For example,
105
310667
1267
比如,
05:11
if we find an event where a whale was talking about something yesterday,
106
311958
3810
如果哪一次我們發現鯨魚 在談昨天發生的事,
05:15
that alone would be a major finding,
107
315792
2142
光這一點就是重大的發現,
05:17
something that has thus far only been shown in humans.
108
317958
3268
因為到目前只有人類可以做到。
05:21
And once we've really mastered listening,
109
321250
2309
一旦我們真正精通了傾聽,
05:23
we're going to try really carefully to talk back
110
323583
3226
我們會試著非常謹慎地回話,
05:26
even on the most simplistic level.
111
326833
2185
即使是過度簡單的層級。
05:29
Finally, Project CETI will build an open-source platform
112
329042
2726
最後,CETI 計畫將會建造 一個開放原始碼的平台,
05:31
where we will make our data sets available to the public,
113
331792
2809
我們的把我們的資料集 公開給大眾使用,
05:34
encouraging the global community
114
334625
2059
鼓勵全球大眾
05:36
to come along on this journey for understanding.
115
336708
2393
一同參與這趟「了解」之旅。
05:39
These animals could be the most intelligent beings on this planet.
116
339125
4393
這些動物可能是地球上 最有智慧的生物。
05:43
They have a neocortex and spindle cells --
117
343542
2851
牠們有大腦新皮質以及梭狀細胞——
05:46
structure that in humans control our higher thoughts,
118
346417
3101
人類身上的這種結構 是用來控制更高階的思想、
05:49
emotions, memory, language and love.
119
349542
3226
情緒、記憶、語言,及愛。
05:52
And all the platforms that we develop can be cross-applied to other animals:
120
352792
3684
而我們開發的所有平台
都能交叉應用到其他 動物身上,如大象、鳥類、
05:56
to elephants, birds,
121
356500
1601
05:58
primates, dolphins --
122
358125
1643
靈長類、海豚——
05:59
essentially any animal.
123
359792
1517
基本上,任何動物皆可。
06:01
In the late 1960s,
124
361333
1643
1960 年代末,
我們的團隊成員羅傑佩恩
06:03
our team member, Roger Payne, discovered that whales sing.
125
363000
3976
發現鯨魚會唱歌。 (錄音:鯨魚唱歌。)
06:07
(Recording: whale singing)
126
367000
1268
這項發現促成了「拯救鯨魚」運動,
06:08
A finding that sparked the Save the Whales movement
127
368292
2642
06:10
led to the end of large-scale whaling
128
370958
2643
導致大規模捕鯨的終止,
06:13
and prevented several whale species from extinction
129
373625
3476
並預防數個鯨魚物種絕種,
06:17
just by showing that whales sing.
130
377125
3143
就只靠著展示出鯨魚會唱歌。
06:20
Imagine if we could understand what they're saying.
131
380292
2476
想像一下,如果我們 能了解牠們在說什麼。
06:22
Now is the time to open this larger dialogue.
132
382792
3642
現在該是開啟 更大規模對話的時候了。
06:26
Now is the time to listen deeply
133
386458
2643
現在該是深刻傾聽的時候了,
06:29
and show these magical animals,
134
389125
1893
讓這些魔法般的動物及彼此見識一下
06:31
and each other,
135
391042
1851
06:32
newfound respect.
136
392917
1375
新發現的尊重。
06:35
Thank you.
137
395417
1250
謝謝。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog