Laura Schulz: The surprisingly logical minds of babies

234,482 views ・ 2015-06-02

TED


请双击下面的英文字幕来播放视频。

翻译人员: Hong Li 校对人员: 杏儀 歐陽
00:12
Mark Twain summed up what I take to be
0
12835
2155
马克·吐温说过一句话,
00:14
one of the fundamental problems of cognitive science
1
14990
3120
在我看来,指出了认知科学
00:18
with a single witticism.
2
18110
1710
的根本问题。
他说,“科学非常奇妙,
00:20
He said, "There's something fascinating about science.
3
20410
3082
00:23
One gets such wholesale returns of conjecture
4
23492
3228
你实际上只需进行少量投资,
00:26
out of such a trifling investment in fact."
5
26720
3204
得到的回报却是一整套理论。”
00:29
(Laughter)
6
29924
1585
(笑声)
00:32
Twain meant it as a joke, of course, but he's right:
7
32199
2604
吐温当然是在开玩笑,但他没说错:
00:34
There's something fascinating about science.
8
34803
2876
科学就是这么神奇。
00:37
From a few bones, we infer the existence of dinosuars.
9
37679
4261
从几块骨头, 我们能推测出恐龙的存在。
00:42
From spectral lines, the composition of nebulae.
10
42910
3871
从几条光谱带, 我们能推测星云的构成物质。
00:47
From fruit flies,
11
47471
2938
分析果蝇,
00:50
the mechanisms of heredity,
12
50409
2943
我们能推导出遗传机制,
00:53
and from reconstructed images of blood flowing through the brain,
13
53352
4249
分析大脑血液流动的图像,
00:57
or in my case, from the behavior of very young children,
14
57601
4708
或者,从我的研究方向来说, 分析儿童的行为,
01:02
we try to say something about the fundamental mechanisms
15
62309
2829
我们尝试搞清楚人类认知的
01:05
of human cognition.
16
65138
1618
基本机制。
01:07
In particular, in my lab in the Department of Brain and Cognitive Sciences at MIT,
17
67716
4759
尤其在我们麻省理工学院 大脑和认知科学系实验室,
01:12
I have spent the past decade trying to understand the mystery
18
72475
3654
过去十年我一直在研究一个问题,
01:16
of how children learn so much from so little so quickly.
19
76129
3977
为什么小孩子能从无到有 快速地学会很多东西。
01:20
Because, it turns out that the fascinating thing about science
20
80666
2978
因为,科学的奇妙之处,
01:23
is also a fascinating thing about children,
21
83644
3529
恰恰也是小孩子的奇妙之处,
01:27
which, to put a gentler spin on Mark Twain,
22
87173
2581
从马克·吐温的话引申出来,
01:29
is precisely their ability to draw rich, abstract inferences
23
89754
4650
准确地说,就是他们都能 从少量的、充满干扰的数据中
01:34
rapidly and accurately from sparse, noisy data.
24
94404
4661
迅速而准确地得出丰富的理论推断。
01:40
I'm going to give you just two examples today.
25
100355
2398
我今天只举两个例子。
01:42
One is about a problem of generalization,
26
102753
2287
一个关于归纳总结,
01:45
and the other is about a problem of causal reasoning.
27
105040
2850
另一个关于因果推理。
01:47
And although I'm going to talk about work in my lab,
28
107890
2525
尽管我今天要谈的 是我的实验室里的工作,
01:50
this work is inspired by and indebted to a field.
29
110415
3460
但它的灵感来源于 整个(认知科学)领域。
01:53
I'm grateful to mentors, colleagues, and collaborators around the world.
30
113875
4283
我要感谢世界各地的 导师、同事和合作者们。
01:59
Let me start with the problem of generalization.
31
119308
2974
我先从归纳总结开始讲起。
02:02
Generalizing from small samples of data is the bread and butter of science.
32
122652
4133
从少量的数据样本进行归纳总结 是科学的立身之本。
02:06
We poll a tiny fraction of the electorate
33
126785
2554
我们调查一小部分选民的投票结果,
02:09
and we predict the outcome of national elections.
34
129339
2321
就能推测出大选结果。
02:12
We see how a handful of patients responds to treatment in a clinical trial,
35
132240
3925
我们分析临床试验中一部分病人 对治疗方案的反应,
02:16
and we bring drugs to a national market.
36
136165
3065
然后向全国市场推广新药。
02:19
But this only works if our sample is randomly drawn from the population.
37
139230
4365
但这要求我们抽取样本 要完全随机。
02:23
If our sample is cherry-picked in some way --
38
143595
2735
如果样本是刻意挑选的,
02:26
say, we poll only urban voters,
39
146330
2072
比如说,只抽取城市选民,
02:28
or say, in our clinical trials for treatments for heart disease,
40
148402
4388
或者,在治疗心脏病的临床试验中,
02:32
we include only men --
41
152790
1881
只抽取男性患者,
02:34
the results may not generalize to the broader population.
42
154671
3158
那结果可能不适用于整个人群。
02:38
So scientists care whether evidence is randomly sampled or not,
43
158479
3581
因此科学家非常重视 样本的抽取是否随机,
02:42
but what does that have to do with babies?
44
162060
2015
那婴儿会不会重视呢?
02:44
Well, babies have to generalize from small samples of data all the time.
45
164585
4621
实际上,婴儿一直在对 少量数据样本进行归纳总结。
02:49
They see a few rubber ducks and learn that they float,
46
169206
3158
他们见过几只橡胶鸭子, 知道它们能浮起来,
02:52
or a few balls and learn that they bounce.
47
172364
3575
见过几个球,知道它们能在地上弹跳。
02:55
And they develop expectations about ducks and balls
48
175939
2951
他们对鸭子和球产生了预判
02:58
that they're going to extend to rubber ducks and balls
49
178890
2716
并会在今后的人生中 将这种预判延伸到
03:01
for the rest of their lives.
50
181606
1879
(所有)橡胶鸭子和球身上。
03:03
And the kinds of generalizations babies have to make about ducks and balls
51
183485
3739
这种针对鸭子和球的归纳总结法,
03:07
they have to make about almost everything:
52
187224
2089
婴儿几乎要用在所有东西上:
03:09
shoes and ships and sealing wax and cabbages and kings.
53
189313
3917
鞋子、船、封蜡、卷心菜和国王。
03:14
So do babies care whether the tiny bit of evidence they see
54
194200
2961
那么婴儿会不会在乎 他们看到的这几个样本
03:17
is plausibly representative of a larger population?
55
197161
3692
是不是具有代表性呢?
03:21
Let's find out.
56
201763
1900
我们来看一看。
03:23
I'm going to show you two movies,
57
203663
1723
我将给你们放两段视频,
03:25
one from each of two conditions of an experiment,
58
205386
2462
每一段各反映一个实验里的一种情况,
03:27
and because you're going to see just two movies,
59
207848
2438
因为只有两段视频,
03:30
you're going to see just two babies,
60
210286
2136
所以你们只能看到两个婴儿,
03:32
and any two babies differ from each other in innumerable ways.
61
212422
3947
而任意两个婴儿之间都是千差万别的。
03:36
But these babies, of course, here stand in for groups of babies,
62
216369
3051
当然,这两个婴儿, 各代表一类婴儿,
03:39
and the differences you're going to see
63
219420
1895
你们即将看到的差别,
03:41
represent average group differences in babies' behavior across conditions.
64
221315
5195
代表了婴儿在不同情况下 普遍的行为差异。
03:47
In each movie, you're going to see a baby doing maybe
65
227160
2583
在每段视频中,婴儿的所作所为,
03:49
just exactly what you might expect a baby to do,
66
229743
3460
可能会跟你所预期的一样,
03:53
and we can hardly make babies more magical than they already are.
67
233203
4017
婴儿是如此神奇, 可能超乎你的想象。
但在我看来神奇的是,
03:58
But to my mind the magical thing,
68
238090
2010
04:00
and what I want you to pay attention to,
69
240100
2089
我也希望大家能注意到,
04:02
is the contrast between these two conditions,
70
242189
3111
就是两种情况之间的差别,
04:05
because the only thing that differs between these two movies
71
245300
3529
因为两段视频唯一的不同之处
04:08
is the statistical evidence the babies are going to observe.
72
248829
3466
就是婴儿需要观察的统计学证据。
04:13
We're going to show babies a box of blue and yellow balls,
73
253425
3183
我们会给婴儿看一个盒子, 里面装满了蓝色和黄色的球,
04:16
and my then-graduate student, now colleague at Stanford, Hyowon Gweon,
74
256608
4620
我当时的研究生学生, 现在是斯坦福大学的同事,权孝媛。
04:21
is going to pull three blue balls in a row out of this box,
75
261228
3077
会从盒子里连续拿出三个蓝色的球,
04:24
and when she pulls those balls out, she's going to squeeze them,
76
264305
3123
当她把球拿出来的时候,她会捏它们,
04:27
and the balls are going to squeak.
77
267428
2113
球会发出声音。
04:29
And if you're a baby, that's like a TED Talk.
78
269541
2763
对孩子来说,这就像TED演讲。
04:32
It doesn't get better than that.
79
272304
1904
真的没什么区别。
04:34
(Laughter)
80
274208
2561
(笑声)
04:38
But the important point is it's really easy to pull three blue balls in a row
81
278968
3659
重要的一点是, 从一个几乎全都是蓝色球的盒子里,
04:42
out of a box of mostly blue balls.
82
282627
2305
连续拿出三个蓝色的球非常容易。
04:44
You could do that with your eyes closed.
83
284932
2060
闭上眼睛都能做到。
04:46
It's plausibly a random sample from this population.
84
286992
2996
这是一个真正的随机取样。
04:49
And if you can reach into a box at random and pull out things that squeak,
85
289988
3732
如果你从一个盒子里随机 取出来的东西能捏响,
04:53
then maybe everything in the box squeaks.
86
293720
2839
那也许这个盒子里 所有的东西都能捏响。
04:56
So maybe babies should expect those yellow balls to squeak as well.
87
296559
3650
因此,婴儿也许会觉得 黄色的球也能捏响。
05:00
Now, those yellow balls have funny sticks on the end,
88
300209
2519
这些黄色的球在尾端有一根棍子,
05:02
so babies could do other things with them if they wanted to.
89
302728
2857
因此婴儿还可以对它做其他动作。
05:05
They could pound them or whack them.
90
305585
1831
比如说打它或者掰它。
05:07
But let's see what the baby does.
91
307416
2586
让我们来看婴儿会怎么做。
05:12
(Video) Hyowon Gweon: See this? (Ball squeaks)
92
312548
3343
(视频)权孝媛:看到没? (球被捏响)
05:16
Did you see that? (Ball squeaks)
93
316531
3045
听到了吗? (球被捏响)
05:20
Cool.
94
320036
3066
酷。
05:24
See this one?
95
324706
1950
看到这个球没?
05:26
(Ball squeaks)
96
326656
1881
(球被捏响)
05:28
Wow.
97
328537
2653
哇。
05:33
Laura Schulz: Told you. (Laughs)
98
333854
2113
劳拉·舒尔茨:我就说嘛。(笑)
05:35
(Video) HG: See this one? (Ball squeaks)
99
335967
4031
(视频)权孝媛:看这个。 (球被捏响)
05:39
Hey Clara, this one's for you. You can go ahead and play.
100
339998
4619
克拉拉,这个球给你。 拿着玩吧。
05:51
(Laughter)
101
351854
4365
(笑声)
05:56
LS: I don't even have to talk, right?
102
356219
2995
劳拉·舒尔茨: 我都不必解释了,对吗?
05:59
All right, it's nice that babies will generalize properties
103
359214
2899
好的,婴儿能从蓝色球的特性 推导出黄色球的特性
06:02
of blue balls to yellow balls,
104
362113
1528
这非常棒,
06:03
and it's impressive that babies can learn from imitating us,
105
363641
3096
而且婴儿通过模仿我们 进行学习,令人印象深刻,
06:06
but we've known those things about babies for a very long time.
106
366737
3669
但婴儿的这些特点我们早就知道了。
06:10
The really interesting question
107
370406
1811
真正有意思的是,
06:12
is what happens when we show babies exactly the same thing,
108
372217
2852
我们将上述实验完全重复一遍,
06:15
and we can ensure it's exactly the same because we have a secret compartment
109
375069
3611
我们之所以能保证两次实验完全一样, 是因为装球的箱子有一个隔层,
06:18
and we actually pull the balls from there,
110
378680
2110
实际上我们是从那个隔层里往外拿球,
06:20
but this time, all we change is the apparent population
111
380790
3478
但是这一次, 我们更改了样品库的外观,
06:24
from which that evidence was drawn.
112
384268
2902
也就是说盒子里的球看起来不同了。
06:27
This time, we're going to show babies three blue balls
113
387170
3553
这一次,我们还是 给婴儿看三个蓝色的球,
06:30
pulled out of a box of mostly yellow balls,
114
390723
3384
但是装球的箱子里几乎全是黄色的球,
06:34
and guess what?
115
394107
1322
猜猜结果会怎样?
06:35
You [probably won't] randomly draw three blue balls in a row
116
395429
2840
从几乎全是黄色球的箱子里
06:38
out of a box of mostly yellow balls.
117
398269
2484
连续拿出三个蓝色的球, 也许很难。
06:40
That is not plausibly randomly sampled evidence.
118
400753
3747
这不是令人信服的随机取样。
06:44
That evidence suggests that maybe Hyowon was deliberately sampling the blue balls.
119
404500
5123
也许孝媛是故意选的蓝色的球。
06:49
Maybe there's something special about the blue balls.
120
409623
2583
也许蓝色的球有些特别之处。
06:52
Maybe only the blue balls squeak.
121
412846
2976
也许只有蓝色的球能捏响。
06:55
Let's see what the baby does.
122
415822
1895
我们来看婴儿会怎么做。
06:57
(Video) HG: See this? (Ball squeaks)
123
417717
2904
(视频)权孝媛:看到了吗? (球被捏响)
07:02
See this toy? (Ball squeaks)
124
422851
2645
再看这个。 (球被捏响)
07:05
Oh, that was cool. See? (Ball squeaks)
125
425496
5480
哦,太酷了。看! (球被捏响)
07:10
Now this one's for you to play. You can go ahead and play.
126
430976
4394
这个是给你的。 拿去玩吧。
07:18
(Fussing) (Laughter)
127
438074
6347
(不耐烦) (笑声)
07:26
LS: So you just saw two 15-month-old babies
128
446901
2748
劳拉·舒尔茨:2个15个月大的婴儿
07:29
do entirely different things
129
449649
1942
仅仅基于他们观察到的取样几率
07:31
based only on the probability of the sample they observed.
130
451591
3599
做出了完全不同的反应。
07:35
Let me show you the experimental results.
131
455190
2321
让我们来看一下实验结果。
07:37
On the vertical axis, you'll see the percentage of babies
132
457511
2764
在纵轴上,你看到的是在不同情况下
07:40
who squeezed the ball in each condition,
133
460275
2530
会去捏球的婴儿的百分比,
07:42
and as you'll see, babies are much more likely to generalize the evidence
134
462805
3715
如图表所示,当婴儿认为取样具有代表性
07:46
when it's plausibly representative of the population
135
466520
3135
而不是特意选取的时候
07:49
than when the evidence is clearly cherry-picked.
136
469655
3738
他们有更高几率去捏黄色的球。
07:53
And this leads to a fun prediction:
137
473393
2415
这个结果能导致一个有趣的推测:
07:55
Suppose you pulled just one blue ball out of the mostly yellow box.
138
475808
4868
假设你从几乎全是黄色球的箱子里 拿出一个蓝色球。
08:00
You [probably won't] pull three blue balls in a row at random out of a yellow box,
139
480896
3869
你也许很难从很多黄球的箱子里 连续拿出三个蓝色球,
08:04
but you could randomly sample just one blue ball.
140
484765
2455
但随机拿出一个还是有可能的。
08:07
That's not an improbable sample.
141
487220
1970
这不是一个小概率事件。
08:09
And if you could reach into a box at random
142
489190
2224
如果你从箱子里随机抽出一个东西,
08:11
and pull out something that squeaks, maybe everything in the box squeaks.
143
491414
3987
而这个东西能捏响, 那可能箱子里所有东西都能捏响。
08:15
So even though babies are going to see much less evidence for squeaking,
144
495875
4445
因此,尽管婴儿们在接下来的 “只拿一个球”的实验中,
08:20
and have many fewer actions to imitate
145
500320
2242
看到的证据更少,
08:22
in this one ball condition than in the condition you just saw,
146
502562
3343
可模仿的动作也更少,
08:25
we predicted that babies themselves would squeeze more,
147
505905
3892
但我们推测婴儿们捏球的几率会升高,
08:29
and that's exactly what we found.
148
509797
2894
结果正是如此。
08:32
So 15-month-old babies, in this respect, like scientists,
149
512691
4411
15个月大的婴儿,在这个实验中, 跟科学家一样,
08:37
care whether evidence is randomly sampled or not,
150
517102
3088
十分看重取样是否真正随机,
08:40
and they use this to develop expectations about the world:
151
520190
3507
他们通过这种方法 来发展对世界的预判:
08:43
what squeaks and what doesn't,
152
523697
2182
什么能捏响,什么不能,
08:45
what to explore and what to ignore.
153
525879
3145
什么值得探究,什么可以忽略。
08:50
Let me show you another example now,
154
530384
2066
下面我们来看另一个实验,
08:52
this time about a problem of causal reasoning.
155
532450
2730
关于因果推论的实验。
08:55
And it starts with a problem of confounded evidence
156
535180
2439
这个实验源于一个让我们所有人
08:57
that all of us have,
157
537619
1672
都感到困惑的事实:
08:59
which is that we are part of the world.
158
539291
2020
我们是这个世界的一部分。
09:01
And this might not seem like a problem to you, but like most problems,
159
541311
3436
也许在你看来这根本不算个问题, 但就像许多其他问题一样,
09:04
it's only a problem when things go wrong.
160
544747
2337
只有问题出现时,它才算一个问题。
09:07
Take this baby, for instance.
161
547464
1811
以下面这个婴儿为例。
09:09
Things are going wrong for him.
162
549275
1705
他就碰到了点问题。
09:10
He would like to make this toy go, and he can't.
163
550980
2271
他想把玩具弄响,但是没有成功。
09:13
I'll show you a few-second clip.
164
553251
2529
我给你们放几秒视频。
大体而言,有两种可能:
09:21
And there's two possibilities, broadly:
165
561340
1920
09:23
Maybe he's doing something wrong,
166
563260
2634
也许他玩的方法不对,
09:25
or maybe there's something wrong with the toy.
167
565894
4216
或者玩具坏了。
09:30
So in this next experiment,
168
570110
2111
因此在接下来的实验中,
09:32
we're going to give babies just a tiny bit of statistical data
169
572221
3297
我们会给婴儿少量统计学数据,
09:35
supporting one hypothesis over the other,
170
575518
2582
这些数据能支持某一种可能性,
09:38
and we're going to see if babies can use that to make different decisions
171
578100
3455
我们再看婴儿能否依据这些数据
作出不同的决定。
09:41
about what to do.
172
581555
1834
09:43
Here's the setup.
173
583389
2022
实验是这样的。
09:46
Hyowon is going to try to make the toy go and succeed.
174
586071
3030
孝媛尝试弄响这个玩具,她成功了。
09:49
I am then going to try twice and fail both times,
175
589101
3320
然后我也开始玩,但两次都失败了,
09:52
and then Hyowon is going to try again and succeed,
176
592421
3112
然后孝媛再次尝试,她又成功了,
09:55
and this roughly sums up my relationship to my graduate students
177
595533
3172
也许这是我跟孝媛 在科技水平上差距
09:58
in technology across the board.
178
598705
2835
的很好体现。
10:02
But the important point here is it provides a little bit of evidence
179
602030
3292
这里的关键点在于, 它提供了一点点证据
10:05
that the problem isn't with the toy, it's with the person.
180
605322
3668
证明问题不在于玩具,而在于人。
10:08
Some people can make this toy go,
181
608990
2350
有的人能让玩具发出声音,
10:11
and some can't.
182
611340
959
有的人则不能。
10:12
Now, when the baby gets the toy, he's going to have a choice.
183
612799
3413
当婴儿拿到玩具之后, 他要做出选择。
10:16
His mom is right there,
184
616212
2188
他妈妈就在旁边,
他可以将玩具交给妈妈, 换一个人,
10:18
so he can go ahead and hand off the toy and change the person,
185
618400
3315
10:21
but there's also going to be another toy at the end of that cloth,
186
621715
3158
同时在那块布的尽头 放着另一个玩具,
10:24
and he can pull the cloth towards him and change the toy.
187
624873
3552
他可以将布拖过来,换一个玩具。
10:28
So let's see what the baby does.
188
628425
2090
我们来看看他会怎么做。
10:30
(Video) HG: Two, three. Go! (Music)
189
630515
4183
(视频)孝媛:二、三,开始! (音乐)
10:34
LS: One, two, three, go!
190
634698
3131
劳拉·舒尔茨:一、二、三,开始!
10:37
Arthur, I'm going to try again. One, two, three, go!
191
637829
7382
亚瑟,我再试一次。 一、二、三,开始!
10:45
YG: Arthur, let me try again, okay?
192
645677
2600
孝媛:亚瑟,让我再试一次,好吗?
10:48
One, two, three, go! (Music)
193
648277
4550
一、二、三,开始! (音乐)
10:53
Look at that. Remember these toys?
194
653583
1883
看啊。 记得这些玩具吗?
10:55
See these toys? Yeah, I'm going to put this one over here,
195
655466
3264
看到了吗?我把这个玩具放在这里,
10:58
and I'm going to give this one to you.
196
658730
2062
把这个玩具给你。
11:00
You can go ahead and play.
197
660792
2335
你可以自己玩了。
11:23
LS: Okay, Laura, but of course, babies love their mommies.
198
683213
4737
劳拉·舒尔茨:好吧,劳拉,但是, 小朋友都爱自己的妈妈呀。
11:27
Of course babies give toys to their mommies
199
687950
2182
他玩不转玩具的时候
11:30
when they can't make them work.
200
690132
2030
肯定会把玩具交给妈妈。
11:32
So again, the really important question is what happens when we change
201
692162
3593
那么,让我们看看 把这少量的统计学数据
11:35
the statistical data ever so slightly.
202
695755
3154
进行更换会怎么样。
11:38
This time, babies are going to see the toy work and fail in exactly the same order,
203
698909
4087
这一次,玩具响和不响的顺序跟刚才一样,
11:42
but we're changing the distribution of evidence.
204
702996
2415
但分布情况跟刚才不同。
11:45
This time, Hyowon is going to succeed once and fail once, and so am I.
205
705411
4411
这一次,孝媛会成功一次,失败一次, 我也一样。
11:49
And this suggests it doesn't matter who tries this toy, the toy is broken.
206
709822
5637
那就表明跟人没关系, 是这个玩具有问题。
11:55
It doesn't work all the time.
207
715459
1886
它时好时坏。
11:57
Again, the baby's going to have a choice.
208
717345
1965
同样的,婴儿要做出选择。
她妈妈就在她旁边, 她可以换人来试,
11:59
Her mom is right next to her, so she can change the person,
209
719310
3396
12:02
and there's going to be another toy at the end of the cloth.
210
722706
3204
同样有另一个玩具 放在布的另一头。
12:05
Let's watch what she does.
211
725910
1378
我们来看她会如何选择。
12:07
(Video) HG: Two, three, go! (Music)
212
727288
4348
(视频)孝媛:二、三,开始! (音乐)
12:11
Let me try one more time. One, two, three, go!
213
731636
4984
我再试一次。 一、二、三,开始!
12:17
Hmm.
214
737460
1697
嗯?
12:19
LS: Let me try, Clara.
215
739950
2692
劳拉·舒尔茨:克拉拉,让我试一下吧。
12:22
One, two, three, go!
216
742642
3945
一、二、三,开始!
12:27
Hmm, let me try again.
217
747265
1935
嗯,我再试一次。
12:29
One, two, three, go! (Music)
218
749200
5670
一、二、三,开始! (音乐)
12:35
HG: I'm going to put this one over here,
219
755009
2233
孝媛:我把这个放在这边,
12:37
and I'm going to give this one to you.
220
757242
2001
把这个给你。
12:39
You can go ahead and play.
221
759243
3597
你可以玩了。
12:58
(Applause)
222
778376
4897
(掌声)
13:04
LS: Let me show you the experimental results.
223
784993
2392
劳拉·舒尔茨:我们来看看实验结果。
13:07
On the vertical axis, you'll see the distribution
224
787385
2475
在纵轴上,显示的是
13:09
of children's choices in each condition,
225
789860
2577
在不同情况下婴儿所做选择的比例,
13:12
and you'll see that the distribution of the choices children make
226
792437
4551
我们可以看到,婴儿们做出的选择
13:16
depends on the evidence they observe.
227
796988
2787
跟他们观察到的证据有关。
13:19
So in the second year of life,
228
799775
1857
因此,在出生后的第二年,
13:21
babies can use a tiny bit of statistical data
229
801632
2577
婴儿已经可以利用少量统计数据
13:24
to decide between two fundamentally different strategies
230
804209
3367
来决定如何从两种不同的 基本策略中做出选择
13:27
for acting in the world:
231
807576
1881
从而在这个世界生存:
13:29
asking for help and exploring.
232
809457
2743
求助和探索。
13:33
I've just shown you two laboratory experiments
233
813700
3434
我刚刚向大家展示的两个实验
13:37
out of literally hundreds in the field that make similar points,
234
817134
3691
是从几百个类似实验中挑选出来的, 它们得出了相似的结论,
13:40
because the really critical point
235
820825
2392
因为真正重要的一点是
13:43
is that children's ability to make rich inferences from sparse data
236
823217
5108
孩子们从很少的数据中 推导出丰富结果的能力
13:48
underlies all the species-specific cultural learning that we do.
237
828325
5341
构成了我们研究 物种特异性文化的基础。
13:53
Children learn about new tools from just a few examples.
238
833666
4597
孩子能通过几个示范 就掌握工具的用法。
13:58
They learn new causal relationships from just a few examples.
239
838263
4717
能通过几个例子 就掌握新的因果关系。
14:03
They even learn new words, in this case in American Sign Language.
240
843928
4871
他们甚至能学会新的词语, 这里我指的是美国手语。
14:08
I want to close with just two points.
241
848799
2311
我想用两个观点来结束演讲。
14:12
If you've been following my world, the field of brain and cognitive sciences,
242
852050
3688
如果在过去几年, 你一直在关注我们的领域,
14:15
for the past few years,
243
855738
1927
关注大脑和认知科学,
14:17
three big ideas will have come to your attention.
244
857665
2415
那么你一定注意到了这三个观点。
14:20
The first is that this is the era of the brain.
245
860080
3436
首先,现在是大脑的时代。
14:23
And indeed, there have been staggering discoveries in neuroscience:
246
863516
3669
实际上,神经系统科学 已经取得了不错的进展:
14:27
localizing functionally specialized regions of cortex,
247
867185
3436
确定大脑皮层各区域的作用,
14:30
turning mouse brains transparent,
248
870621
2601
让小白鼠的大脑透明化,
14:33
activating neurons with light.
249
873222
3776
利用光线触发神经元(活动)。
14:36
A second big idea
250
876998
1996
第二个大的观点是
14:38
is that this is the era of big data and machine learning,
251
878994
4104
现在是大数据和机器学习的时代,
14:43
and machine learning promises to revolutionize our understanding
252
883098
3141
机器学习预示了我们对事物 的理解将发生革命性的变化,
14:46
of everything from social networks to epidemiology.
253
886239
4667
无论是对社交网络还是流行病学。
14:50
And maybe, as it tackles problems of scene understanding
254
890906
2693
也许,随着它被用于场景理解
14:53
and natural language processing,
255
893599
1993
和自然语言处理,
14:55
to tell us something about human cognition.
256
895592
3324
能帮助我们更好地研究人类认知。
14:59
And the final big idea you'll have heard
257
899756
1937
最后一个你可能注意到的观点是
15:01
is that maybe it's a good idea we're going to know so much about brains
258
901693
3387
我们能深入了解大脑, 能深入运用大数据,
15:05
and have so much access to big data,
259
905080
1917
是一件非常好的事情,
15:06
because left to our own devices,
260
906997
2507
因为人类天性随意,
15:09
humans are fallible, we take shortcuts,
261
909504
3831
我们容易犯错,喜欢走捷径,
15:13
we err, we make mistakes,
262
913335
3437
我们闯祸,我们惹麻烦,
15:16
we're biased, and in innumerable ways,
263
916772
3684
我们心存偏见, 而且从许多方面来讲,
15:20
we get the world wrong.
264
920456
2969
我们会错误理解这个世界。
15:24
I think these are all important stories,
265
924843
2949
我认为这些书都很重要,
15:27
and they have a lot to tell us about what it means to be human,
266
927792
3785
能帮我们理解身为人类意味着什么,
15:31
but I want you to note that today I told you a very different story.
267
931577
3529
但我想强调的是, 今天我讲的是一个完全不同的故事。
15:35
It's a story about minds and not brains,
268
935966
3807
它讲的是思维而不是大脑,
15:39
and in particular, it's a story about the kinds of computations
269
939773
3006
确切的说,是关于人类思维所特有的
15:42
that uniquely human minds can perform,
270
942779
2590
一种计算能力,
15:45
which involve rich, structured knowledge and the ability to learn
271
945369
3944
这种能力让我们学识渊博,
15:49
from small amounts of data, the evidence of just a few examples.
272
949313
5268
帮助我们从少量数据和证据中 进行学习。
从本质上来说, 这是一个关于成长的故事,
15:56
And fundamentally, it's a story about how starting as very small children
273
956301
4299
16:00
and continuing out all the way to the greatest accomplishments
274
960600
4180
小孩子如何一天天成长, 取得巨大成就,
16:04
of our culture,
275
964780
3843
为我们的文化做贡献,
16:08
we get the world right.
276
968623
1997
我们对世界的理解又是正确的。
16:12
Folks, human minds do not only learn from small amounts of data.
277
972433
5267
朋友们,人类的思维不光 能从少量数据中进行学习。
16:18
Human minds think of altogether new ideas.
278
978285
2101
人类思维能提炼全新的观点。
16:20
Human minds generate research and discovery,
279
980746
3041
人类思维进行研究和发现,
16:23
and human minds generate art and literature and poetry and theater,
280
983787
5273
人类思维还能创作 艺术、文学、诗歌和戏剧,
16:29
and human minds take care of other humans:
281
989070
3760
人类思维还会关注其他人类:
16:32
our old, our young, our sick.
282
992830
3427
尊老爱幼,救死扶伤。
16:36
We even heal them.
283
996517
2367
让他们痊愈。
16:39
In the years to come, we're going to see technological innovations
284
999564
3103
在未来几年, 我们将看到超出我们想象
16:42
beyond anything I can even envision,
285
1002667
3797
的技术创新,
16:46
but we are very unlikely
286
1006464
2150
但是我们很可能看不到
16:48
to see anything even approximating the computational power of a human child
287
1008614
5709
哪怕仅仅是接近 人类小孩计算能力的技术出现,
16:54
in my lifetime or in yours.
288
1014323
4298
可能我们的有生之年都看不到。
16:58
If we invest in these most powerful learners and their development,
289
1018621
5047
如果我们对这些最强大的 学习者和他们的发展进行投资,
17:03
in babies and children
290
1023668
2917
也就是对婴儿和儿童,
17:06
and mothers and fathers
291
1026585
1826
对他们的父母,
17:08
and caregivers and teachers
292
1028411
2699
对他们的看护和老师,
就像我们对技术、工程和设计 等最强大和优雅的门类
17:11
the ways we invest in our other most powerful and elegant forms
293
1031110
4170
17:15
of technology, engineering and design,
294
1035280
3218
进行投资一样,
17:18
we will not just be dreaming of a better future,
295
1038498
2939
那我们将不仅梦想着更好的未来,
17:21
we will be planning for one.
296
1041437
2127
而是按计划在实现它。
17:23
Thank you very much.
297
1043564
2345
非常感谢大家。
17:25
(Applause)
298
1045909
3421
(掌声)
17:29
Chris Anderson: Laura, thank you. I do actually have a question for you.
299
1049810
4426
克里斯·安德森:劳拉,谢谢你。 我有一个问题想问你。
17:34
First of all, the research is insane.
300
1054236
2359
首先,这项研究非常棒。
17:36
I mean, who would design an experiment like that? (Laughter)
301
1056595
3725
我是说,谁能设计出这样一个实验呢? (笑声)
17:41
I've seen that a couple of times,
302
1061150
1790
我已经看过好几次了,
17:42
and I still don't honestly believe that that can truly be happening,
303
1062940
3222
但我仍然不敢相信这是真的,
17:46
but other people have done similar experiments; it checks out.
304
1066162
3158
但其他人也做过类似的实验, 真的证明了,
17:49
The babies really are that genius.
305
1069320
1633
婴儿们真的都是天才。
17:50
LS: You know, they look really impressive in our experiments,
306
1070953
3007
劳拉·舒尔茨:是啊,他们在实验中的表现 真是棒极了,
17:53
but think about what they look like in real life, right?
307
1073960
2652
但想象一下他们在生活中 的表现(会更棒),不是吗?
17:56
It starts out as a baby.
308
1076612
1150
最开始只是个小东西,
17:57
Eighteen months later, it's talking to you,
309
1077762
2007
十八个月后, 他就可以跟你交谈了,
17:59
and babies' first words aren't just things like balls and ducks,
310
1079769
3041
婴儿最开始会说的话 不仅仅是球啊鸭子啊这些东西,
18:02
they're things like "all gone," which refer to disappearance,
311
1082810
2881
还有包括“不见了”表示消失,
或者“啊—哦”表示下意识的动作。
18:05
or "uh-oh," which refer to unintentional actions.
312
1085691
2283
18:07
It has to be that powerful.
313
1087974
1562
就是这么神奇。
18:09
It has to be much more powerful than anything I showed you.
314
1089536
2775
比我在实验中展示的要神奇得多。
他们能理解整个世界。
18:12
They're figuring out the entire world.
315
1092311
1974
一个四岁的小孩几乎能跟你聊任何话题。
18:14
A four-year-old can talk to you about almost anything.
316
1094285
3144
(掌声)
18:17
(Applause)
317
1097429
1601
18:19
CA: And if I understand you right, the other key point you're making is,
318
1099030
3414
克里斯·安德森:如果我没理解错的话, 你想说明的另一个关键点是,
18:22
we've been through these years where there's all this talk
319
1102444
2754
多年以来,我们一直认为
18:25
of how quirky and buggy our minds are,
320
1105198
1932
人类思维古怪而不正常,
18:27
that behavioral economics and the whole theories behind that
321
1107130
2867
行为经济学和它背后的 一整套理论都认为
18:29
that we're not rational agents.
322
1109997
1603
人类不是一种理性的生物。
18:31
You're really saying that the bigger story is how extraordinary,
323
1111600
4216
而你认为人类思维 是如此卓越,
18:35
and there really is genius there that is underappreciated.
324
1115816
4944
如此出色,实际上是被低估了。
18:40
LS: One of my favorite quotes in psychology
325
1120760
2070
劳拉·舒尔茨:我最喜欢的 关于心理学的一句话
18:42
comes from the social psychologist Solomon Asch,
326
1122830
2290
来自社会心理学家所罗门·阿施,
18:45
and he said the fundamental task of psychology is to remove
327
1125120
2807
他说,心理学的基本任务就是
18:47
the veil of self-evidence from things.
328
1127927
2626
揭开事物“无证自明”的面纱。
18:50
There are orders of magnitude more decisions you make every day
329
1130553
4551
要正确理解世界
18:55
that get the world right.
330
1135104
1347
你每天要做出非常之多的决定。
18:56
You know about objects and their properties.
331
1136451
2132
你了解物体和它们的属性。
18:58
You know them when they're occluded. You know them in the dark.
332
1138583
3029
当有东西挡路的时候你会知道, 即便是在黑暗中。
19:01
You can walk through rooms.
333
1141612
1308
你可以穿过房间。
19:02
You can figure out what other people are thinking. You can talk to them.
334
1142920
3532
你可以猜到其他人在想什么。 你可以跟他们交谈。
你可以在太空中导航。 你了解数字。
19:06
You can navigate space. You know about numbers.
335
1146452
2230
你知道因果关系。 你理解道德推论。
19:08
You know causal relationships. You know about moral reasoning.
336
1148682
3022
这些事情做起来不费功夫, 因此我们注意不到,
19:11
You do this effortlessly, so we don't see it,
337
1151704
2356
但我们就是这样来正确理解世界的, 这是一种非凡的,
19:14
but that is how we get the world right, and it's a remarkable
338
1154060
2912
但非常难以理解的成就。
19:16
and very difficult-to-understand accomplishment.
339
1156972
2318
克里斯·安德森:我猜观众中间
19:19
CA: I suspect there are people in the audience who have
340
1159290
2628
一定有技术加速理论的支持者,
19:21
this view of accelerating technological power
341
1161918
2238
他们可能不认同你的观点, 就是有生之年都看不到
19:24
who might dispute your statement that never in our lifetimes
342
1164156
2958
计算机的智能 达到一个三岁孩子的水平,
19:27
will a computer do what a three-year-old child can do,
343
1167114
2618
但毫无争议的是,无论如何,
19:29
but what's clear is that in any scenario,
344
1169732
3248
19:32
our machines have so much to learn from our toddlers.
345
1172980
3770
从蹒跚学步的儿童身上 机器可以学到很多很多。
19:38
LS: I think so. You'll have some machine learning folks up here.
346
1178230
3216
劳拉·舒尔茨:的确是。观众中 有从事机器学习研究的朋友。
19:41
I mean, you should never bet against babies or chimpanzees
347
1181446
4203
我想说,你不能认为婴儿或者黑猩猩
19:45
or technology as a matter of practice,
348
1185649
3645
或者技术的差别在于实践,
19:49
but it's not just a difference in quantity,
349
1189294
4528
他们之间的差别不在于数量,
19:53
it's a difference in kind.
350
1193822
1764
而在于种类。
19:55
We have incredibly powerful computers,
351
1195586
2160
我们现在有非常强大的计算机,
19:57
and they do do amazingly sophisticated things,
352
1197746
2391
它们能完成非常精确的任务,
20:00
often with very big amounts of data.
353
1200137
3204
处理海量的数据。
20:03
Human minds do, I think, something quite different,
354
1203341
2607
但人类思维的运作方式完全不同,
20:05
and I think it's the structured, hierarchical nature of human knowledge
355
1205948
3895
我认为研究人类知识 在结构和层次方面的属性
20:09
that remains a real challenge.
356
1209843
2032
仍是一项巨大的挑战。
20:11
CA: Laura Schulz, wonderful food for thought. Thank you so much.
357
1211875
3061
克里斯·安德森:劳拉·舒尔茨, 带来了美妙的精神食粮。非常感谢。
20:14
LS: Thank you. (Applause)
358
1214936
2922
劳拉·舒尔茨:谢谢。 (掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7