Laura Schulz: The surprisingly logical minds of babies

240,890 views ・ 2015-06-02

TED


请双击下面的英文字幕来播放视频。

翻译人员: Hong Li 校对人员: 杏儀 歐陽
00:12
Mark Twain summed up what I take to be
0
12835
2155
马克·吐温说过一句话,
00:14
one of the fundamental problems of cognitive science
1
14990
3120
在我看来,指出了认知科学
00:18
with a single witticism.
2
18110
1710
的根本问题。
他说,“科学非常奇妙,
00:20
He said, "There's something fascinating about science.
3
20410
3082
00:23
One gets such wholesale returns of conjecture
4
23492
3228
你实际上只需进行少量投资,
00:26
out of such a trifling investment in fact."
5
26720
3204
得到的回报却是一整套理论。”
00:29
(Laughter)
6
29924
1585
(笑声)
00:32
Twain meant it as a joke, of course, but he's right:
7
32199
2604
吐温当然是在开玩笑,但他没说错:
00:34
There's something fascinating about science.
8
34803
2876
科学就是这么神奇。
00:37
From a few bones, we infer the existence of dinosuars.
9
37679
4261
从几块骨头, 我们能推测出恐龙的存在。
00:42
From spectral lines, the composition of nebulae.
10
42910
3871
从几条光谱带, 我们能推测星云的构成物质。
00:47
From fruit flies,
11
47471
2938
分析果蝇,
00:50
the mechanisms of heredity,
12
50409
2943
我们能推导出遗传机制,
00:53
and from reconstructed images of blood flowing through the brain,
13
53352
4249
分析大脑血液流动的图像,
00:57
or in my case, from the behavior of very young children,
14
57601
4708
或者,从我的研究方向来说, 分析儿童的行为,
01:02
we try to say something about the fundamental mechanisms
15
62309
2829
我们尝试搞清楚人类认知的
01:05
of human cognition.
16
65138
1618
基本机制。
01:07
In particular, in my lab in the Department of Brain and Cognitive Sciences at MIT,
17
67716
4759
尤其在我们麻省理工学院 大脑和认知科学系实验室,
01:12
I have spent the past decade trying to understand the mystery
18
72475
3654
过去十年我一直在研究一个问题,
01:16
of how children learn so much from so little so quickly.
19
76129
3977
为什么小孩子能从无到有 快速地学会很多东西。
01:20
Because, it turns out that the fascinating thing about science
20
80666
2978
因为,科学的奇妙之处,
01:23
is also a fascinating thing about children,
21
83644
3529
恰恰也是小孩子的奇妙之处,
01:27
which, to put a gentler spin on Mark Twain,
22
87173
2581
从马克·吐温的话引申出来,
01:29
is precisely their ability to draw rich, abstract inferences
23
89754
4650
准确地说,就是他们都能 从少量的、充满干扰的数据中
01:34
rapidly and accurately from sparse, noisy data.
24
94404
4661
迅速而准确地得出丰富的理论推断。
01:40
I'm going to give you just two examples today.
25
100355
2398
我今天只举两个例子。
01:42
One is about a problem of generalization,
26
102753
2287
一个关于归纳总结,
01:45
and the other is about a problem of causal reasoning.
27
105040
2850
另一个关于因果推理。
01:47
And although I'm going to talk about work in my lab,
28
107890
2525
尽管我今天要谈的 是我的实验室里的工作,
01:50
this work is inspired by and indebted to a field.
29
110415
3460
但它的灵感来源于 整个(认知科学)领域。
01:53
I'm grateful to mentors, colleagues, and collaborators around the world.
30
113875
4283
我要感谢世界各地的 导师、同事和合作者们。
01:59
Let me start with the problem of generalization.
31
119308
2974
我先从归纳总结开始讲起。
02:02
Generalizing from small samples of data is the bread and butter of science.
32
122652
4133
从少量的数据样本进行归纳总结 是科学的立身之本。
02:06
We poll a tiny fraction of the electorate
33
126785
2554
我们调查一小部分选民的投票结果,
02:09
and we predict the outcome of national elections.
34
129339
2321
就能推测出大选结果。
02:12
We see how a handful of patients responds to treatment in a clinical trial,
35
132240
3925
我们分析临床试验中一部分病人 对治疗方案的反应,
02:16
and we bring drugs to a national market.
36
136165
3065
然后向全国市场推广新药。
02:19
But this only works if our sample is randomly drawn from the population.
37
139230
4365
但这要求我们抽取样本 要完全随机。
02:23
If our sample is cherry-picked in some way --
38
143595
2735
如果样本是刻意挑选的,
02:26
say, we poll only urban voters,
39
146330
2072
比如说,只抽取城市选民,
02:28
or say, in our clinical trials for treatments for heart disease,
40
148402
4388
或者,在治疗心脏病的临床试验中,
02:32
we include only men --
41
152790
1881
只抽取男性患者,
02:34
the results may not generalize to the broader population.
42
154671
3158
那结果可能不适用于整个人群。
02:38
So scientists care whether evidence is randomly sampled or not,
43
158479
3581
因此科学家非常重视 样本的抽取是否随机,
02:42
but what does that have to do with babies?
44
162060
2015
那婴儿会不会重视呢?
02:44
Well, babies have to generalize from small samples of data all the time.
45
164585
4621
实际上,婴儿一直在对 少量数据样本进行归纳总结。
02:49
They see a few rubber ducks and learn that they float,
46
169206
3158
他们见过几只橡胶鸭子, 知道它们能浮起来,
02:52
or a few balls and learn that they bounce.
47
172364
3575
见过几个球,知道它们能在地上弹跳。
02:55
And they develop expectations about ducks and balls
48
175939
2951
他们对鸭子和球产生了预判
02:58
that they're going to extend to rubber ducks and balls
49
178890
2716
并会在今后的人生中 将这种预判延伸到
03:01
for the rest of their lives.
50
181606
1879
(所有)橡胶鸭子和球身上。
03:03
And the kinds of generalizations babies have to make about ducks and balls
51
183485
3739
这种针对鸭子和球的归纳总结法,
03:07
they have to make about almost everything:
52
187224
2089
婴儿几乎要用在所有东西上:
03:09
shoes and ships and sealing wax and cabbages and kings.
53
189313
3917
鞋子、船、封蜡、卷心菜和国王。
03:14
So do babies care whether the tiny bit of evidence they see
54
194200
2961
那么婴儿会不会在乎 他们看到的这几个样本
03:17
is plausibly representative of a larger population?
55
197161
3692
是不是具有代表性呢?
03:21
Let's find out.
56
201763
1900
我们来看一看。
03:23
I'm going to show you two movies,
57
203663
1723
我将给你们放两段视频,
03:25
one from each of two conditions of an experiment,
58
205386
2462
每一段各反映一个实验里的一种情况,
03:27
and because you're going to see just two movies,
59
207848
2438
因为只有两段视频,
03:30
you're going to see just two babies,
60
210286
2136
所以你们只能看到两个婴儿,
03:32
and any two babies differ from each other in innumerable ways.
61
212422
3947
而任意两个婴儿之间都是千差万别的。
03:36
But these babies, of course, here stand in for groups of babies,
62
216369
3051
当然,这两个婴儿, 各代表一类婴儿,
03:39
and the differences you're going to see
63
219420
1895
你们即将看到的差别,
03:41
represent average group differences in babies' behavior across conditions.
64
221315
5195
代表了婴儿在不同情况下 普遍的行为差异。
03:47
In each movie, you're going to see a baby doing maybe
65
227160
2583
在每段视频中,婴儿的所作所为,
03:49
just exactly what you might expect a baby to do,
66
229743
3460
可能会跟你所预期的一样,
03:53
and we can hardly make babies more magical than they already are.
67
233203
4017
婴儿是如此神奇, 可能超乎你的想象。
但在我看来神奇的是,
03:58
But to my mind the magical thing,
68
238090
2010
04:00
and what I want you to pay attention to,
69
240100
2089
我也希望大家能注意到,
04:02
is the contrast between these two conditions,
70
242189
3111
就是两种情况之间的差别,
04:05
because the only thing that differs between these two movies
71
245300
3529
因为两段视频唯一的不同之处
04:08
is the statistical evidence the babies are going to observe.
72
248829
3466
就是婴儿需要观察的统计学证据。
04:13
We're going to show babies a box of blue and yellow balls,
73
253425
3183
我们会给婴儿看一个盒子, 里面装满了蓝色和黄色的球,
04:16
and my then-graduate student, now colleague at Stanford, Hyowon Gweon,
74
256608
4620
我当时的研究生学生, 现在是斯坦福大学的同事,权孝媛。
04:21
is going to pull three blue balls in a row out of this box,
75
261228
3077
会从盒子里连续拿出三个蓝色的球,
04:24
and when she pulls those balls out, she's going to squeeze them,
76
264305
3123
当她把球拿出来的时候,她会捏它们,
04:27
and the balls are going to squeak.
77
267428
2113
球会发出声音。
04:29
And if you're a baby, that's like a TED Talk.
78
269541
2763
对孩子来说,这就像TED演讲。
04:32
It doesn't get better than that.
79
272304
1904
真的没什么区别。
04:34
(Laughter)
80
274208
2561
(笑声)
04:38
But the important point is it's really easy to pull three blue balls in a row
81
278968
3659
重要的一点是, 从一个几乎全都是蓝色球的盒子里,
04:42
out of a box of mostly blue balls.
82
282627
2305
连续拿出三个蓝色的球非常容易。
04:44
You could do that with your eyes closed.
83
284932
2060
闭上眼睛都能做到。
04:46
It's plausibly a random sample from this population.
84
286992
2996
这是一个真正的随机取样。
04:49
And if you can reach into a box at random and pull out things that squeak,
85
289988
3732
如果你从一个盒子里随机 取出来的东西能捏响,
04:53
then maybe everything in the box squeaks.
86
293720
2839
那也许这个盒子里 所有的东西都能捏响。
04:56
So maybe babies should expect those yellow balls to squeak as well.
87
296559
3650
因此,婴儿也许会觉得 黄色的球也能捏响。
05:00
Now, those yellow balls have funny sticks on the end,
88
300209
2519
这些黄色的球在尾端有一根棍子,
05:02
so babies could do other things with them if they wanted to.
89
302728
2857
因此婴儿还可以对它做其他动作。
05:05
They could pound them or whack them.
90
305585
1831
比如说打它或者掰它。
05:07
But let's see what the baby does.
91
307416
2586
让我们来看婴儿会怎么做。
05:12
(Video) Hyowon Gweon: See this? (Ball squeaks)
92
312548
3343
(视频)权孝媛:看到没? (球被捏响)
05:16
Did you see that? (Ball squeaks)
93
316531
3045
听到了吗? (球被捏响)
05:20
Cool.
94
320036
3066
酷。
05:24
See this one?
95
324706
1950
看到这个球没?
05:26
(Ball squeaks)
96
326656
1881
(球被捏响)
05:28
Wow.
97
328537
2653
哇。
05:33
Laura Schulz: Told you. (Laughs)
98
333854
2113
劳拉·舒尔茨:我就说嘛。(笑)
05:35
(Video) HG: See this one? (Ball squeaks)
99
335967
4031
(视频)权孝媛:看这个。 (球被捏响)
05:39
Hey Clara, this one's for you. You can go ahead and play.
100
339998
4619
克拉拉,这个球给你。 拿着玩吧。
05:51
(Laughter)
101
351854
4365
(笑声)
05:56
LS: I don't even have to talk, right?
102
356219
2995
劳拉·舒尔茨: 我都不必解释了,对吗?
05:59
All right, it's nice that babies will generalize properties
103
359214
2899
好的,婴儿能从蓝色球的特性 推导出黄色球的特性
06:02
of blue balls to yellow balls,
104
362113
1528
这非常棒,
06:03
and it's impressive that babies can learn from imitating us,
105
363641
3096
而且婴儿通过模仿我们 进行学习,令人印象深刻,
06:06
but we've known those things about babies for a very long time.
106
366737
3669
但婴儿的这些特点我们早就知道了。
06:10
The really interesting question
107
370406
1811
真正有意思的是,
06:12
is what happens when we show babies exactly the same thing,
108
372217
2852
我们将上述实验完全重复一遍,
06:15
and we can ensure it's exactly the same because we have a secret compartment
109
375069
3611
我们之所以能保证两次实验完全一样, 是因为装球的箱子有一个隔层,
06:18
and we actually pull the balls from there,
110
378680
2110
实际上我们是从那个隔层里往外拿球,
06:20
but this time, all we change is the apparent population
111
380790
3478
但是这一次, 我们更改了样品库的外观,
06:24
from which that evidence was drawn.
112
384268
2902
也就是说盒子里的球看起来不同了。
06:27
This time, we're going to show babies three blue balls
113
387170
3553
这一次,我们还是 给婴儿看三个蓝色的球,
06:30
pulled out of a box of mostly yellow balls,
114
390723
3384
但是装球的箱子里几乎全是黄色的球,
06:34
and guess what?
115
394107
1322
猜猜结果会怎样?
06:35
You [probably won't] randomly draw three blue balls in a row
116
395429
2840
从几乎全是黄色球的箱子里
06:38
out of a box of mostly yellow balls.
117
398269
2484
连续拿出三个蓝色的球, 也许很难。
06:40
That is not plausibly randomly sampled evidence.
118
400753
3747
这不是令人信服的随机取样。
06:44
That evidence suggests that maybe Hyowon was deliberately sampling the blue balls.
119
404500
5123
也许孝媛是故意选的蓝色的球。
06:49
Maybe there's something special about the blue balls.
120
409623
2583
也许蓝色的球有些特别之处。
06:52
Maybe only the blue balls squeak.
121
412846
2976
也许只有蓝色的球能捏响。
06:55
Let's see what the baby does.
122
415822
1895
我们来看婴儿会怎么做。
06:57
(Video) HG: See this? (Ball squeaks)
123
417717
2904
(视频)权孝媛:看到了吗? (球被捏响)
07:02
See this toy? (Ball squeaks)
124
422851
2645
再看这个。 (球被捏响)
07:05
Oh, that was cool. See? (Ball squeaks)
125
425496
5480
哦,太酷了。看! (球被捏响)
07:10
Now this one's for you to play. You can go ahead and play.
126
430976
4394
这个是给你的。 拿去玩吧。
07:18
(Fussing) (Laughter)
127
438074
6347
(不耐烦) (笑声)
07:26
LS: So you just saw two 15-month-old babies
128
446901
2748
劳拉·舒尔茨:2个15个月大的婴儿
07:29
do entirely different things
129
449649
1942
仅仅基于他们观察到的取样几率
07:31
based only on the probability of the sample they observed.
130
451591
3599
做出了完全不同的反应。
07:35
Let me show you the experimental results.
131
455190
2321
让我们来看一下实验结果。
07:37
On the vertical axis, you'll see the percentage of babies
132
457511
2764
在纵轴上,你看到的是在不同情况下
07:40
who squeezed the ball in each condition,
133
460275
2530
会去捏球的婴儿的百分比,
07:42
and as you'll see, babies are much more likely to generalize the evidence
134
462805
3715
如图表所示,当婴儿认为取样具有代表性
07:46
when it's plausibly representative of the population
135
466520
3135
而不是特意选取的时候
07:49
than when the evidence is clearly cherry-picked.
136
469655
3738
他们有更高几率去捏黄色的球。
07:53
And this leads to a fun prediction:
137
473393
2415
这个结果能导致一个有趣的推测:
07:55
Suppose you pulled just one blue ball out of the mostly yellow box.
138
475808
4868
假设你从几乎全是黄色球的箱子里 拿出一个蓝色球。
08:00
You [probably won't] pull three blue balls in a row at random out of a yellow box,
139
480896
3869
你也许很难从很多黄球的箱子里 连续拿出三个蓝色球,
08:04
but you could randomly sample just one blue ball.
140
484765
2455
但随机拿出一个还是有可能的。
08:07
That's not an improbable sample.
141
487220
1970
这不是一个小概率事件。
08:09
And if you could reach into a box at random
142
489190
2224
如果你从箱子里随机抽出一个东西,
08:11
and pull out something that squeaks, maybe everything in the box squeaks.
143
491414
3987
而这个东西能捏响, 那可能箱子里所有东西都能捏响。
08:15
So even though babies are going to see much less evidence for squeaking,
144
495875
4445
因此,尽管婴儿们在接下来的 “只拿一个球”的实验中,
08:20
and have many fewer actions to imitate
145
500320
2242
看到的证据更少,
08:22
in this one ball condition than in the condition you just saw,
146
502562
3343
可模仿的动作也更少,
08:25
we predicted that babies themselves would squeeze more,
147
505905
3892
但我们推测婴儿们捏球的几率会升高,
08:29
and that's exactly what we found.
148
509797
2894
结果正是如此。
08:32
So 15-month-old babies, in this respect, like scientists,
149
512691
4411
15个月大的婴儿,在这个实验中, 跟科学家一样,
08:37
care whether evidence is randomly sampled or not,
150
517102
3088
十分看重取样是否真正随机,
08:40
and they use this to develop expectations about the world:
151
520190
3507
他们通过这种方法 来发展对世界的预判:
08:43
what squeaks and what doesn't,
152
523697
2182
什么能捏响,什么不能,
08:45
what to explore and what to ignore.
153
525879
3145
什么值得探究,什么可以忽略。
08:50
Let me show you another example now,
154
530384
2066
下面我们来看另一个实验,
08:52
this time about a problem of causal reasoning.
155
532450
2730
关于因果推论的实验。
08:55
And it starts with a problem of confounded evidence
156
535180
2439
这个实验源于一个让我们所有人
08:57
that all of us have,
157
537619
1672
都感到困惑的事实:
08:59
which is that we are part of the world.
158
539291
2020
我们是这个世界的一部分。
09:01
And this might not seem like a problem to you, but like most problems,
159
541311
3436
也许在你看来这根本不算个问题, 但就像许多其他问题一样,
09:04
it's only a problem when things go wrong.
160
544747
2337
只有问题出现时,它才算一个问题。
09:07
Take this baby, for instance.
161
547464
1811
以下面这个婴儿为例。
09:09
Things are going wrong for him.
162
549275
1705
他就碰到了点问题。
09:10
He would like to make this toy go, and he can't.
163
550980
2271
他想把玩具弄响,但是没有成功。
09:13
I'll show you a few-second clip.
164
553251
2529
我给你们放几秒视频。
大体而言,有两种可能:
09:21
And there's two possibilities, broadly:
165
561340
1920
09:23
Maybe he's doing something wrong,
166
563260
2634
也许他玩的方法不对,
09:25
or maybe there's something wrong with the toy.
167
565894
4216
或者玩具坏了。
09:30
So in this next experiment,
168
570110
2111
因此在接下来的实验中,
09:32
we're going to give babies just a tiny bit of statistical data
169
572221
3297
我们会给婴儿少量统计学数据,
09:35
supporting one hypothesis over the other,
170
575518
2582
这些数据能支持某一种可能性,
09:38
and we're going to see if babies can use that to make different decisions
171
578100
3455
我们再看婴儿能否依据这些数据
作出不同的决定。
09:41
about what to do.
172
581555
1834
09:43
Here's the setup.
173
583389
2022
实验是这样的。
09:46
Hyowon is going to try to make the toy go and succeed.
174
586071
3030
孝媛尝试弄响这个玩具,她成功了。
09:49
I am then going to try twice and fail both times,
175
589101
3320
然后我也开始玩,但两次都失败了,
09:52
and then Hyowon is going to try again and succeed,
176
592421
3112
然后孝媛再次尝试,她又成功了,
09:55
and this roughly sums up my relationship to my graduate students
177
595533
3172
也许这是我跟孝媛 在科技水平上差距
09:58
in technology across the board.
178
598705
2835
的很好体现。
10:02
But the important point here is it provides a little bit of evidence
179
602030
3292
这里的关键点在于, 它提供了一点点证据
10:05
that the problem isn't with the toy, it's with the person.
180
605322
3668
证明问题不在于玩具,而在于人。
10:08
Some people can make this toy go,
181
608990
2350
有的人能让玩具发出声音,
10:11
and some can't.
182
611340
959
有的人则不能。
10:12
Now, when the baby gets the toy, he's going to have a choice.
183
612799
3413
当婴儿拿到玩具之后, 他要做出选择。
10:16
His mom is right there,
184
616212
2188
他妈妈就在旁边,
他可以将玩具交给妈妈, 换一个人,
10:18
so he can go ahead and hand off the toy and change the person,
185
618400
3315
10:21
but there's also going to be another toy at the end of that cloth,
186
621715
3158
同时在那块布的尽头 放着另一个玩具,
10:24
and he can pull the cloth towards him and change the toy.
187
624873
3552
他可以将布拖过来,换一个玩具。
10:28
So let's see what the baby does.
188
628425
2090
我们来看看他会怎么做。
10:30
(Video) HG: Two, three. Go! (Music)
189
630515
4183
(视频)孝媛:二、三,开始! (音乐)
10:34
LS: One, two, three, go!
190
634698
3131
劳拉·舒尔茨:一、二、三,开始!
10:37
Arthur, I'm going to try again. One, two, three, go!
191
637829
7382
亚瑟,我再试一次。 一、二、三,开始!
10:45
YG: Arthur, let me try again, okay?
192
645677
2600
孝媛:亚瑟,让我再试一次,好吗?
10:48
One, two, three, go! (Music)
193
648277
4550
一、二、三,开始! (音乐)
10:53
Look at that. Remember these toys?
194
653583
1883
看啊。 记得这些玩具吗?
10:55
See these toys? Yeah, I'm going to put this one over here,
195
655466
3264
看到了吗?我把这个玩具放在这里,
10:58
and I'm going to give this one to you.
196
658730
2062
把这个玩具给你。
11:00
You can go ahead and play.
197
660792
2335
你可以自己玩了。
11:23
LS: Okay, Laura, but of course, babies love their mommies.
198
683213
4737
劳拉·舒尔茨:好吧,劳拉,但是, 小朋友都爱自己的妈妈呀。
11:27
Of course babies give toys to their mommies
199
687950
2182
他玩不转玩具的时候
11:30
when they can't make them work.
200
690132
2030
肯定会把玩具交给妈妈。
11:32
So again, the really important question is what happens when we change
201
692162
3593
那么,让我们看看 把这少量的统计学数据
11:35
the statistical data ever so slightly.
202
695755
3154
进行更换会怎么样。
11:38
This time, babies are going to see the toy work and fail in exactly the same order,
203
698909
4087
这一次,玩具响和不响的顺序跟刚才一样,
11:42
but we're changing the distribution of evidence.
204
702996
2415
但分布情况跟刚才不同。
11:45
This time, Hyowon is going to succeed once and fail once, and so am I.
205
705411
4411
这一次,孝媛会成功一次,失败一次, 我也一样。
11:49
And this suggests it doesn't matter who tries this toy, the toy is broken.
206
709822
5637
那就表明跟人没关系, 是这个玩具有问题。
11:55
It doesn't work all the time.
207
715459
1886
它时好时坏。
11:57
Again, the baby's going to have a choice.
208
717345
1965
同样的,婴儿要做出选择。
她妈妈就在她旁边, 她可以换人来试,
11:59
Her mom is right next to her, so she can change the person,
209
719310
3396
12:02
and there's going to be another toy at the end of the cloth.
210
722706
3204
同样有另一个玩具 放在布的另一头。
12:05
Let's watch what she does.
211
725910
1378
我们来看她会如何选择。
12:07
(Video) HG: Two, three, go! (Music)
212
727288
4348
(视频)孝媛:二、三,开始! (音乐)
12:11
Let me try one more time. One, two, three, go!
213
731636
4984
我再试一次。 一、二、三,开始!
12:17
Hmm.
214
737460
1697
嗯?
12:19
LS: Let me try, Clara.
215
739950
2692
劳拉·舒尔茨:克拉拉,让我试一下吧。
12:22
One, two, three, go!
216
742642
3945
一、二、三,开始!
12:27
Hmm, let me try again.
217
747265
1935
嗯,我再试一次。
12:29
One, two, three, go! (Music)
218
749200
5670
一、二、三,开始! (音乐)
12:35
HG: I'm going to put this one over here,
219
755009
2233
孝媛:我把这个放在这边,
12:37
and I'm going to give this one to you.
220
757242
2001
把这个给你。
12:39
You can go ahead and play.
221
759243
3597
你可以玩了。
12:58
(Applause)
222
778376
4897
(掌声)
13:04
LS: Let me show you the experimental results.
223
784993
2392
劳拉·舒尔茨:我们来看看实验结果。
13:07
On the vertical axis, you'll see the distribution
224
787385
2475
在纵轴上,显示的是
13:09
of children's choices in each condition,
225
789860
2577
在不同情况下婴儿所做选择的比例,
13:12
and you'll see that the distribution of the choices children make
226
792437
4551
我们可以看到,婴儿们做出的选择
13:16
depends on the evidence they observe.
227
796988
2787
跟他们观察到的证据有关。
13:19
So in the second year of life,
228
799775
1857
因此,在出生后的第二年,
13:21
babies can use a tiny bit of statistical data
229
801632
2577
婴儿已经可以利用少量统计数据
13:24
to decide between two fundamentally different strategies
230
804209
3367
来决定如何从两种不同的 基本策略中做出选择
13:27
for acting in the world:
231
807576
1881
从而在这个世界生存:
13:29
asking for help and exploring.
232
809457
2743
求助和探索。
13:33
I've just shown you two laboratory experiments
233
813700
3434
我刚刚向大家展示的两个实验
13:37
out of literally hundreds in the field that make similar points,
234
817134
3691
是从几百个类似实验中挑选出来的, 它们得出了相似的结论,
13:40
because the really critical point
235
820825
2392
因为真正重要的一点是
13:43
is that children's ability to make rich inferences from sparse data
236
823217
5108
孩子们从很少的数据中 推导出丰富结果的能力
13:48
underlies all the species-specific cultural learning that we do.
237
828325
5341
构成了我们研究 物种特异性文化的基础。
13:53
Children learn about new tools from just a few examples.
238
833666
4597
孩子能通过几个示范 就掌握工具的用法。
13:58
They learn new causal relationships from just a few examples.
239
838263
4717
能通过几个例子 就掌握新的因果关系。
14:03
They even learn new words, in this case in American Sign Language.
240
843928
4871
他们甚至能学会新的词语, 这里我指的是美国手语。
14:08
I want to close with just two points.
241
848799
2311
我想用两个观点来结束演讲。
14:12
If you've been following my world, the field of brain and cognitive sciences,
242
852050
3688
如果在过去几年, 你一直在关注我们的领域,
14:15
for the past few years,
243
855738
1927
关注大脑和认知科学,
14:17
three big ideas will have come to your attention.
244
857665
2415
那么你一定注意到了这三个观点。
14:20
The first is that this is the era of the brain.
245
860080
3436
首先,现在是大脑的时代。
14:23
And indeed, there have been staggering discoveries in neuroscience:
246
863516
3669
实际上,神经系统科学 已经取得了不错的进展:
14:27
localizing functionally specialized regions of cortex,
247
867185
3436
确定大脑皮层各区域的作用,
14:30
turning mouse brains transparent,
248
870621
2601
让小白鼠的大脑透明化,
14:33
activating neurons with light.
249
873222
3776
利用光线触发神经元(活动)。
14:36
A second big idea
250
876998
1996
第二个大的观点是
14:38
is that this is the era of big data and machine learning,
251
878994
4104
现在是大数据和机器学习的时代,
14:43
and machine learning promises to revolutionize our understanding
252
883098
3141
机器学习预示了我们对事物 的理解将发生革命性的变化,
14:46
of everything from social networks to epidemiology.
253
886239
4667
无论是对社交网络还是流行病学。
14:50
And maybe, as it tackles problems of scene understanding
254
890906
2693
也许,随着它被用于场景理解
14:53
and natural language processing,
255
893599
1993
和自然语言处理,
14:55
to tell us something about human cognition.
256
895592
3324
能帮助我们更好地研究人类认知。
14:59
And the final big idea you'll have heard
257
899756
1937
最后一个你可能注意到的观点是
15:01
is that maybe it's a good idea we're going to know so much about brains
258
901693
3387
我们能深入了解大脑, 能深入运用大数据,
15:05
and have so much access to big data,
259
905080
1917
是一件非常好的事情,
15:06
because left to our own devices,
260
906997
2507
因为人类天性随意,
15:09
humans are fallible, we take shortcuts,
261
909504
3831
我们容易犯错,喜欢走捷径,
15:13
we err, we make mistakes,
262
913335
3437
我们闯祸,我们惹麻烦,
15:16
we're biased, and in innumerable ways,
263
916772
3684
我们心存偏见, 而且从许多方面来讲,
15:20
we get the world wrong.
264
920456
2969
我们会错误理解这个世界。
15:24
I think these are all important stories,
265
924843
2949
我认为这些书都很重要,
15:27
and they have a lot to tell us about what it means to be human,
266
927792
3785
能帮我们理解身为人类意味着什么,
15:31
but I want you to note that today I told you a very different story.
267
931577
3529
但我想强调的是, 今天我讲的是一个完全不同的故事。
15:35
It's a story about minds and not brains,
268
935966
3807
它讲的是思维而不是大脑,
15:39
and in particular, it's a story about the kinds of computations
269
939773
3006
确切的说,是关于人类思维所特有的
15:42
that uniquely human minds can perform,
270
942779
2590
一种计算能力,
15:45
which involve rich, structured knowledge and the ability to learn
271
945369
3944
这种能力让我们学识渊博,
15:49
from small amounts of data, the evidence of just a few examples.
272
949313
5268
帮助我们从少量数据和证据中 进行学习。
从本质上来说, 这是一个关于成长的故事,
15:56
And fundamentally, it's a story about how starting as very small children
273
956301
4299
16:00
and continuing out all the way to the greatest accomplishments
274
960600
4180
小孩子如何一天天成长, 取得巨大成就,
16:04
of our culture,
275
964780
3843
为我们的文化做贡献,
16:08
we get the world right.
276
968623
1997
我们对世界的理解又是正确的。
16:12
Folks, human minds do not only learn from small amounts of data.
277
972433
5267
朋友们,人类的思维不光 能从少量数据中进行学习。
16:18
Human minds think of altogether new ideas.
278
978285
2101
人类思维能提炼全新的观点。
16:20
Human minds generate research and discovery,
279
980746
3041
人类思维进行研究和发现,
16:23
and human minds generate art and literature and poetry and theater,
280
983787
5273
人类思维还能创作 艺术、文学、诗歌和戏剧,
16:29
and human minds take care of other humans:
281
989070
3760
人类思维还会关注其他人类:
16:32
our old, our young, our sick.
282
992830
3427
尊老爱幼,救死扶伤。
16:36
We even heal them.
283
996517
2367
让他们痊愈。
16:39
In the years to come, we're going to see technological innovations
284
999564
3103
在未来几年, 我们将看到超出我们想象
16:42
beyond anything I can even envision,
285
1002667
3797
的技术创新,
16:46
but we are very unlikely
286
1006464
2150
但是我们很可能看不到
16:48
to see anything even approximating the computational power of a human child
287
1008614
5709
哪怕仅仅是接近 人类小孩计算能力的技术出现,
16:54
in my lifetime or in yours.
288
1014323
4298
可能我们的有生之年都看不到。
16:58
If we invest in these most powerful learners and their development,
289
1018621
5047
如果我们对这些最强大的 学习者和他们的发展进行投资,
17:03
in babies and children
290
1023668
2917
也就是对婴儿和儿童,
17:06
and mothers and fathers
291
1026585
1826
对他们的父母,
17:08
and caregivers and teachers
292
1028411
2699
对他们的看护和老师,
就像我们对技术、工程和设计 等最强大和优雅的门类
17:11
the ways we invest in our other most powerful and elegant forms
293
1031110
4170
17:15
of technology, engineering and design,
294
1035280
3218
进行投资一样,
17:18
we will not just be dreaming of a better future,
295
1038498
2939
那我们将不仅梦想着更好的未来,
17:21
we will be planning for one.
296
1041437
2127
而是按计划在实现它。
17:23
Thank you very much.
297
1043564
2345
非常感谢大家。
17:25
(Applause)
298
1045909
3421
(掌声)
17:29
Chris Anderson: Laura, thank you. I do actually have a question for you.
299
1049810
4426
克里斯·安德森:劳拉,谢谢你。 我有一个问题想问你。
17:34
First of all, the research is insane.
300
1054236
2359
首先,这项研究非常棒。
17:36
I mean, who would design an experiment like that? (Laughter)
301
1056595
3725
我是说,谁能设计出这样一个实验呢? (笑声)
17:41
I've seen that a couple of times,
302
1061150
1790
我已经看过好几次了,
17:42
and I still don't honestly believe that that can truly be happening,
303
1062940
3222
但我仍然不敢相信这是真的,
17:46
but other people have done similar experiments; it checks out.
304
1066162
3158
但其他人也做过类似的实验, 真的证明了,
17:49
The babies really are that genius.
305
1069320
1633
婴儿们真的都是天才。
17:50
LS: You know, they look really impressive in our experiments,
306
1070953
3007
劳拉·舒尔茨:是啊,他们在实验中的表现 真是棒极了,
17:53
but think about what they look like in real life, right?
307
1073960
2652
但想象一下他们在生活中 的表现(会更棒),不是吗?
17:56
It starts out as a baby.
308
1076612
1150
最开始只是个小东西,
17:57
Eighteen months later, it's talking to you,
309
1077762
2007
十八个月后, 他就可以跟你交谈了,
17:59
and babies' first words aren't just things like balls and ducks,
310
1079769
3041
婴儿最开始会说的话 不仅仅是球啊鸭子啊这些东西,
18:02
they're things like "all gone," which refer to disappearance,
311
1082810
2881
还有包括“不见了”表示消失,
或者“啊—哦”表示下意识的动作。
18:05
or "uh-oh," which refer to unintentional actions.
312
1085691
2283
18:07
It has to be that powerful.
313
1087974
1562
就是这么神奇。
18:09
It has to be much more powerful than anything I showed you.
314
1089536
2775
比我在实验中展示的要神奇得多。
他们能理解整个世界。
18:12
They're figuring out the entire world.
315
1092311
1974
一个四岁的小孩几乎能跟你聊任何话题。
18:14
A four-year-old can talk to you about almost anything.
316
1094285
3144
(掌声)
18:17
(Applause)
317
1097429
1601
18:19
CA: And if I understand you right, the other key point you're making is,
318
1099030
3414
克里斯·安德森:如果我没理解错的话, 你想说明的另一个关键点是,
18:22
we've been through these years where there's all this talk
319
1102444
2754
多年以来,我们一直认为
18:25
of how quirky and buggy our minds are,
320
1105198
1932
人类思维古怪而不正常,
18:27
that behavioral economics and the whole theories behind that
321
1107130
2867
行为经济学和它背后的 一整套理论都认为
18:29
that we're not rational agents.
322
1109997
1603
人类不是一种理性的生物。
18:31
You're really saying that the bigger story is how extraordinary,
323
1111600
4216
而你认为人类思维 是如此卓越,
18:35
and there really is genius there that is underappreciated.
324
1115816
4944
如此出色,实际上是被低估了。
18:40
LS: One of my favorite quotes in psychology
325
1120760
2070
劳拉·舒尔茨:我最喜欢的 关于心理学的一句话
18:42
comes from the social psychologist Solomon Asch,
326
1122830
2290
来自社会心理学家所罗门·阿施,
18:45
and he said the fundamental task of psychology is to remove
327
1125120
2807
他说,心理学的基本任务就是
18:47
the veil of self-evidence from things.
328
1127927
2626
揭开事物“无证自明”的面纱。
18:50
There are orders of magnitude more decisions you make every day
329
1130553
4551
要正确理解世界
18:55
that get the world right.
330
1135104
1347
你每天要做出非常之多的决定。
18:56
You know about objects and their properties.
331
1136451
2132
你了解物体和它们的属性。
18:58
You know them when they're occluded. You know them in the dark.
332
1138583
3029
当有东西挡路的时候你会知道, 即便是在黑暗中。
19:01
You can walk through rooms.
333
1141612
1308
你可以穿过房间。
19:02
You can figure out what other people are thinking. You can talk to them.
334
1142920
3532
你可以猜到其他人在想什么。 你可以跟他们交谈。
你可以在太空中导航。 你了解数字。
19:06
You can navigate space. You know about numbers.
335
1146452
2230
你知道因果关系。 你理解道德推论。
19:08
You know causal relationships. You know about moral reasoning.
336
1148682
3022
这些事情做起来不费功夫, 因此我们注意不到,
19:11
You do this effortlessly, so we don't see it,
337
1151704
2356
但我们就是这样来正确理解世界的, 这是一种非凡的,
19:14
but that is how we get the world right, and it's a remarkable
338
1154060
2912
但非常难以理解的成就。
19:16
and very difficult-to-understand accomplishment.
339
1156972
2318
克里斯·安德森:我猜观众中间
19:19
CA: I suspect there are people in the audience who have
340
1159290
2628
一定有技术加速理论的支持者,
19:21
this view of accelerating technological power
341
1161918
2238
他们可能不认同你的观点, 就是有生之年都看不到
19:24
who might dispute your statement that never in our lifetimes
342
1164156
2958
计算机的智能 达到一个三岁孩子的水平,
19:27
will a computer do what a three-year-old child can do,
343
1167114
2618
但毫无争议的是,无论如何,
19:29
but what's clear is that in any scenario,
344
1169732
3248
19:32
our machines have so much to learn from our toddlers.
345
1172980
3770
从蹒跚学步的儿童身上 机器可以学到很多很多。
19:38
LS: I think so. You'll have some machine learning folks up here.
346
1178230
3216
劳拉·舒尔茨:的确是。观众中 有从事机器学习研究的朋友。
19:41
I mean, you should never bet against babies or chimpanzees
347
1181446
4203
我想说,你不能认为婴儿或者黑猩猩
19:45
or technology as a matter of practice,
348
1185649
3645
或者技术的差别在于实践,
19:49
but it's not just a difference in quantity,
349
1189294
4528
他们之间的差别不在于数量,
19:53
it's a difference in kind.
350
1193822
1764
而在于种类。
19:55
We have incredibly powerful computers,
351
1195586
2160
我们现在有非常强大的计算机,
19:57
and they do do amazingly sophisticated things,
352
1197746
2391
它们能完成非常精确的任务,
20:00
often with very big amounts of data.
353
1200137
3204
处理海量的数据。
20:03
Human minds do, I think, something quite different,
354
1203341
2607
但人类思维的运作方式完全不同,
20:05
and I think it's the structured, hierarchical nature of human knowledge
355
1205948
3895
我认为研究人类知识 在结构和层次方面的属性
20:09
that remains a real challenge.
356
1209843
2032
仍是一项巨大的挑战。
20:11
CA: Laura Schulz, wonderful food for thought. Thank you so much.
357
1211875
3061
克里斯·安德森:劳拉·舒尔茨, 带来了美妙的精神食粮。非常感谢。
20:14
LS: Thank you. (Applause)
358
1214936
2922
劳拉·舒尔茨:谢谢。 (掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog