Laura Schulz: The surprisingly logical minds of babies

233,878 views ・ 2015-06-02

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Ivana Krivokuća Lektor: Ivana Korom
00:12
Mark Twain summed up what I take to be
0
12835
2155
Mark Tven je sumirao ono što smatram
00:14
one of the fundamental problems of cognitive science
1
14990
3120
jednim od temeljnih problema kognitivne nauke
00:18
with a single witticism.
2
18110
1710
samo jednom dosetkom.
00:20
He said, "There's something fascinating about science.
3
20410
3082
Rekao je: "Postoji nešto fascinantno u vezi sa naukom.
00:23
One gets such wholesale returns of conjecture
4
23492
3228
Dobija se veliki obrt pretpostavki
00:26
out of such a trifling investment in fact."
5
26720
3204
od tako sitnog ulaganja u činjenice."
00:29
(Laughter)
6
29924
1585
(Smeh)
00:32
Twain meant it as a joke, of course, but he's right:
7
32199
2604
Tven je mislio to kao šalu, naravno, ali u pravu je,
00:34
There's something fascinating about science.
8
34803
2876
postoji nešto fascinantno u vezi sa naukom.
00:37
From a few bones, we infer the existence of dinosuars.
9
37679
4261
Na osnovu nekoliko kostiju, zaključujemo o postojanju dinosaurusa.
00:42
From spectral lines, the composition of nebulae.
10
42910
3871
Na osnovu spektralnih linija, o sastavu nebula.
00:47
From fruit flies,
11
47471
2938
Od voćne mušice,
00:50
the mechanisms of heredity,
12
50409
2943
o mehanizmima nasleđivanja,
00:53
and from reconstructed images of blood flowing through the brain,
13
53352
4249
a na osnovu rekonstruisanih snimaka protoka krvi kroz mozak,
00:57
or in my case, from the behavior of very young children,
14
57601
4708
ili u mom slučaju, na osnovu ponašanja veoma male dece,
01:02
we try to say something about the fundamental mechanisms
15
62309
2829
pokušavamo da kažemo nešto o osnovnim mehanizmima
01:05
of human cognition.
16
65138
1618
ljudske kognicije.
01:07
In particular, in my lab in the Department of Brain and Cognitive Sciences at MIT,
17
67716
4759
Konkretno, u mojoj laboratoriji
na Odeljenju za mozak i kognitivne nauke na Masačusetskom tehnološkom institutu,
01:12
I have spent the past decade trying to understand the mystery
18
72475
3654
provela sam proteklu deceniju pokušavajući da razumem misteriju
01:16
of how children learn so much from so little so quickly.
19
76129
3977
kako deca uče tako mnogo iz tako malo tako brzo.
01:20
Because, it turns out that the fascinating thing about science
20
80666
2978
Jer, ispostavlja se da je fascinantna stvar u vezi sa naukom
01:23
is also a fascinating thing about children,
21
83644
3529
takođe i fascinantna stvar u vezi sa decom,
01:27
which, to put a gentler spin on Mark Twain,
22
87173
2581
a to je, da ublažim verziju Marka Tvena,
01:29
is precisely their ability to draw rich, abstract inferences
23
89754
4650
upravo njihova sposobnost da izvuku bujne, apstraktne zaključke
01:34
rapidly and accurately from sparse, noisy data.
24
94404
4661
brzo i tačno iz oskudnih, izmešanih podataka.
01:40
I'm going to give you just two examples today.
25
100355
2398
Daću vam dva primera.
01:42
One is about a problem of generalization,
26
102753
2287
Jedan je o problemu generalizacije,
01:45
and the other is about a problem of causal reasoning.
27
105040
2850
a drugi je o problemu uzročnog rezonovanja.
01:47
And although I'm going to talk about work in my lab,
28
107890
2525
I mada ću govoriti o radu u mojoj laboratoriji,
01:50
this work is inspired by and indebted to a field.
29
110415
3460
ovaj rad je imao inspiraciju na terenu i njemu ga dugujem.
01:53
I'm grateful to mentors, colleagues, and collaborators around the world.
30
113875
4283
Zahvalna sam mentorima, kolegama i saradnicima širom sveta.
01:59
Let me start with the problem of generalization.
31
119308
2974
Počeću problemom generalizacije.
02:02
Generalizing from small samples of data is the bread and butter of science.
32
122652
4133
Uopštavanje na osnovu malih uzoraka podataka
je osnovni izvor nauke.
02:06
We poll a tiny fraction of the electorate
33
126785
2554
Izbrojimo mali deo izbornog tela
02:09
and we predict the outcome of national elections.
34
129339
2321
i predviđamo ishod nacionalnih izbora.
02:12
We see how a handful of patients responds to treatment in a clinical trial,
35
132240
3925
Vidimo kako nekolicina pacijenata reaguje na tretman u kliničkom ispitivanju,
02:16
and we bring drugs to a national market.
36
136165
3065
i donosimo lekove na domaće tržište.
02:19
But this only works if our sample is randomly drawn from the population.
37
139230
4365
Ali ovo funkcioniše samo ako je naš uzorak nasumično izvučen iz populacije.
02:23
If our sample is cherry-picked in some way --
38
143595
2735
Ako je naš uzorak biran na neki način -
02:26
say, we poll only urban voters,
39
146330
2072
recimo, ispitamo samo gradske birače,
02:28
or say, in our clinical trials for treatments for heart disease,
40
148402
4388
ili recimo, u kliničkim ispitivanjima tretmana bolesti srca
02:32
we include only men --
41
152790
1881
uključimo samo muškarce -
02:34
the results may not generalize to the broader population.
42
154671
3158
rezultati se možda neće generalizovati na širu populaciju.
02:38
So scientists care whether evidence is randomly sampled or not,
43
158479
3581
Dakle, naučnike zanima da li su dokazi slučajno uzorkovani ili ne,
02:42
but what does that have to do with babies?
44
162060
2015
ali kakve to ima veze sa bebama?
02:44
Well, babies have to generalize from small samples of data all the time.
45
164585
4621
Pa, bebe moraju stalno da generalizuju na osnovu malih uzoraka podataka.
02:49
They see a few rubber ducks and learn that they float,
46
169206
3158
Vide nekoliko gumenih pataka i nauče da one plutaju,
02:52
or a few balls and learn that they bounce.
47
172364
3575
ili nekoliko lopti i nauče da one odskaču.
02:55
And they develop expectations about ducks and balls
48
175939
2951
I razvijaju očekivanja u vezi sa patkama i loptama
02:58
that they're going to extend to rubber ducks and balls
49
178890
2716
koje će proširiti na gumene patke i lopte
03:01
for the rest of their lives.
50
181606
1879
do kraja njihovih života.
03:03
And the kinds of generalizations babies have to make about ducks and balls
51
183485
3739
A vrste generalizacija koje bebe prave o patkama i loptama
03:07
they have to make about almost everything:
52
187224
2089
moraju da prave o gotovo svemu:
03:09
shoes and ships and sealing wax and cabbages and kings.
53
189313
3917
cipelama, brodovima, vosku za pečaćenje, kupusu i kraljevima.
03:14
So do babies care whether the tiny bit of evidence they see
54
194200
2961
Da li bebe zanima da li delić dokaza koji one vide
03:17
is plausibly representative of a larger population?
55
197161
3692
verodostojno predstavlja veću populaciju?
03:21
Let's find out.
56
201763
1900
Hajde da to otkrijemo.
03:23
I'm going to show you two movies,
57
203663
1723
Pokazaću vam dva filma,
03:25
one from each of two conditions of an experiment,
58
205386
2462
jedan iz svake od situacija u eksperimentu,
03:27
and because you're going to see just two movies,
59
207848
2438
i pošto ćete videti samo dva filma,
03:30
you're going to see just two babies,
60
210286
2136
videćete samo dve bebe,
03:32
and any two babies differ from each other in innumerable ways.
61
212422
3947
a bilo koje dve bebe se razlikuju međusobno na bezbroj načina.
03:36
But these babies, of course, here stand in for groups of babies,
62
216369
3051
Ali ove bebe, naravno, ovde zastupaju grupe beba,
03:39
and the differences you're going to see
63
219420
1895
i razlike koje ćete videti
03:41
represent average group differences in babies' behavior across conditions.
64
221315
5195
predstavljaju prosečne grupne razlike u ponašanju beba kroz različite uslove.
03:47
In each movie, you're going to see a baby doing maybe
65
227160
2583
U svakom filmu ćete videti kako beba radi
03:49
just exactly what you might expect a baby to do,
66
229743
3460
možda baš ono što biste očekivali da će beba uraditi,
03:53
and we can hardly make babies more magical than they already are.
67
233203
4017
a teško da možemo da učinimo bebe čarobnijim nego što već jesu.
03:58
But to my mind the magical thing,
68
238090
2010
Ali za mene je čarobna stvar,
04:00
and what I want you to pay attention to,
69
240100
2089
i ono na šta želim da obratite pažnju,
04:02
is the contrast between these two conditions,
70
242189
3111
kontrast između ova dva uslova,
04:05
because the only thing that differs between these two movies
71
245300
3529
jer jedino što razlikuje ova dva filma
04:08
is the statistical evidence the babies are going to observe.
72
248829
3466
je statistički dokaz koji će bebe primetiti.
04:13
We're going to show babies a box of blue and yellow balls,
73
253425
3183
Pokazaćemo bebama kutiju plavih i žutih lopti,
04:16
and my then-graduate student, now colleague at Stanford, Hyowon Gweon,
74
256608
4620
a moja tadašnja studentkinja, sada koleginica na Stenfordu, Jouon Gvon,
04:21
is going to pull three blue balls in a row out of this box,
75
261228
3077
izvući će tri plave lopte zaredom iz ove kutije,
04:24
and when she pulls those balls out, she's going to squeeze them,
76
264305
3123
i kada izvuče te lopte, stisnuće ih,
04:27
and the balls are going to squeak.
77
267428
2113
a lopte će zapištati.
04:29
And if you're a baby, that's like a TED Talk.
78
269541
2763
Ako ste beba, to je kao TED govor.
04:32
It doesn't get better than that.
79
272304
1904
Ne može biti bolje od toga.
04:34
(Laughter)
80
274208
2561
(Smeh)
04:38
But the important point is it's really easy to pull three blue balls in a row
81
278968
3659
Ali bitna poenta je da je veoma lako izvući tri plave loptice zaredom
04:42
out of a box of mostly blue balls.
82
282627
2305
iz kutije sa pretežno plavim lopticama.
04:44
You could do that with your eyes closed.
83
284932
2060
Možete to da uradite sa zatvorenim očima.
04:46
It's plausibly a random sample from this population.
84
286992
2996
To je verovatno slučajni uzorak iz ove populacije.
04:49
And if you can reach into a box at random and pull out things that squeak,
85
289988
3732
A ako možete posegnuti u kutiju nasumice i izvaditi stvari koje pište,
04:53
then maybe everything in the box squeaks.
86
293720
2839
onda možda sve u toj kutiji pišti.
04:56
So maybe babies should expect those yellow balls to squeak as well.
87
296559
3650
Možda bebe očekuju da žute lopte takođe pište.
05:00
Now, those yellow balls have funny sticks on the end,
88
300209
2519
Te žute lopte imaju zabavne štapiće na kraju,
05:02
so babies could do other things with them if they wanted to.
89
302728
2857
tako da bebe mogu da rade druge stvari sa njima ako hoće.
05:05
They could pound them or whack them.
90
305585
1831
Mogu da ih lupaju ili udaraju.
05:07
But let's see what the baby does.
91
307416
2586
Ali hajde da vidimo šta beba radi.
05:12
(Video) Hyowon Gweon: See this? (Ball squeaks)
92
312548
3343
(Video) Jouon Gvon: Vidiš ovo? (Lopta pišti)
05:16
Did you see that? (Ball squeaks)
93
316531
3045
Jesi li videla to? (Lopta pišti)
05:20
Cool.
94
320036
3066
Kul.
05:24
See this one?
95
324706
1950
Vidiš ovu?
05:26
(Ball squeaks)
96
326656
1881
(Lopta pišti)
05:28
Wow.
97
328537
2653
Opa!
05:33
Laura Schulz: Told you. (Laughs)
98
333854
2113
Lora Šulc: Rekla sam vam. (Smeh)
05:35
(Video) HG: See this one? (Ball squeaks)
99
335967
4031
(Video) JG: Vidiš ovu? (Lopta pišti)
05:39
Hey Clara, this one's for you. You can go ahead and play.
100
339998
4619
Hej Klara, ova je za tebe. Možeš da se igraš.
05:51
(Laughter)
101
351854
4365
(Smeh)
05:56
LS: I don't even have to talk, right?
102
356219
2995
LŠ: Ne moram ni da pričam, zar ne?
05:59
All right, it's nice that babies will generalize properties
103
359214
2899
U redu, lepo je to što će bebe generalizovati osobine
06:02
of blue balls to yellow balls,
104
362113
1528
plavih loptica na žute loptice,
06:03
and it's impressive that babies can learn from imitating us,
105
363641
3096
i impresivno je to što bebe mogu da uče imitirajući nas,
06:06
but we've known those things about babies for a very long time.
106
366737
3669
ali to sve znamo o bebama još odavno.
06:10
The really interesting question
107
370406
1811
Zaista zanimljivo pitanje
06:12
is what happens when we show babies exactly the same thing,
108
372217
2852
je šta se dešava kada pokažemo bebama isto to,
06:15
and we can ensure it's exactly the same because we have a secret compartment
109
375069
3611
a možemo da obezbedimo da bude baš isto jer imamo tajnu pregradu
06:18
and we actually pull the balls from there,
110
378680
2110
i izvlačimo lopte odatle,
06:20
but this time, all we change is the apparent population
111
380790
3478
ali ovog puta menjamo samo vidljivu populaciju
06:24
from which that evidence was drawn.
112
384268
2902
iz koje se izvlači dokaz.
06:27
This time, we're going to show babies three blue balls
113
387170
3553
Ovoga puta ćemo bebama pokazati tri plave loptice
06:30
pulled out of a box of mostly yellow balls,
114
390723
3384
izvučene iz kutije sa pretežno žutim lopticama,
06:34
and guess what?
115
394107
1322
i pogodite šta?
06:35
You [probably won't] randomly draw three blue balls in a row
116
395429
2840
Verovatno nećete nasumično izvući tri loptice zaredom
06:38
out of a box of mostly yellow balls.
117
398269
2484
iz kutije sa većinom žutim lopticama.
06:40
That is not plausibly randomly sampled evidence.
118
400753
3747
To nije verovatan slučajno uzorkovani dokaz.
06:44
That evidence suggests that maybe Hyowon was deliberately sampling the blue balls.
119
404500
5123
Taj dokazi ukazuje da je možda Jouon namerno uzorkovala plave loptice.
06:49
Maybe there's something special about the blue balls.
120
409623
2583
Možda postoji nešto posebno u vezi sa plavim lopticama.
06:52
Maybe only the blue balls squeak.
121
412846
2976
Možda samo plave loptice pište.
06:55
Let's see what the baby does.
122
415822
1895
Hajde da vidimo šta beba radi.
06:57
(Video) HG: See this? (Ball squeaks)
123
417717
2904
(Video) JG: Vidiš ovo? (Lopta pišti)
07:02
See this toy? (Ball squeaks)
124
422851
2645
Vidiš ovu igračku? (Lopta pišti)
07:05
Oh, that was cool. See? (Ball squeaks)
125
425496
5480
O, to je bilo kul. Vidiš? (Lopta pišti)
07:10
Now this one's for you to play. You can go ahead and play.
126
430976
4394
Ova je za tebe da se igraš. Možeš da se igraš.
07:18
(Fussing) (Laughter)
127
438074
6347
(Beba negoduje) (Smeh)
07:26
LS: So you just saw two 15-month-old babies
128
446901
2748
LŠ: Upravo ste videli dve bebe stare 15 meseci
07:29
do entirely different things
129
449649
1942
koje rade potpuno različite stvari
07:31
based only on the probability of the sample they observed.
130
451591
3599
samo na osnovu verovatnoće uzorka koji su zapazile.
07:35
Let me show you the experimental results.
131
455190
2321
Dozvolite da vam pokažem eksperimentalne rezultate.
07:37
On the vertical axis, you'll see the percentage of babies
132
457511
2764
Na vertikalnoj osi ćete videti procenat beba
07:40
who squeezed the ball in each condition,
133
460275
2530
koje su stiskale loptu u svakoj situaciji, i kao što ćete videti,
07:42
and as you'll see, babies are much more likely to generalize the evidence
134
462805
3715
mnogo je verovatnije da će bebe generalizovati dokaz
07:46
when it's plausibly representative of the population
135
466520
3135
kada verodostojnije predstavlja populaciju
07:49
than when the evidence is clearly cherry-picked.
136
469655
3738
nego kada je očigledno probran.
07:53
And this leads to a fun prediction:
137
473393
2415
A to navodi na zabavno predviđanje:
07:55
Suppose you pulled just one blue ball out of the mostly yellow box.
138
475808
4868
recimo da ste izvukli samo jednu plavu loptu
iz uglavnom žute kutije.
08:00
You [probably won't] pull three blue balls in a row at random out of a yellow box,
139
480896
3869
Verovatno nećete izvući tri plave lopte zaredom iz žute kutije,
08:04
but you could randomly sample just one blue ball.
140
484765
2455
ali biste mogli nasumice uzeti samo jednu plavu loptu.
08:07
That's not an improbable sample.
141
487220
1970
To nije neverovatan uzorak.
08:09
And if you could reach into a box at random
142
489190
2224
A ako posegnete u kutiju nasumice
08:11
and pull out something that squeaks, maybe everything in the box squeaks.
143
491414
3987
i izvučete nešto što pišti, možda sve u kutiji pišti.
08:15
So even though babies are going to see much less evidence for squeaking,
144
495875
4445
Dakle, iako će bebe videti mnogo manje dokaza za pištanje,
08:20
and have many fewer actions to imitate
145
500320
2242
i imati mnogo manje radnji za oponašanje
08:22
in this one ball condition than in the condition you just saw,
146
502562
3343
u situaciji sa jednom loptom nego u situaciji koju ste upravo videli,
08:25
we predicted that babies themselves would squeeze more,
147
505905
3892
predvideli smo da će bebe stiskati više,
08:29
and that's exactly what we found.
148
509797
2894
i to je upravo ono što smo pronašli.
08:32
So 15-month-old babies, in this respect, like scientists,
149
512691
4411
Dakle, bebama od 15 meseci, u ovom pogledu, kao i naučnicima,
08:37
care whether evidence is randomly sampled or not,
150
517102
3088
je bitno da li je dokaz nasumično uzorkovan ili ne,
08:40
and they use this to develop expectations about the world:
151
520190
3507
i one koriste to da stvore očekivanja o svetu:
08:43
what squeaks and what doesn't,
152
523697
2182
šta pišti, a šta ne,
08:45
what to explore and what to ignore.
153
525879
3145
šta istražiti, a šta ignorisati.
08:50
Let me show you another example now,
154
530384
2066
Dozvolite mi da vam sada pokažem još jedan primer,
08:52
this time about a problem of causal reasoning.
155
532450
2730
ovog puta o problemu uzročnog rasuđivanja.
08:55
And it starts with a problem of confounded evidence
156
535180
2439
Počinje problemom zbunjujućeg dokaza,
08:57
that all of us have,
157
537619
1672
koji postoji kod svih nas,
08:59
which is that we are part of the world.
158
539291
2020
a to je da smo deo sveta.
09:01
And this might not seem like a problem to you, but like most problems,
159
541311
3436
I to vam možda ne deluje kao problem ali, kao i većina problema,
09:04
it's only a problem when things go wrong.
160
544747
2337
postaje problem tek kada stvari krenu naopako.
09:07
Take this baby, for instance.
161
547464
1811
Uzmite ovu bebu, na primer.
09:09
Things are going wrong for him.
162
549275
1705
Stvari mu ne polaze za rukom.
09:10
He would like to make this toy go, and he can't.
163
550980
2271
Želeo bi da pokrene ovu igračku, ali ne može.
09:13
I'll show you a few-second clip.
164
553251
2529
Pokazaću vam snimak od nekoliko sekundi.
09:21
And there's two possibilities, broadly:
165
561340
1920
Postoje dve mogućnosti, uglavnom.
09:23
Maybe he's doing something wrong,
166
563260
2634
Možda radi nešto pogrešno,
09:25
or maybe there's something wrong with the toy.
167
565894
4216
ili možda nešto nije u redu sa igračkom.
09:30
So in this next experiment,
168
570110
2111
Dakle, u sledećem eksperimentu,
09:32
we're going to give babies just a tiny bit of statistical data
169
572221
3297
daćemo bebama samo delić statističkih podataka
09:35
supporting one hypothesis over the other,
170
575518
2582
koji podržavaju jednu od hipoteza,
09:38
and we're going to see if babies can use that to make different decisions
171
578100
3455
i videćemo da li bebe mogu to da koriste kako bi donosile različite odluke
09:41
about what to do.
172
581555
1834
o onome što će činiti.
09:43
Here's the setup.
173
583389
2022
Evo postavke.
09:46
Hyowon is going to try to make the toy go and succeed.
174
586071
3030
Jouon će pokušati da pokrene igračku i uspeti u tome.
09:49
I am then going to try twice and fail both times,
175
589101
3320
Ja ću potom pokušati dva puta i oba puta neću uspeti,
09:52
and then Hyowon is going to try again and succeed,
176
592421
3112
zatim će Jouon pokušati ponovo i uspeti,
09:55
and this roughly sums up my relationship to my graduate students
177
595533
3172
i to otprilike rezimira odnos koji imam sa mojim studentima
09:58
in technology across the board.
178
598705
2835
po pitanju svih vrsta tehnologija.
10:02
But the important point here is it provides a little bit of evidence
179
602030
3292
Ali, ono što je ovde važno jeste to da se pruža malo dokaza
10:05
that the problem isn't with the toy, it's with the person.
180
605322
3668
da problem nije sa igračkom, već sa osobom.
10:08
Some people can make this toy go,
181
608990
2350
Neki ljudi mogu da pokrenu ovu igračku,
10:11
and some can't.
182
611340
959
a neki ne mogu.
10:12
Now, when the baby gets the toy, he's going to have a choice.
183
612799
3413
Sad, kada beba dobije igračku, imaće izbor.
10:16
His mom is right there,
184
616212
2188
Njegova mama je tu pored,
10:18
so he can go ahead and hand off the toy and change the person,
185
618400
3315
tako da može da joj priđe, preda igračku i promeni osobu,
10:21
but there's also going to be another toy at the end of that cloth,
186
621715
3158
ali na kraju te krpe će biti još jedna igračka,
10:24
and he can pull the cloth towards him and change the toy.
187
624873
3552
i on može da povuče krpu ka sebi i promeni igračku.
10:28
So let's see what the baby does.
188
628425
2090
Hajde da vidimo šta će beba uraditi.
10:30
(Video) HG: Two, three. Go! (Music)
189
630515
4183
(Video) JG: Dva, tri. Sad! (Muzika)
10:34
LS: One, two, three, go!
190
634698
3131
LS: Jedan, dva, tri, sad!
10:37
Arthur, I'm going to try again. One, two, three, go!
191
637829
7382
Arture, pokušaću ponovo. Jedan, dva, tri, sad!
10:45
YG: Arthur, let me try again, okay?
192
645677
2600
JG: Arture, dopusti da ja pokušam ponovo, okej?
10:48
One, two, three, go! (Music)
193
648277
4550
Jedan, dva, tri, sad! (Muzika)
10:53
Look at that. Remember these toys?
194
653583
1883
Pogledaj. Sećaš li se tih igračaka?
10:55
See these toys? Yeah, I'm going to put this one over here,
195
655466
3264
Vidiš te igračke? Da, staviću ovu ovde,
10:58
and I'm going to give this one to you.
196
658730
2062
a ovu ću ti dati.
11:00
You can go ahead and play.
197
660792
2335
Možeš da se igraš.
11:23
LS: Okay, Laura, but of course, babies love their mommies.
198
683213
4737
LŠ: Okej, Lora, ali naravno, bebe vole svoje mame.
11:27
Of course babies give toys to their mommies
199
687950
2182
Naravno da bebe daju igračke svojim mamama
11:30
when they can't make them work.
200
690132
2030
kada ne mogu da učine da prorade.
11:32
So again, the really important question is what happens when we change
201
692162
3593
Još jednom, zaista bitno pitanje je šta se dešava kada promenimo
11:35
the statistical data ever so slightly.
202
695755
3154
statističke podatke neznatno.
11:38
This time, babies are going to see the toy work and fail in exactly the same order,
203
698909
4087
Ovog puta, bebe će videti
kako igračka radi i ne radi potpuno istim redosledom,
11:42
but we're changing the distribution of evidence.
204
702996
2415
ali ćemo izmeniti raspodelu dokaza.
11:45
This time, Hyowon is going to succeed once and fail once, and so am I.
205
705411
4411
Ovog puta će Jouon uspeti jednom i neće uspeti jednom, a isto tako ću i ja.
11:49
And this suggests it doesn't matter who tries this toy, the toy is broken.
206
709822
5637
Ovo ukazuje da nije bitno ko isprobava igračku, igračka je pokvarena.
11:55
It doesn't work all the time.
207
715459
1886
Ne radi uvek.
11:57
Again, the baby's going to have a choice.
208
717345
1965
Još jednom, beba će imati izbor.
11:59
Her mom is right next to her, so she can change the person,
209
719310
3396
Njena mama je tu pored, tako da može da promeni osobu,
12:02
and there's going to be another toy at the end of the cloth.
210
722706
3204
i biće tu još jedna igračka na kraju krpe.
12:05
Let's watch what she does.
211
725910
1378
Hajde da vidimo šta će uraditi.
12:07
(Video) HG: Two, three, go! (Music)
212
727288
4348
(Video) JG: Dva, tri, sad! (Muzika)
12:11
Let me try one more time. One, two, three, go!
213
731636
4984
Daj da probam još jednom. Jedan, dva, tri, sad!
12:17
Hmm.
214
737460
1697
Hmmm.
12:19
LS: Let me try, Clara.
215
739950
2692
LŠ: Daj da ja probam, Klara.
12:22
One, two, three, go!
216
742642
3945
Jedan, dva, tri, sad!
12:27
Hmm, let me try again.
217
747265
1935
Hmmm, daj da probam još jednom.
12:29
One, two, three, go! (Music)
218
749200
5670
Jedan, dva, tri, sad! (Muzika)
JG: Staviću ovu ovde,
12:35
HG: I'm going to put this one over here,
219
755009
2233
12:37
and I'm going to give this one to you.
220
757242
2001
a ovu ću ti dati.
12:39
You can go ahead and play.
221
759243
3597
Možeš da se igraš.
12:58
(Applause)
222
778376
4897
(Aplauz)
13:04
LS: Let me show you the experimental results.
223
784993
2392
LŠ: Dozvolite da vam pokažem rezultate eksperimenta.
13:07
On the vertical axis, you'll see the distribution
224
787385
2475
Na vertikalnoj osi ćete videti raspodelu
13:09
of children's choices in each condition,
225
789860
2577
izbora dece u svakoj od situacija,
13:12
and you'll see that the distribution of the choices children make
226
792437
4551
i videćete da raspodela izbora koji deca donose
13:16
depends on the evidence they observe.
227
796988
2787
zavisi od dokaza koje posmatraju.
13:19
So in the second year of life,
228
799775
1857
U drugoj godini života
13:21
babies can use a tiny bit of statistical data
229
801632
2577
bebe mogu da koriste malo statističkih podataka
13:24
to decide between two fundamentally different strategies
230
804209
3367
da bi odabrali između dve fundamentalno različite strategije
13:27
for acting in the world:
231
807576
1881
za postupanje u svetu:
13:29
asking for help and exploring.
232
809457
2743
pitati za pomoć i istraživati.
13:33
I've just shown you two laboratory experiments
233
813700
3434
Upravo sam vam pokazala dva laboratorijska eksperimenta
13:37
out of literally hundreds in the field that make similar points,
234
817134
3691
od bukvalno stotina u ovoj oblasti koji imaju sličnu poentu,
13:40
because the really critical point
235
820825
2392
jer je presudna poenta
13:43
is that children's ability to make rich inferences from sparse data
236
823217
5108
da se sposobnost dece da donose bogate zaključke iz oskudnih podataka
13:48
underlies all the species-specific cultural learning that we do.
237
828325
5341
nalazi u osnovi svakog specifičnog kulturnog učenja.
13:53
Children learn about new tools from just a few examples.
238
833666
4597
Deca uče o novim alatkama na osnovu samo nekoliko primera.
13:58
They learn new causal relationships from just a few examples.
239
838263
4717
Uče nove uzročno-posledične veze iz samo nekoliko primera.
14:03
They even learn new words, in this case in American Sign Language.
240
843928
4871
Čak uče i nove reči, u ovom slučaju američki znakovni jezik.
14:08
I want to close with just two points.
241
848799
2311
Želim da završim sa samo dve poente.
14:12
If you've been following my world, the field of brain and cognitive sciences,
242
852050
3688
Ako ste pratili moj svet, oblast mozga i kognitivne nauke,
14:15
for the past few years,
243
855738
1927
poslednjih nekoliko godina,
14:17
three big ideas will have come to your attention.
244
857665
2415
tri ideje su vam privukle pažnju.
14:20
The first is that this is the era of the brain.
245
860080
3436
Prva je da je ovo era mozga.
14:23
And indeed, there have been staggering discoveries in neuroscience:
246
863516
3669
I zaista, bilo je neverovatnih otkrića u neuronaukama:
14:27
localizing functionally specialized regions of cortex,
247
867185
3436
lokalizacija funkcionalno specijalizovanih regija korteksa,
14:30
turning mouse brains transparent,
248
870621
2601
dovođenje mišjeg mozga u transparentno stanje,
14:33
activating neurons with light.
249
873222
3776
aktiviranje neurona svetlošću.
14:36
A second big idea
250
876998
1996
Druga velika ideja
14:38
is that this is the era of big data and machine learning,
251
878994
4104
je da je ovo era velikih podataka i mašinskog učenja,
14:43
and machine learning promises to revolutionize our understanding
252
883098
3141
a mašinsko učenje obećava revoluciju u našem razumevanju
14:46
of everything from social networks to epidemiology.
253
886239
4667
svega, od društvenih mreža do epidemiologije.
14:50
And maybe, as it tackles problems of scene understanding
254
890906
2693
I možda će nam, kako se bavi problemima razumevanja scene
14:53
and natural language processing,
255
893599
1993
i obrade prirodnog jezika,
14:55
to tell us something about human cognition.
256
895592
3324
reći nešto o ljudskoj kogniciji.
14:59
And the final big idea you'll have heard
257
899756
1937
A poslednja velika ideja koju ćete čuti
15:01
is that maybe it's a good idea we're going to know so much about brains
258
901693
3387
je da je možda dobra ideja da ćemo toliko znati o mozgu
15:05
and have so much access to big data,
259
905080
1917
i imati toliko pristupa velikim podacima,
15:06
because left to our own devices,
260
906997
2507
jer prepušteni sami sebi,
15:09
humans are fallible, we take shortcuts,
261
909504
3831
ljudi su skloni greškama, koristimo prečice,
15:13
we err, we make mistakes,
262
913335
3437
grešimo, pravimo pogreške,
15:16
we're biased, and in innumerable ways,
263
916772
3684
imamo predrasude, i na bezbroj načina,
15:20
we get the world wrong.
264
920456
2969
shvatamo svet pogrešno.
15:24
I think these are all important stories,
265
924843
2949
Mislim da su ovo sve važne priče,
15:27
and they have a lot to tell us about what it means to be human,
266
927792
3785
i imaju mnogo toga da nam kažu o tome šta znači biti čovek,
15:31
but I want you to note that today I told you a very different story.
267
931577
3529
ali želim da primite k znanju da sam vam danas ispričala veoma drugačiju priču.
15:35
It's a story about minds and not brains,
268
935966
3807
To je priča o umu, a ne o mozgu,
15:39
and in particular, it's a story about the kinds of computations
269
939773
3006
a naročito, to je priča o vrstama proračuna
15:42
that uniquely human minds can perform,
270
942779
2590
koje jedino ljudski um može da vrši,
15:45
which involve rich, structured knowledge and the ability to learn
271
945369
3944
što podrazumeva bogato, strukturirano znanje i sposobnost učenja
15:49
from small amounts of data, the evidence of just a few examples.
272
949313
5268
iz malih količina podataka, dokaz samo na osnovu nekoliko primera.
15:56
And fundamentally, it's a story about how starting as very small children
273
956301
4299
I u osnovi, to je priča o tome kako počevši kao veoma mala deca
16:00
and continuing out all the way to the greatest accomplishments
274
960600
4180
i nastavljajući sve do najvećih dostignuća
16:04
of our culture,
275
964780
3843
naše kulture,
16:08
we get the world right.
276
968623
1997
shvatamo svet na pravi način.
16:12
Folks, human minds do not only learn from small amounts of data.
277
972433
5267
Narode, ljudski um ne uči samo iz malih količina podataka.
16:18
Human minds think of altogether new ideas.
278
978285
2101
Ljudski umovi smišljaju potpuno nove ideje.
16:20
Human minds generate research and discovery,
279
980746
3041
Ljudski umovi rađaju istraživanja i otkrića,
16:23
and human minds generate art and literature and poetry and theater,
280
983787
5273
rađaju umetnost i književnost, poeziju i pozorište,
16:29
and human minds take care of other humans:
281
989070
3760
i ljudski umovi se brinu o drugim ljudima:
16:32
our old, our young, our sick.
282
992830
3427
našim starima, mladima, bolesnima.
16:36
We even heal them.
283
996517
2367
Čak ih i lečimo.
16:39
In the years to come, we're going to see technological innovations
284
999564
3103
U godinama koje su pred nama, videćemo tehnološke inovacije
16:42
beyond anything I can even envision,
285
1002667
3797
kakve ne mogu ni da zamislim,
16:46
but we are very unlikely
286
1006464
2150
ali je veoma malo verovatno
16:48
to see anything even approximating the computational power of a human child
287
1008614
5709
da ćemo videti bilo šta čak ni približno moći proračuna ljudskog deteta
16:54
in my lifetime or in yours.
288
1014323
4298
tokom mog života ili vašeg.
16:58
If we invest in these most powerful learners and their development,
289
1018621
5047
Ako ulažemo u te najmoćnije učenike i njihov razvoj,
17:03
in babies and children
290
1023668
2917
u bebe i decu
17:06
and mothers and fathers
291
1026585
1826
i majke i očeve
17:08
and caregivers and teachers
292
1028411
2699
i staratelje i učitelje
17:11
the ways we invest in our other most powerful and elegant forms
293
1031110
4170
onako kako ulažemo u druge naše najmoćnije i najelegantnije oblike
17:15
of technology, engineering and design,
294
1035280
3218
tehnologije, inženjeringa i dizajna,
17:18
we will not just be dreaming of a better future,
295
1038498
2939
nećemo samo sanjati o boljoj budućnosti,
17:21
we will be planning for one.
296
1041437
2127
već ćemo je planirati.
17:23
Thank you very much.
297
1043564
2345
Mnogo vam hvala.
17:25
(Applause)
298
1045909
3421
(Aplauz)
17:29
Chris Anderson: Laura, thank you. I do actually have a question for you.
299
1049810
4426
Kris Anderson: Lora, hvala. Ja zapravo imam jedno pitanje za tebe.
17:34
First of all, the research is insane.
300
1054236
2359
Pre svega, istraživanje je suludo.
17:36
I mean, who would design an experiment like that? (Laughter)
301
1056595
3725
Mislim, ko bi osmislio takav eksperiment? (Smeh)
17:41
I've seen that a couple of times,
302
1061150
1790
Video sam to par puta,
17:42
and I still don't honestly believe that that can truly be happening,
303
1062940
3222
i još uvek iskreno ne verujem da se to stvarno dešava,
17:46
but other people have done similar experiments; it checks out.
304
1066162
3158
ali i drugi su uradili slične eksperimente; provereno je.
17:49
The babies really are that genius.
305
1069320
1633
Bebe su stvarno toliko genijalne.
17:50
LS: You know, they look really impressive in our experiments,
306
1070953
3007
LŠ: Znaš, izgledaju stvarno impresivno u našim eksperimentima,
17:53
but think about what they look like in real life, right?
307
1073960
2652
ali pomisli na to kako izgledaju u stvarnom životu.
17:56
It starts out as a baby.
308
1076612
1150
Počinje kao beba.
17:57
Eighteen months later, it's talking to you,
309
1077762
2007
Osamnaest meseci kasnije priča sa vama,
17:59
and babies' first words aren't just things like balls and ducks,
310
1079769
3041
a bebine prve reči nisu samo one poput lopte i patke,
18:02
they're things like "all gone," which refer to disappearance,
311
1082810
2881
to su i "nema", što se odnosi na nestajanje,
18:05
or "uh-oh," which refer to unintentional actions.
312
1085691
2283
ili "o-o", što se odnosi na nenamerne postupke.
18:07
It has to be that powerful.
313
1087974
1562
To mora da je toliko moćno.
18:09
It has to be much more powerful than anything I showed you.
314
1089536
2775
To mora da je mnogo moćnije od svega što sam vam pokazala.
18:12
They're figuring out the entire world.
315
1092311
1974
Oni otkrivaju ceo svet.
18:14
A four-year-old can talk to you about almost anything.
316
1094285
3144
Dete od četiri godine može da priča sa vama o gotovo svemu.
18:17
(Applause)
317
1097429
1601
(Aplauz)
18:19
CA: And if I understand you right, the other key point you're making is,
318
1099030
3414
KA: I ako sam te dobro razumeo, druga tvoja ključna poenta je,
18:22
we've been through these years where there's all this talk
319
1102444
2754
protekle su godine sa tom pričom
18:25
of how quirky and buggy our minds are,
320
1105198
1932
o tome kako je um uvrnut i blesav,
18:27
that behavioral economics and the whole theories behind that
321
1107130
2867
bihejvioralna ekonomija i čitave teorije
18:29
that we're not rational agents.
322
1109997
1603
o tome kako nismo razumni izvršioci.
18:31
You're really saying that the bigger story is how extraordinary,
323
1111600
4216
Ti u stvari govoriš da je veća priča kako je izvanredan,
18:35
and there really is genius there that is underappreciated.
324
1115816
4944
i da je tu zapravo genije koji se potcenjuje.
18:40
LS: One of my favorite quotes in psychology
325
1120760
2070
LŠ: Jedan od mojih omiljenih citata u psihologiji
18:42
comes from the social psychologist Solomon Asch,
326
1122830
2290
potiče od socijalnog psihologa Solomona Eša,
18:45
and he said the fundamental task of psychology is to remove
327
1125120
2807
a on je rekao da je osnovni zadatak psihologije da ukloni
18:47
the veil of self-evidence from things.
328
1127927
2626
zavesu samodokazivanja.
18:50
There are orders of magnitude more decisions you make every day
329
1130553
4551
Postoji milion redova veličine više odluka koje donosite svakodnevno
koje pravilno shvataju svet.
18:55
that get the world right.
330
1135104
1347
18:56
You know about objects and their properties.
331
1136451
2132
Imate znanje o predmetima i njihovim osobinama.
18:58
You know them when they're occluded. You know them in the dark.
332
1138583
3029
Prepoznajete ih kada su zaklonjeni. Prepoznajete ih u mraku.
19:01
You can walk through rooms.
333
1141612
1308
Možete da se krećete kroz prostorije.
19:02
You can figure out what other people are thinking. You can talk to them.
334
1142920
3532
Možete da shvatite šta drugi ljudi misle. Možete da razgovarate sa njima.
19:06
You can navigate space. You know about numbers.
335
1146452
2230
Možete se kretati u prostoru. Razumete brojeve.
19:08
You know causal relationships. You know about moral reasoning.
336
1148682
3022
Razumete uzročno-posledične veze. Razumete moralno rasuđivanje.
19:11
You do this effortlessly, so we don't see it,
337
1151704
2356
Radite to bez napora, tako da se ne vidi,
ali to je način na koji poimamo svet, a to je neverovatno dostignuće
19:14
but that is how we get the world right, and it's a remarkable
338
1154060
2912
19:16
and very difficult-to-understand accomplishment.
339
1156972
2318
i veoma teško za razumevanje.
19:19
CA: I suspect there are people in the audience who have
340
1159290
2628
KA: Pretpostavljam da postoje ljudi u publici koji imaju
19:21
this view of accelerating technological power
341
1161918
2238
gledište o ubrzanoj tehnološkoj moći
koji bi mogli da ospore tvoju izjavu da nikada za vreme našeg života
19:24
who might dispute your statement that never in our lifetimes
342
1164156
2958
19:27
will a computer do what a three-year-old child can do,
343
1167114
2618
računar neće uraditi ono što može trogodišnje dete,
19:29
but what's clear is that in any scenario,
344
1169732
3248
ali ono što je jasno jeste da u bilo kom scenariju,
19:32
our machines have so much to learn from our toddlers.
345
1172980
3770
naše mašine mogu mnogo toga da nauče od naših beba.
19:38
LS: I think so. You'll have some machine learning folks up here.
346
1178230
3216
LŠ: Mislim da je tako. Tu su neki ljudi koji se bave mašinama koje uče.
19:41
I mean, you should never bet against babies or chimpanzees
347
1181446
4203
Mislim, nikada se ne treba kladiti protiv beba ili šimpanzi
19:45
or technology as a matter of practice,
348
1185649
3645
ili tehnologije tek tako,
19:49
but it's not just a difference in quantity,
349
1189294
4528
ali nije u pitanju samo razlika u količini,
19:53
it's a difference in kind.
350
1193822
1764
već razlika u vrsti.
19:55
We have incredibly powerful computers,
351
1195586
2160
Imamo neverovatno moćne kompjutere,
19:57
and they do do amazingly sophisticated things,
352
1197746
2391
i oni stvarno obavljaju neverovatno sofisticirane stvari,
20:00
often with very big amounts of data.
353
1200137
3204
često sa veoma velikom količinom podataka.
20:03
Human minds do, I think, something quite different,
354
1203341
2607
Ljudski um čini, po meni, nešto sasvim drugačije,
20:05
and I think it's the structured, hierarchical nature of human knowledge
355
1205948
3895
a mislim da je strukturirana, hijerarhijska priroda ljudskog znanja
20:09
that remains a real challenge.
356
1209843
2032
ono što ostaje pravi izazov.
20:11
CA: Laura Schulz, wonderful food for thought. Thank you so much.
357
1211875
3061
KA: Lora Šulc, sjajna hrana za misli. Mnogo ti hvala.
20:14
LS: Thank you. (Applause)
358
1214936
2922
LŠ: Hvala. (Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7