Can we learn to talk to sperm whales? | David Gruber | TED

76,280 views ・ 2021-04-28

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Helen Chang
00:12
You are about to hear the sounds of the largest-toothed predator
0
12375
3309
你將要聽到的聲音,是來自 地球上牙齒最大的捕食性動物:
00:15
on the planet:
1
15708
1268
這種動物比校車還大,
00:17
an animal bigger than a school bus
2
17000
2351
00:19
with perhaps the most sophisticated form of communication
3
19375
3059
其溝通方式可能是 有史以來最複雜的。
00:22
that has ever existed.
4
22458
2310
00:24
(Video: whale clicking)
5
24792
6000
(影片:鯨魚發出卡嗒聲)
00:43
These are the sounds of the mighty sperm whale,
6
43833
2518
這些是巨型抹香鯨發出的聲音,
00:46
a fellow mammal that can dive almost a mile,
7
46375
2893
這種哺乳類夥伴可以下潛近一哩深,
00:49
hold its breath for more than an hour
8
49292
2267
閉氣超過一小時,
00:51
and lives in these amazingly complex, matriarchal societies.
9
51583
3851
生活在這種極複雜的母系社會中。
00:55
These clicks you heard,
10
55458
1310
你聽到的這些卡嗒聲 叫做「尾聲音節」,
00:56
called codas,
11
56792
1267
只是我們所了解的抹香鯨 溝通的其中一個面向。
00:58
are just a facet of what we know of their communication.
12
58083
3101
01:01
We know these animals are communicating,
13
61208
2393
我們知道這些動物正在溝通,
01:03
we just don't yet know what they're saying.
14
63625
2976
我們只是還不知道牠們在說什麼。
01:06
Project CETI aims to find out.
15
66625
2268
CETI 計畫的目標 就是解答這個問題。
01:08
Over the next five years,
16
68917
1559
在接下來的五年間,
01:10
our team of AI specialists,
17
70500
1684
我們的團隊,包括 人工智慧專家、機器人專家、
01:12
roboticists, linguists
18
72208
1768
語言學家,及海洋生物學家,
01:14
and marine biologists
19
74000
1434
01:15
aim to use the most cutting-edge technologies
20
75458
2310
打算要用最尖端的技術 與其他的物種接觸,
01:17
to make contact with another species,
21
77792
1892
01:19
and hopefully communicate back.
22
79708
3476
希望牠們會回應溝通。
01:23
We believe that by listening deeply to nature,
23
83208
2518
我們相信藉由深刻傾聽大自然,
01:25
we can change our perspective of ourselves
24
85750
2476
我們就能改變我們對自己的看法,
01:28
and reshape our relationship with all life on this planet.
25
88250
5059
並重新塑造
我們與地球上所有生命的關係。
01:33
This of course seems like an impossible goal.
26
93333
3393
當然,這似乎是個 不可能達成的目標。
01:36
People have been trying to make contact with other animals
27
96750
2768
數百年來,人類一直 在嘗試和動物溝通。
01:39
for hundreds of years.
28
99542
1309
01:40
How could we do what others could not,
29
100875
2393
我們要怎麼做到別人做不到的事?
01:43
especially given that I'm sitting here on my couch in New York City
30
103292
4142
尤其是,我還在紐約市裡, 坐在我家的沙發上,
01:47
in the middle of a pandemic and protests?
31
107458
2476
現在還正值疫情和抗議?
01:49
I've spent the last 20 years as a marine biologist and oceanographer,
32
109958
3810
以海洋生物學家和海洋學家的 身分,我在過去二十年間,
01:53
studying the ocean from all different perspectives,
33
113792
3059
從各種不同的角度研究海洋,
01:56
from microbes to sharks.
34
116875
1851
從微生物到鯊魚。
01:58
I've assembled interdisciplinary teams
35
118750
1893
我組織了跨領域團隊, 打造了第一個鯊魚眼攝影機,
02:00
that have built the first shark-eye camera
36
120667
2142
02:02
to see the world from a shark's perspective,
37
122833
2226
讓我們從鯊魚的視角看世界,
02:05
and have collaborated with engineers
38
125083
1851
我也與工程師合作,
02:06
to design robots so gentle that they don't even stress a jellyfish.
39
126958
4893
設計非常溫柔的機器人,
溫柔到甚至不會驚動水母。
02:11
But it wasn't until 2018
40
131875
2143
但直到 2018 年,
02:14
when I was on fellowship
41
134042
1309
我在拉德克利夫研究所 擔任研究員時,
02:15
at the Radcliffe Institute for Advanced Study
42
135375
2434
02:17
that I realized that perhaps the best way to understand the ocean
43
137833
3060
我才了解,也許,了解海洋 及其居民的最佳方式,
02:20
and its inhabitants
44
140917
1267
不是僅透過牠們的視角看世界,
02:22
wasn't just by seeing the world through their eyes,
45
142208
3101
02:25
but by listening --
46
145333
1310
而是要傾聽——
02:26
by really, deeply listening.
47
146667
2142
真正的、深刻的傾聽。
02:28
I became interested in sperm whales when I heard their sounds.
48
148833
3060
我聽見抹香鯨的聲音後, 便對牠們十分感興趣。
02:31
They sounded like they were coming from another universe;
49
151917
2726
牠們聽起來就像是來自另一個宇宙;
02:34
a siren song being broadcast from the darkest reaches of the sea.
50
154667
4434
從海洋最黑暗的深處 傳出來的美妙歌曲。
02:39
These weren't the typical harmonious whale songs
51
159125
3393
這些聲音並不是我熟悉的 典型和諧鯨魚歌聲。
02:42
that I had been accustomed to.
52
162542
1559
02:44
These sounded more like digital data transfer.
53
164125
3268
它們聽起來更像數位資料傳輸。
02:47
We assembled the future Project CETI team
54
167417
2434
我們為未來的計畫 CETI 組織了一個團隊,
02:49
and began discussing how to use the most advanced technologies
55
169875
3351
開始討論要如何運用 最先進的科技與鯨魚溝通。
02:53
to communicate with whales.
56
173250
2101
02:55
One of the principal conclusions
57
175375
1559
主要的結論之一是: 機器學習很有機會
02:56
was that machine learning had a really good chance
58
176958
2685
02:59
of understanding the patterns of sperm whale communication.
59
179667
2934
了解抹香鯨溝通的模式。
03:02
And the time to apply these technologies was now.
60
182625
3684
而現在該是使用這些技術的時候了。
03:06
Cracking the interspecies communication code
61
186333
2726
破解物種之間的溝通密碼
03:09
didn't just seem possible,
62
189083
3018
不僅是有可能的,
03:12
it almost seemed inevitable.
63
192125
2268
似乎還是無可避免的。
03:14
But how can analyzing patterns help us converse with whales
64
194417
2851
但,分析模式怎麼能協助我們 與鯨魚或其他動物交談?
03:17
and other animals?
65
197292
1267
03:18
Well, step one is to understand the elements of sperm whale communication.
66
198583
4393
這個嘛,第一步是要了解 抹香鯨溝通的元素。
你聽到這些的尾聲音節 似乎不是我們所知的句子,
03:23
These codas you heard don't appear to be sentences as we know them,
67
203000
4059
03:27
but there's clear structure in how these animals communicate.
68
207083
2935
但這些動物溝通的方式 有著清楚的架構。
03:30
Sperm whales send codas back and forth to each other
69
210042
2934
抹香鯨之間會來回傳送 一連串尾聲音節,
03:33
in sequences,
70
213000
1309
03:34
and there are regional dialects like British and Australian accents.
71
214333
3976
牠們也有區域性的方言, 就像英國和澳洲口音。
03:38
This is exactly why machine learning is such a powerful tool.
72
218333
3768
這正是為什麼機器學習 是如此強大的工具。
03:42
These approaches analyze patterns in relationship and map meaning to them.
73
222125
4018
這些方法可以用關聯性來分析模式,
並找到對應的意義。
03:46
Just a few years ago, scientists used machine learning
74
226167
2767
幾年前,科學家用機械學習
03:48
to translate between two totally unknown human languages.
75
228958
3810
將兩種完全未知的 人類語言互相翻譯。
03:52
Not by using a Rosetta Stone or a dictionary,
76
232792
2767
不是用羅塞塔語言學習軟體或字典,
03:55
but by mapping them on patterns in higher-dimensional space.
77
235583
4435
而是把它們投射到 更高維度空間中的模式上。
04:00
But for machine learning to work effectively,
78
240042
2267
但若要讓機械學習能發揮效果,
04:02
it needs data --
79
242333
1310
就需要資料——
04:03
it needs lots and lots of data.
80
243667
2767
需要很多很多資料。
04:06
In the past half-century,
81
246458
1726
在前五十年間,
04:08
marine researchers have painstakingly collected
82
248208
3476
海洋研究者煞費苦心地收集了
04:11
and hand annotated just a few thousand sperm whale vocalizations,
83
251708
4601
幾千筆抹香鯨的發聲資料 並手動加上註記,
04:16
but in order to learn sperm whale communication,
84
256333
2310
但,為了學習抹香鯨的溝通, 我們需要收集到
04:18
we'll need to collect millions,
85
258667
2392
數百萬筆,甚至數千萬筆,
04:21
if not tens of millions
86
261083
1976
04:23
of carefully annotated sperm whale vocalizations
87
263083
2893
加上仔細註記的抹香鯨發聲資料,
搭配和行為的關聯。
04:26
correlated with behaviors.
88
266000
1893
04:27
We'll do it with noninvasive, autonomous, free-swimming robots,
89
267917
3142
我們用非侵略性、自動化、 自由游動的機器人、
04:31
aerial-aquatic drones,
90
271083
1685
空中-水底無人機、
04:32
bottom-mounted hydrophone arrays
91
272792
1601
底部水下麥克風陣列 等工具來做這項工作。
04:34
and more.
92
274417
1267
04:35
We'll work with our close partners at the Dominica Sperm Whale Project
93
275708
3351
我們將會與多明尼克抹香鯨 計畫的密切夥伴合作,
以涵蓋二十平方公里的區域,
04:39
to cover a 20-square-kilometer area
94
279083
2101
04:41
that is frequented by over 25 well-known families of sperm whales.
95
281208
4560
有至少二十五個知名的抹香鯨 家庭經常出入這塊區域。
04:45
We're going to put specific focus on the interactions of mothers and calfs,
96
285792
4642
我們將把焦點明確放在 母鯨和幼鯨的互動上,
04:50
training our machine learning algorithms
97
290458
2185
訓練我們的機械學習演算法,
04:52
to learn whale language from the bottom up.
98
292667
2601
由下而上學習鯨魚的語言。
04:55
All this data we'll have sent through a pipeline
99
295292
2309
這些資料會透過一條管道線傳輸,
04:57
and analyzed by the Project CETI translation team.
100
297625
2434
交由 CETI 計畫的翻譯團隊來分析。
05:00
The raw audio and context data will go through our machine learning engine
101
300083
3976
原始聲音以及情境資料
則會交給我們的機械學習引擎,
05:04
where it's going to be first sorted by structure.
102
304083
2351
首先會依結構來分類。
05:06
The linguistics team will then search for things like syntax
103
306458
2893
語言學團隊接著會試著尋找 如語法及時間移位。
05:09
and time displacement.
104
309375
1268
05:10
For example,
105
310667
1267
比如,
05:11
if we find an event where a whale was talking about something yesterday,
106
311958
3810
如果哪一次我們發現鯨魚 在談昨天發生的事,
05:15
that alone would be a major finding,
107
315792
2142
光這一點就是重大的發現,
05:17
something that has thus far only been shown in humans.
108
317958
3268
因為到目前只有人類可以做到。
05:21
And once we've really mastered listening,
109
321250
2309
一旦我們真正精通了傾聽,
05:23
we're going to try really carefully to talk back
110
323583
3226
我們會試著非常謹慎地回話,
05:26
even on the most simplistic level.
111
326833
2185
即使是過度簡單的層級。
05:29
Finally, Project CETI will build an open-source platform
112
329042
2726
最後,CETI 計畫將會建造 一個開放原始碼的平台,
05:31
where we will make our data sets available to the public,
113
331792
2809
我們的把我們的資料集 公開給大眾使用,
05:34
encouraging the global community
114
334625
2059
鼓勵全球大眾
05:36
to come along on this journey for understanding.
115
336708
2393
一同參與這趟「了解」之旅。
05:39
These animals could be the most intelligent beings on this planet.
116
339125
4393
這些動物可能是地球上 最有智慧的生物。
05:43
They have a neocortex and spindle cells --
117
343542
2851
牠們有大腦新皮質以及梭狀細胞——
05:46
structure that in humans control our higher thoughts,
118
346417
3101
人類身上的這種結構 是用來控制更高階的思想、
05:49
emotions, memory, language and love.
119
349542
3226
情緒、記憶、語言,及愛。
05:52
And all the platforms that we develop can be cross-applied to other animals:
120
352792
3684
而我們開發的所有平台
都能交叉應用到其他 動物身上,如大象、鳥類、
05:56
to elephants, birds,
121
356500
1601
05:58
primates, dolphins --
122
358125
1643
靈長類、海豚——
05:59
essentially any animal.
123
359792
1517
基本上,任何動物皆可。
06:01
In the late 1960s,
124
361333
1643
1960 年代末,
我們的團隊成員羅傑佩恩
06:03
our team member, Roger Payne, discovered that whales sing.
125
363000
3976
發現鯨魚會唱歌。 (錄音:鯨魚唱歌。)
06:07
(Recording: whale singing)
126
367000
1268
這項發現促成了「拯救鯨魚」運動,
06:08
A finding that sparked the Save the Whales movement
127
368292
2642
06:10
led to the end of large-scale whaling
128
370958
2643
導致大規模捕鯨的終止,
06:13
and prevented several whale species from extinction
129
373625
3476
並預防數個鯨魚物種絕種,
06:17
just by showing that whales sing.
130
377125
3143
就只靠著展示出鯨魚會唱歌。
06:20
Imagine if we could understand what they're saying.
131
380292
2476
想像一下,如果我們 能了解牠們在說什麼。
06:22
Now is the time to open this larger dialogue.
132
382792
3642
現在該是開啟 更大規模對話的時候了。
06:26
Now is the time to listen deeply
133
386458
2643
現在該是深刻傾聽的時候了,
06:29
and show these magical animals,
134
389125
1893
讓這些魔法般的動物及彼此見識一下
06:31
and each other,
135
391042
1851
06:32
newfound respect.
136
392917
1375
新發現的尊重。
06:35
Thank you.
137
395417
1250
謝謝。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7