Laura Schulz: The surprisingly logical minds of babies

233,233 views ・ 2015-06-02

TED


Fai dobre clic nos subtítulos en inglés a continuación para reproducir o vídeo.

Translator: Lucía Vila Rodríguez Reviewer: Serv. de Norm. Lingüística U. de Santiago de Compostela
00:12
Mark Twain summed up what I take to be
0
12835
2155
Mark Twain resumiu o que eu considero que é
00:14
one of the fundamental problems of cognitive science
1
14990
3120
un dos problemas fundamentais da ciencia cognitiva
cunha sinxela ocorrencia.
00:18
with a single witticism.
2
18110
1710
00:20
He said, "There's something fascinating about science.
3
20410
3082
Dixo, "A ciencia é fascinante.
00:23
One gets such wholesale returns of conjecture
4
23492
3228
Conséguense cantidades masivas de conxecturas
00:26
out of such a trifling investment in fact."
5
26720
3204
a partir dun investimento tan insignificante en feitos.”
00:29
(Laughter)
6
29924
1585
(Risas)
00:32
Twain meant it as a joke, of course, but he's right:
7
32199
2604
Twain quería facer unha broma, claro, pero ten razón:
00:34
There's something fascinating about science.
8
34803
2876
A ciencia é fascinante.
00:37
From a few bones, we infer the existence of dinosuars.
9
37679
4261
A partir duns cantos ósos, inferimos a existencia dos dinosauros.
00:42
From spectral lines, the composition of nebulae.
10
42910
3871
Das liñas espectrais, a composición das nebulosas.
00:47
From fruit flies,
11
47471
2938
A partir das moscas da froita,
00:50
the mechanisms of heredity,
12
50409
2943
os mecanismos da herdanza,
00:53
and from reconstructed images of blood flowing through the brain,
13
53352
4249
e de imaxes reconstruídas de sangue fluíndo a través do cerebro,
00:57
or in my case, from the behavior of very young children,
14
57601
4708
ou no meu caso, do comportamento de nenos moi pequenos,
01:02
we try to say something about the fundamental mechanisms
15
62309
2829
intentamos dicir algo sobre os mecanismos fundamentais
da cognición humana.
01:05
of human cognition.
16
65138
1618
01:07
In particular, in my lab in the Department of Brain and Cognitive Sciences at MIT,
17
67716
4759
En concreto, no meu laboratorio no Dpto. de Cerebro e Ciencias Cognitivas, no MIT,
01:12
I have spent the past decade trying to understand the mystery
18
72475
3654
pasei a última década intentando entender o misterio
de por que os nenos aprenden tanto, a partir de tan pouco, e tan rápido.
01:16
of how children learn so much from so little so quickly.
19
76129
3977
01:20
Because, it turns out that the fascinating thing about science
20
80666
2978
Porque resulta que o que a ciencia ten de fascinante
01:23
is also a fascinating thing about children,
21
83644
3529
téñeno tamén de fascinante os nenos,
e é, dicíndoo de forma máis suave ca Mark Twain,
01:27
which, to put a gentler spin on Mark Twain,
22
87173
2581
01:29
is precisely their ability to draw rich, abstract inferences
23
89754
4650
precisamente a súa capacidade de extraer inferencias ricas e abstractas
01:34
rapidly and accurately from sparse, noisy data.
24
94404
4661
de forma rápida e precisa a partir de datos dispersos e confusos.
01:40
I'm going to give you just two examples today.
25
100355
2398
Vou dar só dous exemplos hoxe.
01:42
One is about a problem of generalization,
26
102753
2287
Un deles aborda un problema de xeneralización,
e o outro un de razoamento causal.
01:45
and the other is about a problem of causal reasoning.
27
105040
2850
01:47
And although I'm going to talk about work in my lab,
28
107890
2525
E aínda que vou falar do que facemos no meu laboratorio,
01:50
this work is inspired by and indebted to a field.
29
110415
3460
este traballo está inspirado por un campo e en débeda con el.
01:53
I'm grateful to mentors, colleagues, and collaborators around the world.
30
113875
4283
Estoulles agradecida a mentores, colegas e colaboradores de todo o mundo.
01:59
Let me start with the problem of generalization.
31
119308
2974
Quero comezar co problema de xeneralización.
02:02
Generalizing from small samples of data is the bread and butter of science.
32
122652
4133
Xeneralizar a partir de pequenas mostras de datos é o pan de cada día da ciencia.
02:06
We poll a tiny fraction of the electorate
33
126785
2554
Entrevistamos unha fracción mínima do electorado
02:09
and we predict the outcome of national elections.
34
129339
2321
e predicimos o resultado das eleccións nacionais.
02:12
We see how a handful of patients responds to treatment in a clinical trial,
35
132240
3925
Vemos como un puñado de pacientes responde a tratamento nun ensaio clínico,
e incorporamos fármacos ao mercado nacional.
02:16
and we bring drugs to a national market.
36
136165
3065
02:19
But this only works if our sample is randomly drawn from the population.
37
139230
4365
Pero isto soamente funciona se a mostra se extrae aleatoriamente da poboación.
02:23
If our sample is cherry-picked in some way --
38
143595
2735
Se a nosa mostra ten algunha manipulación
--por exemplo, entrevistamos só votantes urbanos,
02:26
say, we poll only urban voters,
39
146330
2072
02:28
or say, in our clinical trials for treatments for heart disease,
40
148402
4388
ou nos nosos ensaios clínicos de tratamentos para doenzas cardíacas
02:32
we include only men --
41
152790
1881
incluímos só homes--
02:34
the results may not generalize to the broader population.
42
154671
3158
os resultados poden non ser xeneralizables a toda a poboación.
02:38
So scientists care whether evidence is randomly sampled or not,
43
158479
3581
Por tanto aos científicos impórtalles se a mostra se recolleu ou non ao chou,
pero que ten iso que ver cos bebés?
02:42
but what does that have to do with babies?
44
162060
2015
02:44
Well, babies have to generalize from small samples of data all the time.
45
164585
4621
Os bebés teñen que xeneralizar seguido a partir de pequenas mostras de datos.
02:49
They see a few rubber ducks and learn that they float,
46
169206
3158
Ven uns poucos parrulos de goma e aprenden que flotan,
02:52
or a few balls and learn that they bounce.
47
172364
3575
ou algunhas pelotas e aprenden que botan.
02:55
And they develop expectations about ducks and balls
48
175939
2951
E desenvolven expectativas sobre os parrulos e as pelotas
02:58
that they're going to extend to rubber ducks and balls
49
178890
2716
que aplicarán a uns e outras
03:01
for the rest of their lives.
50
181606
1879
o resto das súas vidas.
03:03
And the kinds of generalizations babies have to make about ducks and balls
51
183485
3739
E os tipos de xeneralizacións que deben facer sobre parrulos e pelotas,
03:07
they have to make about almost everything:
52
187224
2089
deben facelos para case todo:
03:09
shoes and ships and sealing wax and cabbages and kings.
53
189313
3917
zapatos e barcos e lacre e verzas e reis.
03:14
So do babies care whether the tiny bit of evidence they see
54
194200
2961
Entón aos bebés impórtalles se o pequeno anaco de proba que ven
representa de forma plausíbel unha poboación maior?
03:17
is plausibly representative of a larger population?
55
197161
3692
03:21
Let's find out.
56
201763
1900
Descubrámolo.
03:23
I'm going to show you two movies,
57
203663
1723
Vou amosar dous vídeos,
03:25
one from each of two conditions of an experiment,
58
205386
2462
un por cada suposto dun experimento,
03:27
and because you're going to see just two movies,
59
207848
2438
e como só se verán dous vídeos,
03:30
you're going to see just two babies,
60
210286
2136
só se verán dous bebés,
03:32
and any two babies differ from each other in innumerable ways.
61
212422
3947
e un par calquera de bebés difire de calquera outro de innumerábeis formas.
03:36
But these babies, of course, here stand in for groups of babies,
62
216369
3051
Pero estes bebés, por suposto, representan aquí a grupos de bebés,
03:39
and the differences you're going to see
63
219420
1895
e as diferenzas que se van ver
03:41
represent average group differences in babies' behavior across conditions.
64
221315
5195
representan as diferenzas grupais medias
no comportamento dos bebés en cada suposto.
En cada vídeo verase un bebé facendo tal vez
03:47
In each movie, you're going to see a baby doing maybe
65
227160
2583
03:49
just exactly what you might expect a baby to do,
66
229743
3460
xusto o que se agardaría que fixese,
03:53
and we can hardly make babies more magical than they already are.
67
233203
4017
e dificilmente podemos volver os bebés máis máxicos do que xa son.
Pero para min o máxico,
03:58
But to my mind the magical thing,
68
238090
2010
e ao que quero que se lle preste atención,
04:00
and what I want you to pay attention to,
69
240100
2089
04:02
is the contrast between these two conditions,
70
242189
3111
é o contraste entre estes dous supostos,
04:05
because the only thing that differs between these two movies
71
245300
3529
porque o único que difire entre os dous vídeos
04:08
is the statistical evidence the babies are going to observe.
72
248829
3466
son os datos estatísticos que os bebés van observar.
04:13
We're going to show babies a box of blue and yellow balls,
73
253425
3183
Imos ensinarlles unha caixa de bólas azuis e amarelas,
04:16
and my then-graduate student, now colleague at Stanford, Hyowon Gweon,
74
256608
4620
e a que era a miña estudante graduada, hoxe compañeira en Stanford, Hyowon Gweon,
04:21
is going to pull three blue balls in a row out of this box,
75
261228
3077
vai sacar tres bólas azuis seguidas desta caixa,
04:24
and when she pulls those balls out, she's going to squeeze them,
76
264305
3123
e despois de sacalas, vainas apertar,
04:27
and the balls are going to squeak.
77
267428
2113
e as bólas van chiar.
04:29
And if you're a baby, that's like a TED Talk.
78
269541
2763
E se es un bebé, iso é como un charla TED.
04:32
It doesn't get better than that.
79
272304
1904
Non pode haber nada mellor.
(Risas)
04:34
(Laughter)
80
274208
2561
04:38
But the important point is it's really easy to pull three blue balls in a row
81
278968
3659
Pero o importante é que é moi sinxelo sacar tres bólas azuis seguidas
04:42
out of a box of mostly blue balls.
82
282627
2305
dunha caixa que ten sobre todo bólas azuis.
04:44
You could do that with your eyes closed.
83
284932
2060
Poderíase facer cos ollos pechados.
04:46
It's plausibly a random sample from this population.
84
286992
2996
Pódese admitir que é unha mostra aleatoria desta poboación.
04:49
And if you can reach into a box at random and pull out things that squeak,
85
289988
3732
E se podes meter a man aleatoriamente nunha caixa e sacar cousas que chían,
04:53
then maybe everything in the box squeaks.
86
293720
2839
ao mellor todo o que hai na caixa chía.
04:56
So maybe babies should expect those yellow balls to squeak as well.
87
296559
3650
Así que tal vez os bebés deberían esperar que as bólas amarelas chíen tamén.
05:00
Now, those yellow balls have funny sticks on the end,
88
300209
2519
As bólas amarelas teñen divertidos paus nun extremo,
05:02
so babies could do other things with them if they wanted to.
89
302728
2857
que permiten facer con elas outras cousas se se quere.
05:05
They could pound them or whack them.
90
305585
1831
Poderían axitalas ou bater con elas.
05:07
But let's see what the baby does.
91
307416
2586
Pero vexamos qué fai o bebé.
05:12
(Video) Hyowon Gweon: See this? (Ball squeaks)
92
312548
3343
(Vídeo) Ves isto? (A bóla chía)
05:16
Did you see that? (Ball squeaks)
93
316531
3045
Viches iso? (A bóla chía)
Xenial.
05:20
Cool.
94
320036
3066
05:24
See this one?
95
324706
1950
Ves estoutra?
05:26
(Ball squeaks)
96
326656
1881
(A bóla chía)
05:28
Wow.
97
328537
2653
Uaau.
05:33
Laura Schulz: Told you. (Laughs)
98
333854
2113
Díxenvolo. (Ri)
05:35
(Video) HG: See this one? (Ball squeaks)
99
335967
4031
Viches esta? (A bóla chía)
05:39
Hey Clara, this one's for you. You can go ahead and play.
100
339998
4619
Clara, agora esta é para ti. Veña, podes collela e xogar.
05:51
(Laughter)
101
351854
4365
(Barullo) (Risas)
05:56
LS: I don't even have to talk, right?
102
356219
2995
LS: Non teño nin que dicir nada, verdade?
05:59
All right, it's nice that babies will generalize properties
103
359214
2899
Vale, está ben que os bebés xeneralicen propiedades
das bólas azuis ás bolas amarelas.
06:02
of blue balls to yellow balls,
104
362113
1528
06:03
and it's impressive that babies can learn from imitating us,
105
363641
3096
E é impresionante que poidan aprender imitándonos.
06:06
but we've known those things about babies for a very long time.
106
366737
3669
Pero sabemos iso dos bebés dende hai moito tempo.
06:10
The really interesting question
107
370406
1811
A pregunta realmente interesante é
que ocorre cando lles amosamos aos bebés exactamente a mesma cousa,
06:12
is what happens when we show babies exactly the same thing,
108
372217
2852
06:15
and we can ensure it's exactly the same because we have a secret compartment
109
375069
3611
podemos asegurar que é a mesma porque temos un compartimento secreto
06:18
and we actually pull the balls from there,
110
378680
2110
e en realidade sacamos as bólas del,
06:20
but this time, all we change is the apparent population
111
380790
3478
pero esta vez o que cambiamos foi a poboación aparente
06:24
from which that evidence was drawn.
112
384268
2902
da que extraemos as mostras.
Esta vez amosarémoslles aos bebés tres bólas azuis
06:27
This time, we're going to show babies three blue balls
113
387170
3553
06:30
pulled out of a box of mostly yellow balls,
114
390723
3384
sacadas dunha caixa que ten sobre todo bólas amarelas,
e saben que?
06:34
and guess what?
115
394107
1322
06:35
You [probably won't] randomly draw three blue balls in a row
116
395429
2840
Non se poden sacar aleatoriamente tres bólas azuis seguidas
06:38
out of a box of mostly yellow balls.
117
398269
2484
dunha caixa que ten sobre todo bólas amarelas.
06:40
That is not plausibly randomly sampled evidence.
118
400753
3747
Esa non é unha mostra aleatoria.
06:44
That evidence suggests that maybe Hyowon was deliberately sampling the blue balls.
119
404500
5123
Esa proba suxire que ao mellor Hyowon estivo amosando deliberadamente as azuis.
06:49
Maybe there's something special about the blue balls.
120
409623
2583
Tal vez as bólas azuis teñen algo especial
06:52
Maybe only the blue balls squeak.
121
412846
2976
Tal vez soamente as bólas azuis chían.
06:55
Let's see what the baby does.
122
415822
1895
Vexamos o que fai o bebé.
06:57
(Video) HG: See this? (Ball squeaks)
123
417717
2904
(Vídeo) Ves isto? (A bóla chía)
07:02
See this toy? (Ball squeaks)
124
422851
2645
Ves este xoguete? (A bóla chía)
07:05
Oh, that was cool. See? (Ball squeaks)
125
425496
5480
Oh, que xenial. Ves? (A bóla chía)
07:10
Now this one's for you to play. You can go ahead and play.
126
430976
4394
Agora esta é para que xogues ti. Veña, podes xogar.
(Barullo) (Risas)
07:18
(Fussing) (Laughter)
127
438074
6347
07:26
LS: So you just saw two 15-month-old babies
128
446901
2748
LS: Acabades de ver dous bebés de 15 meses
07:29
do entirely different things
129
449649
1942
facendo dúas cousas totalmente diferentes
07:31
based only on the probability of the sample they observed.
130
451591
3599
baseadas só na probabilidade da mostra que observaron.
07:35
Let me show you the experimental results.
131
455190
2321
Quero ensinar os resultados experimentais.
07:37
On the vertical axis, you'll see the percentage of babies
132
457511
2764
No eixe vertical, pódese ver a porcentaxe de bebés
07:40
who squeezed the ball in each condition,
133
460275
2530
que apertaron a bóla en cada suposto,
07:42
and as you'll see, babies are much more likely to generalize the evidence
134
462805
3715
e como se ve, os bebés tenden moito máis a xeneralizar a mostra
07:46
when it's plausibly representative of the population
135
466520
3135
cando é representativa da poboación
07:49
than when the evidence is clearly cherry-picked.
136
469655
3738
ca cando está claramente manipulada.
07:53
And this leads to a fun prediction:
137
473393
2415
E isto lévanos a unha predición curiosa:
07:55
Suppose you pulled just one blue ball out of the mostly yellow box.
138
475808
4868
supoñamos que sacamos só unha bóla azul
da caixa que ten sobre todo bólas amarelas.
08:00
You [probably won't] pull three blue balls in a row at random out of a yellow box,
139
480896
3869
Non se poderían sacar aleatoriamente 3 bólas azuis seguidas dunha caixa amarela
08:04
but you could randomly sample just one blue ball.
140
484765
2455
pero poderíase sacar soamente unha.
08:07
That's not an improbable sample.
141
487220
1970
Non é unha mostra improbable.
08:09
And if you could reach into a box at random
142
489190
2224
E se se puidese meter a man ao chou nunha caixa
08:11
and pull out something that squeaks, maybe everything in the box squeaks.
143
491414
3987
e sacar algo que chía, tal vez todo o da caixa chíe.
08:15
So even though babies are going to see much less evidence for squeaking,
144
495875
4445
Entón, aínda que os bebés van observar moita menos probas para chíos,
08:20
and have many fewer actions to imitate
145
500320
2242
e contan con moitas menos accións que imitar
08:22
in this one ball condition than in the condition you just saw,
146
502562
3343
neste suposto dunha única bóla ca no que vimos antes,
08:25
we predicted that babies themselves would squeeze more,
147
505905
3892
predicimos que os bebés por si sós apertarían a bóla máis veces,
08:29
and that's exactly what we found.
148
509797
2894
e iso é exactamente o que atopamos.
08:32
So 15-month-old babies, in this respect, like scientists,
149
512691
4411
Así que aos bebés de 15 meses, neste sentido, como científicos,
08:37
care whether evidence is randomly sampled or not,
150
517102
3088
impórtalles se a proba é unha mostra representativa ou non,
08:40
and they use this to develop expectations about the world:
151
520190
3507
e usan isto para desenvolver expectativas sobre o mundo:
08:43
what squeaks and what doesn't,
152
523697
2182
qué chía e qué non,
08:45
what to explore and what to ignore.
153
525879
3145
qué explorar e qué ignorar.
08:50
Let me show you another example now,
154
530384
2066
Agora quero amosar outro exemplo,
08:52
this time about a problem of causal reasoning.
155
532450
2730
esta vez sobre un problema de razoamento causal.
E comeza cun problema de proba confusa
08:55
And it starts with a problem of confounded evidence
156
535180
2439
08:57
that all of us have,
157
537619
1672
que todos temos:
08:59
which is that we are part of the world.
158
539291
2020
o feito de que formamos parte do mundo.
09:01
And this might not seem like a problem to you, but like most problems,
159
541311
3436
Isto pode non parecer un problema, pero como a maior parte deles,
09:04
it's only a problem when things go wrong.
160
544747
2337
maniféstase só cando as cousas van mal.
09:07
Take this baby, for instance.
161
547464
1811
Velaquí este bebé, por exemplo.
09:09
Things are going wrong for him.
162
549275
1705
As cousas están indo mal para el.
09:10
He would like to make this toy go, and he can't.
163
550980
2271
Gustaríalle facer funcionar o seu xoguete, e non pode.
09:13
I'll show you a few-second clip.
164
553251
2529
Amosarei un vídeo duns poucos segundos.
09:21
And there's two possibilities, broadly:
165
561340
1920
En xeral, hai dúas posibilidades:
09:23
Maybe he's doing something wrong,
166
563260
2634
ou el está facendo algo mal,
09:25
or maybe there's something wrong with the toy.
167
565894
4216
ou algo non funciona no xoguete.
Así que no seguinte experimento,
09:30
So in this next experiment,
168
570110
2111
darémoslles aos bebés só unha mínima porción de datos estatísticos
09:32
we're going to give babies just a tiny bit of statistical data
169
572221
3297
09:35
supporting one hypothesis over the other,
170
575518
2582
que apoian unha das hipóteses sobre a outra,
e veremos se os bebés poden usar iso para tomar decisións diferentes
09:38
and we're going to see if babies can use that to make different decisions
171
578100
3455
09:41
about what to do.
172
581555
1834
sobre qué facer.
09:43
Here's the setup.
173
583389
2022
Velaquí o plan.
Hyowon vai intentar que o xoguete funcione, e conségueo.
09:46
Hyowon is going to try to make the toy go and succeed.
174
586071
3030
Entón eu vou intentalo dúas veces e fracasar as dúas,
09:49
I am then going to try twice and fail both times,
175
589101
3320
09:52
and then Hyowon is going to try again and succeed,
176
592421
3112
despois Hyowon vai intentalo outra vez e conseguilo,
09:55
and this roughly sums up my relationship to my graduate students
177
595533
3172
o que resume en xeral a miña relación cos meus estudantes de posgrao
09:58
in technology across the board.
178
598705
2835
no que ten que ver coa tecnoloxía.
Pero o importante aquí é que proporciona algunha proba
10:02
But the important point here is it provides a little bit of evidence
179
602030
3292
10:05
that the problem isn't with the toy, it's with the person.
180
605322
3668
de que o problema non é o xoguete, senón a persoa.
10:08
Some people can make this toy go,
181
608990
2350
Algunhas poden facer que o xoguete funcione,
10:11
and some can't.
182
611340
959
e outras non.
10:12
Now, when the baby gets the toy, he's going to have a choice.
183
612799
3413
Agora, cando o bebé consegue o xoguete, vai ter unha elección.
10:16
His mom is right there,
184
616212
2188
Súa nai está xusto alí,
10:18
so he can go ahead and hand off the toy and change the person,
185
618400
3315
polo que pode ir e darlle o xoguete e cambiar a persoa,
10:21
but there's also going to be another toy at the end of that cloth,
186
621715
3158
pero tamén vai haber outro xoguete no bordo desa tea,
10:24
and he can pull the cloth towards him and change the toy.
187
624873
3552
así que pode tirar da tea cara a el e cambiar o xoguete.
10:28
So let's see what the baby does.
188
628425
2090
Vexamos logo qué fai o bebé.
10:30
(Video) HG: Two, three. Go! (Music)
189
630515
4183
(Vídeo) HG: Dous, tres. Xa! (Música)
10:34
LS: One, two, three, go!
190
634698
3131
LS: Un, dous, tres. Xa!
10:37
Arthur, I'm going to try again. One, two, three, go!
191
637829
7382
Arthur, vou intentalo outra vez. Un, dous, tres. Xa!
10:45
YG: Arthur, let me try again, okay?
192
645677
2600
HG: Arthur, déixame probar outra vez, si?
10:48
One, two, three, go! (Music)
193
648277
4550
Un, dous, tres. Xa! (Música)
10:53
Look at that. Remember these toys?
194
653583
1883
Mira. Acórdaste destes xoguetes?
10:55
See these toys? Yeah, I'm going to put this one over here,
195
655466
3264
Ves estes xoguetes? Si, vou poñer este por aquí,
10:58
and I'm going to give this one to you.
196
658730
2062
e a ti vouche dar este.
11:00
You can go ahead and play.
197
660792
2335
Veña, xa podes xogar.
11:23
LS: Okay, Laura, but of course, babies love their mommies.
198
683213
4737
LS: Vale, Laura, pero claro, os bebés quérenlles ás súas mamás.
11:27
Of course babies give toys to their mommies
199
687950
2182
Normal que lles dean os xoguetes a ela
cando non conseguen que funcionen.
11:30
when they can't make them work.
200
690132
2030
De novo, a pregunta realmente importante é que ocorre cando cambiamos
11:32
So again, the really important question is what happens when we change
201
692162
3593
11:35
the statistical data ever so slightly.
202
695755
3154
os datos estatísticos só levemente.
11:38
This time, babies are going to see the toy work and fail in exactly the same order,
203
698909
4087
Agora, os bebés van ver o xoguete funcionar e fallar xusto na mesma orde,
11:42
but we're changing the distribution of evidence.
204
702996
2415
pero imos cambiar a distribución da proba.
11:45
This time, Hyowon is going to succeed once and fail once, and so am I.
205
705411
4411
Agora, Hyowon vai conseguilo unha vez e fracasar outra, e eu tamén.
11:49
And this suggests it doesn't matter who tries this toy, the toy is broken.
206
709822
5637
O que suxire que non importa quen proba este xoguete, está roto.
11:55
It doesn't work all the time.
207
715459
1886
Non funciona nunca.
De novo, o bebé vai ter que tomar unha decisión.
11:57
Again, the baby's going to have a choice.
208
717345
1965
A súa nai está xusto ao lado, así que pode cambiar a persoa,
11:59
Her mom is right next to her, so she can change the person,
209
719310
3396
12:02
and there's going to be another toy at the end of the cloth.
210
722706
3204
e haberá outro xoguete ao final da tea.
Vexamos que fai.
12:05
Let's watch what she does.
211
725910
1378
12:07
(Video) HG: Two, three, go! (Music)
212
727288
4348
HG: Dous, tres, xa! (Música)
12:11
Let me try one more time. One, two, three, go!
213
731636
4984
Déixame probar outra vez. Un, dous, tres, xa!
12:17
Hmm.
214
737460
1697
Umm.
12:19
LS: Let me try, Clara.
215
739950
2692
LS: Déixame probar a min, Clara.
12:22
One, two, three, go!
216
742642
3945
Un, dous, tres, xa!
Umm, déixame probar outra vez.
12:27
Hmm, let me try again.
217
747265
1935
12:29
One, two, three, go! (Music)
218
749200
5670
Un, dos, tres, xa! (Música)
HG: Vou poñer este por aquí,
12:35
HG: I'm going to put this one over here,
219
755009
2233
12:37
and I'm going to give this one to you.
220
757242
2001
e vouche dar este a ti.
12:39
You can go ahead and play.
221
759243
3597
Veña, xa podes xogar.
12:58
(Applause)
222
778376
4897
(Aplausos)
13:04
LS: Let me show you the experimental results.
223
784993
2392
LS: Amosarei agora os resultados experimentais.
13:07
On the vertical axis, you'll see the distribution
224
787385
2475
No eixe vertical, vese a distribución
13:09
of children's choices in each condition,
225
789860
2577
das eleccións dos nenos baixo cada suposto,
13:12
and you'll see that the distribution of the choices children make
226
792437
4551
e vese que a distribución das eleccións que fan
13:16
depends on the evidence they observe.
227
796988
2787
depende da proba que observan.
13:19
So in the second year of life,
228
799775
1857
No segundo ano de idade,
13:21
babies can use a tiny bit of statistical data
229
801632
2577
os bebés poden usar unha fracción mínima de datos estatísticos
13:24
to decide between two fundamentally different strategies
230
804209
3367
para decidir entre dúas estratexias fundamentalmente diferentes
13:27
for acting in the world:
231
807576
1881
para actuar no mundo:
13:29
asking for help and exploring.
232
809457
2743
pedir axuda e explorar.
13:33
I've just shown you two laboratory experiments
233
813700
3434
Acabo de amosar dous experimentos de laboratorio
dos literalmente centos neste campo que chegan a conclusións similares,
13:37
out of literally hundreds in the field that make similar points,
234
817134
3691
13:40
because the really critical point
235
820825
2392
porque o auténtico punto clave
13:43
is that children's ability to make rich inferences from sparse data
236
823217
5108
é que a capacidade dos nenos
para facer ricas inferencias partindo de datos dispersos
13:48
underlies all the species-specific cultural learning that we do.
237
828325
5341
serve de base a toda a nosa aprendizaxe cultural específica como especie.
13:53
Children learn about new tools from just a few examples.
238
833666
4597
Os nenos aprenden sobre novas ferramentas a partir duns poucos exemplos.
13:58
They learn new causal relationships from just a few examples.
239
838263
4717
Aprenden novas relacións causais a partir duns poucos exemplos.
14:03
They even learn new words, in this case in American Sign Language.
240
843928
4871
Incluso aprenden palabras novas , neste caso en lingua de signos americana.
14:08
I want to close with just two points.
241
848799
2311
Quero concluír con só dúas cousas.
A quen seguise o meu campo (o do cerebro e as ciencias cognitivas)
14:12
If you've been following my world, the field of brain and cognitive sciences,
242
852050
3688
14:15
for the past few years,
243
855738
1927
durante os últimos anos,
14:17
three big ideas will have come to your attention.
244
857665
2415
chamaríanlle a atención tres grandes ideas.
A primeira é que esta é a era do cerebro.
14:20
The first is that this is the era of the brain.
245
860080
3436
14:23
And indeed, there have been staggering discoveries in neuroscience:
246
863516
3669
E por suposto, houbo descubrimentos impresionantes en neurociencia:
14:27
localizing functionally specialized regions of cortex,
247
867185
3436
localizar rexións do córtex funcionalmente especializadas,
14:30
turning mouse brains transparent,
248
870621
2601
facer transparentes os cerebros de ratos,
14:33
activating neurons with light.
249
873222
3776
activar neuronas con luz.
14:36
A second big idea
250
876998
1996
Unha segunda grande idea
14:38
is that this is the era of big data and machine learning,
251
878994
4104
é que esta é a era dos datos masivos e da aprendizaxe automática,
e a aprendizaxe automática promete revolucionar a nosa comprensión
14:43
and machine learning promises to revolutionize our understanding
252
883098
3141
14:46
of everything from social networks to epidemiology.
253
886239
4667
de todo, dende as redes sociais ata a epidemioloxía.
14:50
And maybe, as it tackles problems of scene understanding
254
890906
2693
E tal vez, á vez que afronta problemas de comprensión do contexto
14:53
and natural language processing,
255
893599
1993
e de procesamento da linguaxe natural,
14:55
to tell us something about human cognition.
256
895592
3324
poida desvelarnos algo sobre a cognición humana.
14:59
And the final big idea you'll have heard
257
899756
1937
E a gran idea final que escoitarían
15:01
is that maybe it's a good idea we're going to know so much about brains
258
901693
3387
é que pode ser boa idea saber tanto sobre os cerebros
e ter tanto acceso a datos masivos,
15:05
and have so much access to big data,
259
905080
1917
15:06
because left to our own devices,
260
906997
2507
porque pola nosa conta,
15:09
humans are fallible, we take shortcuts,
261
909504
3831
os humanos somos falíbeis, buscamos atallos,
15:13
we err, we make mistakes,
262
913335
3437
erramos, temos fallos,
15:16
we're biased, and in innumerable ways,
263
916772
3684
non somos neutrais, e de formas innumerables,
15:20
we get the world wrong.
264
920456
2969
chegamos a ideas falsas sobre o mundo.
15:24
I think these are all important stories,
265
924843
2949
Eu creo que todas estas son noticias importantes,
15:27
and they have a lot to tell us about what it means to be human,
266
927792
3785
e que teñen moito que contarnos sobre qué significa ser humano,
15:31
but I want you to note that today I told you a very different story.
267
931577
3529
pero gustaríame destacar que hoxe tratei unha noticia moi distinta.
15:35
It's a story about minds and not brains,
268
935966
3807
Unha noticia sobre mentes, non sobre cerebros,
15:39
and in particular, it's a story about the kinds of computations
269
939773
3006
e en particular, sobre o tipo de computación
15:42
that uniquely human minds can perform,
270
942779
2590
que só as mentes humanas poden realizar,
15:45
which involve rich, structured knowledge and the ability to learn
271
945369
3944
que implican coñecementos ricos e estruturados e capacidade de aprender
15:49
from small amounts of data, the evidence of just a few examples.
272
949313
5268
a partir de pequenas cantidades de datos, coa proba de só uns poucos exemplos.
15:56
And fundamentally, it's a story about how starting as very small children
273
956301
4299
E fundamentalmente, é unha noticia sobre como dende meniños
16:00
and continuing out all the way to the greatest accomplishments
274
960600
4180
e continuando todo o camiño ata os máis grandes logros
16:04
of our culture,
275
964780
3843
da nosa cultura,
16:08
we get the world right.
276
968623
1997
conseguimos entender ben o mundo.
16:12
Folks, human minds do not only learn from small amounts of data.
277
972433
5267
Amigos, as mentes humanas non aprenden só a partir de pequenas cantidades de datos
16:18
Human minds think of altogether new ideas.
278
978285
2101
As mentes humanas pensan ideas totalmente novas.
16:20
Human minds generate research and discovery,
279
980746
3041
As mentes humanas xeran investigación e descubrimento,
16:23
and human minds generate art and literature and poetry and theater,
280
983787
5273
e as mentes humanas xeran arte e literatura e poesía e teatro,
e as mentes humanas coidan doutros seres humanos:
16:29
and human minds take care of other humans:
281
989070
3760
16:32
our old, our young, our sick.
282
992830
3427
os nosos maiores, a nosa mocidade, os nosos enfermos.
16:36
We even heal them.
283
996517
2367
Incluso os curamos.
16:39
In the years to come, we're going to see technological innovations
284
999564
3103
Nos próximos anos, imos ver innovacións tecnolóxicas
16:42
beyond anything I can even envision,
285
1002667
3797
máis alá do que podo concibir,
16:46
but we are very unlikely
286
1006464
2150
pero hai moi poucas probabilidades
16:48
to see anything even approximating the computational power of a human child
287
1008614
5709
de que vexamos algo que se aproxime sequera
ao poder computacional dun neno humano,
16:54
in my lifetime or in yours.
288
1014323
4298
no resto da miña vida ou da vosa.
16:58
If we invest in these most powerful learners and their development,
289
1018621
5047
Se investimos nestes potentísimos aprendices e no seu desenvolvemento,
17:03
in babies and children
290
1023668
2917
en bebés e cativos,
17:06
and mothers and fathers
291
1026585
1826
e nais e pais
17:08
and caregivers and teachers
292
1028411
2699
e coidadores e profesores
do xeito que investimos nas nosas outras poderosísimas e elegantes formas
17:11
the ways we invest in our other most powerful and elegant forms
293
1031110
4170
17:15
of technology, engineering and design,
294
1035280
3218
de tecnoloxía, enxeñaría e deseño,
17:18
we will not just be dreaming of a better future,
295
1038498
2939
non estaremos simplemente soñando cun mellor futuro,
17:21
we will be planning for one.
296
1041437
2127
estaremos planificándoo.
17:23
Thank you very much.
297
1043564
2345
Moitísimas grazas.
17:25
(Applause)
298
1045909
3421
(Aplausos)
17:29
Chris Anderson: Laura, thank you. I do actually have a question for you.
299
1049810
4426
Chris Anderson: Grazas, Laura. Quería facerche unha pregunta.
17:34
First of all, the research is insane.
300
1054236
2359
Antes de nada, esta investigación é de tolos.
17:36
I mean, who would design an experiment like that? (Laughter)
301
1056595
3725
Quen deseñaría un experimento coma ese? (Risas)
Vino unhas cantas veces,
17:41
I've seen that a couple of times,
302
1061150
1790
17:42
and I still don't honestly believe that that can truly be happening,
303
1062940
3222
e sigo sen acabar de crer que poida estar ocorrendo de verdade,
pero outras persoas fixeron experimentos similares; está comprobado.
17:46
but other people have done similar experiments; it checks out.
304
1066162
3158
17:49
The babies really are that genius.
305
1069320
1633
Os bebés son realmente xenios.
17:50
LS: You know, they look really impressive in our experiments,
306
1070953
3007
LS: Parecen realmente impresionantes nos nosos experimentos,
17:53
but think about what they look like in real life, right?
307
1073960
2652
pero pensa no que fan na vida real, non?
17:56
It starts out as a baby.
308
1076612
1150
Todo comeza cun bebé.
17:57
Eighteen months later, it's talking to you,
309
1077762
2007
Dezaoito meses despois, estache falando,
17:59
and babies' first words aren't just things like balls and ducks,
310
1079769
3041
e as primeiras palabras dos bebés non van de pelotas e parrulos,
18:02
they're things like "all gone," which refer to disappearance,
311
1082810
2881
son cousas como “non ta” que se refire á desaparición,
18:05
or "uh-oh," which refer to unintentional actions.
312
1085691
2283
ou “uh oh”, para referirse a accións involuntarias.
18:07
It has to be that powerful.
313
1087974
1562
Ten que ser así de poderoso.
18:09
It has to be much more powerful than anything I showed you.
314
1089536
2775
Ten que ser moito máis poderoso que o que ensinei.
Están descifrando o mundo enteiro.
18:12
They're figuring out the entire world.
315
1092311
1974
Un neno de catro anos pode falarche sobre case todo.
18:14
A four-year-old can talk to you about almost anything.
316
1094285
3144
18:17
(Applause)
317
1097429
1601
(Aplausos)
18:19
CA: And if I understand you right, the other key point you're making is,
318
1099030
3414
CA: E se entendo ben, o outro punto clave que destacas é
18:22
we've been through these years where there's all this talk
319
1102444
2754
que durante estes anos tivemos todo este debate
18:25
of how quirky and buggy our minds are,
320
1105198
1932
sobre o peculiares e confusas que son as nosas mentes,
18:27
that behavioral economics and the whole theories behind that
321
1107130
2867
coa economía condutual e teorías enteiras detrás
18:29
that we're not rational agents.
322
1109997
1603
de que non somos axentes racionais.
18:31
You're really saying that the bigger story is how extraordinary,
323
1111600
4216
E ti estás a dicir que este fenómeno é extraordinario,
18:35
and there really is genius there that is underappreciated.
324
1115816
4944
e que en realidade hai xenialidade que está subestimada.
18:40
LS: One of my favorite quotes in psychology
325
1120760
2070
Unha das miñas citas favoritas en psicoloxía
18:42
comes from the social psychologist Solomon Asch,
326
1122830
2290
é do psicólogo social Solomon Asch,
18:45
and he said the fundamental task of psychology is to remove
327
1125120
2807
que dixo que “o cometido fundamental da psicoloxía
18:47
the veil of self-evidence from things.
328
1127927
2626
é eliminar o veo de autoevidencia das cousas”.
18:50
There are orders of magnitude more decisions you make every day
329
1130553
4551
Hai millóns de decisións que se toman a diario
que interpretan ben o mundo.
18:55
that get the world right.
330
1135104
1347
18:56
You know about objects and their properties.
331
1136451
2132
Coñecemos os obxectos e as súas propiedades.
18:58
You know them when they're occluded. You know them in the dark.
332
1138583
3029
Recoñecémolos cando están ocultos. Recoñecémolos na escuridade.
19:01
You can walk through rooms.
333
1141612
1308
Camiñamos por cuartos.
19:02
You can figure out what other people are thinking. You can talk to them.
334
1142920
3532
Podemos percibir o que pensan outros. Podemos falarlles.
Podemos navegar no espazo. Coñecemos os números.
19:06
You can navigate space. You know about numbers.
335
1146452
2230
Entendemos as relacións causais. Entendemos o razoamento moral.
19:08
You know causal relationships. You know about moral reasoning.
336
1148682
3022
E todo isto sen esforzo ningún, por iso non nos decatamos,
19:11
You do this effortlessly, so we don't see it,
337
1151704
2356
pero así interpretamos ben o mundo,
19:14
but that is how we get the world right, and it's a remarkable
338
1154060
2912
e moi difícil de entender.
19:16
and very difficult-to-understand accomplishment.
339
1156972
2318
CA: Imaxino que hai persoas no público que comparten
19:19
CA: I suspect there are people in the audience who have
340
1159290
2628
esa visión do crecente poder tecnolóxico
19:21
this view of accelerating technological power
341
1161918
2238
que poderían cuestionar a túa afirmación de que nunca nas nosas vidas
19:24
who might dispute your statement that never in our lifetimes
342
1164156
2958
un ordenador fará o que un neno de tres anos pode facer,
19:27
will a computer do what a three-year-old child can do,
343
1167114
2618
pero está claro que en calquera situación,
19:29
but what's clear is that in any scenario,
344
1169732
3248
19:32
our machines have so much to learn from our toddlers.
345
1172980
3770
as nosas máquinas teñen moito que aprender dos nosos cativos.
19:38
LS: I think so. You'll have some machine learning folks up here.
346
1178230
3216
LS: Eu tamén o creo. Aquí haberá partidarios da aprendizaxe automática.
19:41
I mean, you should never bet against babies or chimpanzees
347
1181446
4203
Nunca deberías apostar contra os bebés ou os chimpancés
19:45
or technology as a matter of practice,
348
1185649
3645
ou da tecnoloxía, en principio.
19:49
but it's not just a difference in quantity,
349
1189294
4528
pero non se trata só dunha diferenza de cantidade,
19:53
it's a difference in kind.
350
1193822
1764
é unha diferenza cualitativa.
19:55
We have incredibly powerful computers,
351
1195586
2160
Temos ordenadores incriblemente potentes,
19:57
and they do do amazingly sophisticated things,
352
1197746
2391
que fan cousas incriblemente sofisticadas,
por veces con enormes cantidades de datos.
20:00
often with very big amounts of data.
353
1200137
3204
20:03
Human minds do, I think, something quite different,
354
1203341
2607
As mentes humanas fan, para min, algo bastante diferente,
20:05
and I think it's the structured, hierarchical nature of human knowledge
355
1205948
3895
e creo que é a natureza estruturada e xerarquizada do coñecemento humano
20:09
that remains a real challenge.
356
1209843
2032
o que permanece como un verdadeiro desafío.
20:11
CA: Laura Schulz, wonderful food for thought. Thank you so much.
357
1211875
3061
CA: Laura Schulz, un gran tema para reflexionar. Moitas grazas.
20:14
LS: Thank you. (Applause)
358
1214936
2922
Grazas (Aplausos)
About this website

Este sitio presentarache vídeos de YouTube que son útiles para aprender inglés. Verás clases de inglés impartidas por profesores de primeiro nivel de todo o mundo. Fai dobre clic nos subtítulos en inglés que aparecen en cada páxina de vídeo para reproducir o vídeo desde alí. Os subtítulos desprázanse sincronizados coa reprodución do vídeo. Se tes algún comentario ou solicitude, póñase en contacto connosco a través deste formulario de contacto.

https://forms.gle/WvT1wiN1qDtmnspy7