Laura Schulz: The surprisingly logical minds of babies

233,233 views ・ 2015-06-02

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Anja Kolobarić Recezent: Ivan Stamenković
00:12
Mark Twain summed up what I take to be
0
12835
2155
Mark Twain sažeo je nešto što je za mene
00:14
one of the fundamental problems of cognitive science
1
14990
3120
jedno od temeljnih problema kognitivne znanosti
00:18
with a single witticism.
2
18110
1710
u jednoj duhovitoj rečenici.
00:20
He said, "There's something fascinating about science.
3
20410
3082
Rekao je: "Ima nešto fascinantno u znanosti.
00:23
One gets such wholesale returns of conjecture
4
23492
3228
Dobivamo ogromnu dobit u obliku pretpostavki
00:26
out of such a trifling investment in fact."
5
26720
3204
skromnim ulaganjem u činjenice."
00:29
(Laughter)
6
29924
1585
(Smijeh)
00:32
Twain meant it as a joke, of course, but he's right:
7
32199
2604
Twain je to zamislio kao šalu, ali bio je u pravu:
00:34
There's something fascinating about science.
8
34803
2876
Ima nešto fascinantno u znanosti.
00:37
From a few bones, we infer the existence of dinosuars.
9
37679
4261
Na temelju nekoliko kostiju, zaključujemo o postojanju dinosaura.
00:42
From spectral lines, the composition of nebulae.
10
42910
3871
Iz spektralnih linija zaključujemo o sastavu svemirskih nebula.
00:47
From fruit flies,
11
47471
2938
Od vinskih mušica
00:50
the mechanisms of heredity,
12
50409
2943
mehanizme nasljeđivanja,
00:53
and from reconstructed images of blood flowing through the brain,
13
53352
4249
a iz rekonstruiranih slika protoka krvi kroz mozak,
00:57
or in my case, from the behavior of very young children,
14
57601
4708
ili, u mom slučaju, iz ponašanja vrlo male djece,
01:02
we try to say something about the fundamental mechanisms
15
62309
2829
pokušavamo reći nešto o osnovnim mehanizmima
01:05
of human cognition.
16
65138
1618
ljudske spoznaje.
01:07
In particular, in my lab in the Department of Brain and Cognitive Sciences at MIT,
17
67716
4759
U svojem laboratoriju na odsjeku za mozak i kognitivnu znanost na MIT-u
01:12
I have spent the past decade trying to understand the mystery
18
72475
3654
provela sam proteklo desetljeće pokušavajući razumjeti misterij
01:16
of how children learn so much from so little so quickly.
19
76129
3977
o tome kako djeca nauče toliko puno i toliko brzo iz skromne baze podataka.
01:20
Because, it turns out that the fascinating thing about science
20
80666
2978
Naime, ispada da je ono što je facinantno kod znanosti,
01:23
is also a fascinating thing about children,
21
83644
3529
fascinantno i kod male djece,
01:27
which, to put a gentler spin on Mark Twain,
22
87173
2581
a to je, ako ublažimo izjavu Marka Twaina,
01:29
is precisely their ability to draw rich, abstract inferences
23
89754
4650
upravo njihova sposobnost da izvlače bogate, apstraktne zaključke
01:34
rapidly and accurately from sparse, noisy data.
24
94404
4661
brzo i točno, iz malobrojnih i nepreciznih podataka.
01:40
I'm going to give you just two examples today.
25
100355
2398
Danas ću vam dati samo dva primjera.
01:42
One is about a problem of generalization,
26
102753
2287
Jedan se tiče problema generalizacije,
01:45
and the other is about a problem of causal reasoning.
27
105040
2850
a drugi problema uzročnog zaključivanja.
01:47
And although I'm going to talk about work in my lab,
28
107890
2525
Iako ću govoriti o radu mog laboratorija,
01:50
this work is inspired by and indebted to a field.
29
110415
3460
taj je rad inspiriran i dužan čitavom jednom polju istraživanja.
01:53
I'm grateful to mentors, colleagues, and collaborators around the world.
30
113875
4283
Zahvalna sam svojim mentorima, kolegama i suradnicima diljem svijeta.
01:59
Let me start with the problem of generalization.
31
119308
2974
Počet ću od problema generalizacije.
02:02
Generalizing from small samples of data is the bread and butter of science.
32
122652
4133
Generaliziranje na temelju malih uzoraka osnovno je sredstvo znanstvenog rada.
02:06
We poll a tiny fraction of the electorate
33
126785
2554
Ispitamo maleni dio biračkog tijela
02:09
and we predict the outcome of national elections.
34
129339
2321
i predviđamo ishod državnih izbora.
02:12
We see how a handful of patients responds to treatment in a clinical trial,
35
132240
3925
Vidimo kako šačica pacijenata reagira na tretman u kliničkom ispitivanju
02:16
and we bring drugs to a national market.
36
136165
3065
i te lijekove dovedemo na nacionalno tržište.
02:19
But this only works if our sample is randomly drawn from the population.
37
139230
4365
To je učinkovito jedino ako je naš uzorak iz populacije izabran slučajem.
02:23
If our sample is cherry-picked in some way --
38
143595
2735
Ako je naš uzorak na neki način probran --
02:26
say, we poll only urban voters,
39
146330
2072
npr. ispitivanjem samo glasača iz gradova
02:28
or say, in our clinical trials for treatments for heart disease,
40
148402
4388
ili ako u klinička istraživanja o liječenju srčanih bolesti
02:32
we include only men --
41
152790
1881
uključimo samo muškarce --
02:34
the results may not generalize to the broader population.
42
154671
3158
rezultati se možda neće moći primijeniti na širu populaciju.
02:38
So scientists care whether evidence is randomly sampled or not,
43
158479
3581
Dakle, znanstvenicima je važno temelje li se dokazi na slučajnom uzorku,
02:42
but what does that have to do with babies?
44
162060
2015
ali kakve to veze ima s bebama?
02:44
Well, babies have to generalize from small samples of data all the time.
45
164585
4621
Bebe stalno moraju generalizirati na temelju malih uzoraka podataka.
02:49
They see a few rubber ducks and learn that they float,
46
169206
3158
Vide nekoliko gumenih patkica te zaključe da one plutaju
02:52
or a few balls and learn that they bounce.
47
172364
3575
ili vide nekoliko lopti i zaključe da one odskakuju.
02:55
And they develop expectations about ducks and balls
48
175939
2951
Razvijaju očekivanja o patkicama i loptama
02:58
that they're going to extend to rubber ducks and balls
49
178890
2716
koja će onda primjenjivati na gumene patkice i lopte
03:01
for the rest of their lives.
50
181606
1879
do kraja svojih života.
03:03
And the kinds of generalizations babies have to make about ducks and balls
51
183485
3739
Takve generalizacije kakve bebe moraju činiti o patkicama i loptama,
03:07
they have to make about almost everything:
52
187224
2089
moraju činiti o gotovo svemu:
03:09
shoes and ships and sealing wax and cabbages and kings.
53
189313
3917
o cipelama, brodovima, pečatnom vosku, kupusima i kraljevima.
03:14
So do babies care whether the tiny bit of evidence they see
54
194200
2961
Je li bebama važno je li maleni vidljivi uzorak dokaza
03:17
is plausibly representative of a larger population?
55
197161
3692
reprezentativan za veću populaciju?
03:21
Let's find out.
56
201763
1900
Saznajmo!
03:23
I'm going to show you two movies,
57
203663
1723
Pokazat ću vam dva filmića,
03:25
one from each of two conditions of an experiment,
58
205386
2462
po jedan iz svakog od uvjeta u eksperimentu,
03:27
and because you're going to see just two movies,
59
207848
2438
a budući da ćete vidjeti samo dva filmića,
03:30
you're going to see just two babies,
60
210286
2136
vidjet ćete i samo dvije bebe,
03:32
and any two babies differ from each other in innumerable ways.
61
212422
3947
a sve se bebe međusobno razlikuju na nebrojene načine,
03:36
But these babies, of course, here stand in for groups of babies,
62
216369
3051
ali ove bebe, dakako, predstavljaju skupine beba,
03:39
and the differences you're going to see
63
219420
1895
a razlike koje ćete vidjeti
03:41
represent average group differences in babies' behavior across conditions.
64
221315
5195
predstavljaju prosječne razlike među grupama beba u različitim uvjetima.
03:47
In each movie, you're going to see a baby doing maybe
65
227160
2583
U svakom filmiću vidjet ćete bebu koja radi
03:49
just exactly what you might expect a baby to do,
66
229743
3460
možda upravo ono što se od bebe očekuje da radi,
03:53
and we can hardly make babies more magical than they already are.
67
233203
4017
a njih teško možemo učiniti čarobnijima nego što one to već jesu.
03:58
But to my mind the magical thing,
68
238090
2010
Ali meni je čarobno to,
04:00
and what I want you to pay attention to,
69
240100
2089
i na što želim da obratite pažnju,
04:02
is the contrast between these two conditions,
70
242189
3111
kontrast između ovih dvaju eksperimentalnih uvjeta
04:05
because the only thing that differs between these two movies
71
245300
3529
jer se ova dva filmića razlikuju samo po
04:08
is the statistical evidence the babies are going to observe.
72
248829
3466
statističkim dokazima koje će bebe promatrati.
04:13
We're going to show babies a box of blue and yellow balls,
73
253425
3183
Pokazat ćemo im kutiju plavih i žutih loptica.
04:16
and my then-graduate student, now colleague at Stanford, Hyowon Gweon,
74
256608
4620
Moja tadašnja doktorandica, a sada kolegica sa Stanforda Hyowon Gweon,
04:21
is going to pull three blue balls in a row out of this box,
75
261228
3077
zaredom će iz ove kutije izvući tri plave loptice.
04:24
and when she pulls those balls out, she's going to squeeze them,
76
264305
3123
Kad izvuče loptice, stisnut će ih,
04:27
and the balls are going to squeak.
77
267428
2113
a one će zasvirati.
04:29
And if you're a baby, that's like a TED Talk.
78
269541
2763
Za bebu je to poput TED-predavanja.
04:32
It doesn't get better than that.
79
272304
1904
Nema boljega!
04:34
(Laughter)
80
274208
2561
(Smijeh)
04:38
But the important point is it's really easy to pull three blue balls in a row
81
278968
3659
Ono što je važno jest da je lako izvući tri plave loptice zaredom
04:42
out of a box of mostly blue balls.
82
282627
2305
iz kutije u kojoj su uglavnom plave loptice.
04:44
You could do that with your eyes closed.
83
284932
2060
Možete to učiniti i zatvorenih očiju.
04:46
It's plausibly a random sample from this population.
84
286992
2996
To može predstavljati slučajni uzorak iz ove populacije.
04:49
And if you can reach into a box at random and pull out things that squeak,
85
289988
3732
A ako možete slučajnim izborom iz kutije izvući stvari koje sviraju,
04:53
then maybe everything in the box squeaks.
86
293720
2839
onda možda sve što je u kutiji svira,
04:56
So maybe babies should expect those yellow balls to squeak as well.
87
296559
3650
pa bi bebe možda mogle očekivati da će i žute loptice svirati.
05:00
Now, those yellow balls have funny sticks on the end,
88
300209
2519
Žute loptice imaju smiješne štapiće na krajevima,
05:02
so babies could do other things with them if they wanted to.
89
302728
2857
tako da bi bebe ako žele mogle s njima raditi i druge stvari.
05:05
They could pound them or whack them.
90
305585
1831
Mogle bi ih udarati ili lupati.
05:07
But let's see what the baby does.
91
307416
2586
Ali idemo vidjeti što beba radi.
05:12
(Video) Hyowon Gweon: See this? (Ball squeaks)
92
312548
3343
Hyowon Gweon: Vidiš ovo? (Loptica svira)
05:16
Did you see that? (Ball squeaks)
93
316531
3045
Jesi li to vidjela? (Loptica svira)
05:20
Cool.
94
320036
3066
Fora.
05:24
See this one?
95
324706
1950
Vidiš ovu?
05:26
(Ball squeaks)
96
326656
1881
(Loptica svira)
05:28
Wow.
97
328537
2653
Opa.
05:33
Laura Schulz: Told you. (Laughs)
98
333854
2113
Laura Schulz: Rekla sam vam. (Smijeh)
05:35
(Video) HG: See this one? (Ball squeaks)
99
335967
4031
HG: Vidiš ovu? (Loptica svira)
05:39
Hey Clara, this one's for you. You can go ahead and play.
100
339998
4619
Hej, Clara, ova je za tebe. Možeš se igrati njome.
05:51
(Laughter)
101
351854
4365
(Smijeh)
05:56
LS: I don't even have to talk, right?
102
356219
2995
LS: Ni ne moram govoriti, zar ne?
05:59
All right, it's nice that babies will generalize properties
103
359214
2899
U redu, zgodno je da bebe generaliziraju osobine
06:02
of blue balls to yellow balls,
104
362113
1528
plavih loptica na žute loptice
06:03
and it's impressive that babies can learn from imitating us,
105
363641
3096
i dojmljivo je da mogu učiti imitirajući nas,
06:06
but we've known those things about babies for a very long time.
106
366737
3669
ali to o bebama već dugo znamo.
06:10
The really interesting question
107
370406
1811
Ono što je zaista zanimljivo proučiti
06:12
is what happens when we show babies exactly the same thing,
108
372217
2852
jest to što se dogodi kad bebi pokažemo potpuno istu stvar,
06:15
and we can ensure it's exactly the same because we have a secret compartment
109
375069
3611
a sigurni smo da je potpuno ista jer imamo tajni pretinac
06:18
and we actually pull the balls from there,
110
378680
2110
iz kojeg vučemo loptice,
06:20
but this time, all we change is the apparent population
111
380790
3478
ali ovog puta promijenimo jedino prividnu populaciju
06:24
from which that evidence was drawn.
112
384268
2902
iz koje se vuku dokazi.
06:27
This time, we're going to show babies three blue balls
113
387170
3553
Ovog puta bebi ćemo pokazati tri plave loptice
06:30
pulled out of a box of mostly yellow balls,
114
390723
3384
izvučene iz kutije u kojoj je većina žutih loptica,
06:34
and guess what?
115
394107
1322
i znate što?
06:35
You [probably won't] randomly draw three blue balls in a row
116
395429
2840
Vjerojatno nećete slučajno izvući tri plave loptice zaredom
06:38
out of a box of mostly yellow balls.
117
398269
2484
iz kutije u kojoj je većina žutih loptica.
06:40
That is not plausibly randomly sampled evidence.
118
400753
3747
To nije uvjerljiv slučajan uzorak.
06:44
That evidence suggests that maybe Hyowon was deliberately sampling the blue balls.
119
404500
5123
Ti dokazi upućuju na to da je Hyowon možda namjerno uzorkovala plave loptice.
06:49
Maybe there's something special about the blue balls.
120
409623
2583
Možda ima nešto posebno u tim plavim lopticama.
06:52
Maybe only the blue balls squeak.
121
412846
2976
Možda samo plave loptice sviraju.
06:55
Let's see what the baby does.
122
415822
1895
Pogledajmo što beba radi.
06:57
(Video) HG: See this? (Ball squeaks)
123
417717
2904
HG: Vidiš ovo? (Loptica svira)
07:02
See this toy? (Ball squeaks)
124
422851
2645
Vidiš ovu igračku? (Loptica svira)
07:05
Oh, that was cool. See? (Ball squeaks)
125
425496
5480
O, to je bilo fora! Vidiš? (Loptica svira)
07:10
Now this one's for you to play. You can go ahead and play.
126
430976
4394
A ova je tebi za igru. Možeš se sada poigrati.
07:18
(Fussing) (Laughter)
127
438074
6347
(Smijeh)
07:26
LS: So you just saw two 15-month-old babies
128
446901
2748
LS: Dakle, vidjeli ste dvije petnaestomjesečne bebe
07:29
do entirely different things
129
449649
1942
koje su se potpuno drugačije ponašale
07:31
based only on the probability of the sample they observed.
130
451591
3599
samo na temelju vjerojatnosti promatranog uzorka.
07:35
Let me show you the experimental results.
131
455190
2321
Pokazat ću vam rezultate eksperimenta.
07:37
On the vertical axis, you'll see the percentage of babies
132
457511
2764
Na okomitoj osi vidite postotak beba
07:40
who squeezed the ball in each condition,
133
460275
2530
koje su stisnule lopticu u svakom slučaju,
07:42
and as you'll see, babies are much more likely to generalize the evidence
134
462805
3715
i kao možete vidjeti, bebe su sklonije generalizirati dokaze
07:46
when it's plausibly representative of the population
135
466520
3135
koji uvjerljivo predstavljaju populaciju
07:49
than when the evidence is clearly cherry-picked.
136
469655
3738
nego one koji su očito probrani.
07:53
And this leads to a fun prediction:
137
473393
2415
To dovodi do zanimljive pretpostavke:
07:55
Suppose you pulled just one blue ball out of the mostly yellow box.
138
475808
4868
zamislite da izvučemo samo jednu plavu lopticu iz kutije u kojoj je većina žutih.
08:00
You [probably won't] pull three blue balls in a row at random out of a yellow box,
139
480896
3869
Vjerojatno nećete iz takve kutije slučajno zaredom izvući tri plave loptice,
08:04
but you could randomly sample just one blue ball.
140
484765
2455
ali mogli biste slučajno izvući samo jednu plavu.
08:07
That's not an improbable sample.
141
487220
1970
To nije nevjerojatan uzorak.
08:09
And if you could reach into a box at random
142
489190
2224
Kad biste mogli slučajno iz kutije izvući
08:11
and pull out something that squeaks, maybe everything in the box squeaks.
143
491414
3987
nešto što svira, možda sve u njoj svira.
08:15
So even though babies are going to see much less evidence for squeaking,
144
495875
4445
Iako bebe vide puno manje dokaza u korist sviranja,
08:20
and have many fewer actions to imitate
145
500320
2242
i imaju manje postupaka koje mogu imitirati,
08:22
in this one ball condition than in the condition you just saw,
146
502562
3343
u slučaju s jednom lopticom nego u slučaju koji ste sada vidjeli,
08:25
we predicted that babies themselves would squeeze more,
147
505905
3892
predvidjeli smo da će same bebe češće stiskati,
08:29
and that's exactly what we found.
148
509797
2894
a upravo se to i dogodilo.
08:32
So 15-month-old babies, in this respect, like scientists,
149
512691
4411
U ovom slučaju petnaestomjesečne bebe, kao i znanstvenike,
08:37
care whether evidence is randomly sampled or not,
150
517102
3088
zanima jesu li dokazi slučajno izabrani ili nisu
08:40
and they use this to develop expectations about the world:
151
520190
3507
i to koriste kako bi stvorile očekivanja o svijetu:
08:43
what squeaks and what doesn't,
152
523697
2182
o tome što svira, a što ne,
08:45
what to explore and what to ignore.
153
525879
3145
što istraživati, a što ignorirati.
08:50
Let me show you another example now,
154
530384
2066
Sada ću vam pokazati još jedan primjer,
08:52
this time about a problem of causal reasoning.
155
532450
2730
ovog puta o problemu uzročnog zaključivanja,
08:55
And it starts with a problem of confounded evidence
156
535180
2439
a počinje s problemom zbunjujućih dokaza
08:57
that all of us have,
157
537619
1672
s kojim se svi suočavamo,
08:59
which is that we are part of the world.
158
539291
2020
a to je da smo dio svijeta.
09:01
And this might not seem like a problem to you, but like most problems,
159
541311
3436
Vama se ovo možda ne čini kao problem, ali kao i većina problema,
09:04
it's only a problem when things go wrong.
160
544747
2337
problematično je samo kad stvari pođu po zlu.
09:07
Take this baby, for instance.
161
547464
1811
Uzmimo npr. ovu bebu.
09:09
Things are going wrong for him.
162
549275
1705
Njemu stvari polaze po zlu.
09:10
He would like to make this toy go, and he can't.
163
550980
2271
Htio bi pokrenuti ovu igračku, ali ne može.
09:13
I'll show you a few-second clip.
164
553251
2529
Pokazat ću vam filmić od nekoliko sekundi.
09:21
And there's two possibilities, broadly:
165
561340
1920
Općenito gledajući, imamo dvije opcije.
09:23
Maybe he's doing something wrong,
166
563260
2634
Možda on nešto krivo radi
09:25
or maybe there's something wrong with the toy.
167
565894
4216
ili možda nešto nije u redu s igračkom.
09:30
So in this next experiment,
168
570110
2111
U sljedećem eksperimentu
09:32
we're going to give babies just a tiny bit of statistical data
169
572221
3297
bebama ćemo dati samo mrvicu statističkih podataka
09:35
supporting one hypothesis over the other,
170
575518
2582
u prilog jedne ili druge hipoteze
09:38
and we're going to see if babies can use that to make different decisions
171
578100
3455
i vidjet ćemo mogu li na temelju toga donositi razlčite odluke
09:41
about what to do.
172
581555
1834
o tome što trebaju učiniti.
09:43
Here's the setup.
173
583389
2022
Evo kako smo to postavili.
09:46
Hyowon is going to try to make the toy go and succeed.
174
586071
3030
Hyowon će pokušati pokrenuti igračku i u tome će i uspjeti.
09:49
I am then going to try twice and fail both times,
175
589101
3320
Ja ću onda dvaput pokušati i oba ću puta doživjeti neuspjeh,
09:52
and then Hyowon is going to try again and succeed,
176
592421
3112
a onda će Hyowon ponovno pokušati i uspjeti.
09:55
and this roughly sums up my relationship to my graduate students
177
595533
3172
To ukratko opisuje i moj odnos sa svim mojim doktorandima
09:58
in technology across the board.
178
598705
2835
iz tehnologije.
10:02
But the important point here is it provides a little bit of evidence
179
602030
3292
Ali ono što je važno jest da dajemo mrvicu dokaza
10:05
that the problem isn't with the toy, it's with the person.
180
605322
3668
da problem nije u igrački, nego u osobi.
10:08
Some people can make this toy go,
181
608990
2350
Neki ljudi mogu pokrenuti ovu igračku,
10:11
and some can't.
182
611340
959
a drugi ne.
10:12
Now, when the baby gets the toy, he's going to have a choice.
183
612799
3413
Kad beba dobije igračku, moći će birati.
10:16
His mom is right there,
184
616212
2188
Tamo mu je mama,
10:18
so he can go ahead and hand off the toy and change the person,
185
618400
3315
pa može proslijediti igračku i promijeniti osobu,
10:21
but there's also going to be another toy at the end of that cloth,
186
621715
3158
ali malo dalje bit će i druga igračka
10:24
and he can pull the cloth towards him and change the toy.
187
624873
3552
za kojom može posegnuti te promijeniti igračku.
10:28
So let's see what the baby does.
188
628425
2090
Pogledajmo što beba radi.
10:30
(Video) HG: Two, three. Go! (Music)
189
630515
4183
HG: Dva, tri. Kreni! (Glazba)
10:34
LS: One, two, three, go!
190
634698
3131
LS: Jedan, dva, tri, kreni!
10:37
Arthur, I'm going to try again. One, two, three, go!
191
637829
7382
Arthure, probat ću ponovo. Jedan, dva, tri, kreni!
10:45
YG: Arthur, let me try again, okay?
192
645677
2600
HG: Arthure, daj da ja opet probam, može?
10:48
One, two, three, go! (Music)
193
648277
4550
Jedan, dva, tri, kreni! (Glazba)
10:53
Look at that. Remember these toys?
194
653583
1883
Vidi ovo. Sjećaš se ovih igračaka?
10:55
See these toys? Yeah, I'm going to put this one over here,
195
655466
3264
Vidiš ove igračke? Da, ovu ću staviti ovamo,
10:58
and I'm going to give this one to you.
196
658730
2062
a ovu ću dati tebi.
11:00
You can go ahead and play.
197
660792
2335
Sada se možeš igrati.
11:23
LS: Okay, Laura, but of course, babies love their mommies.
198
683213
4737
LS: U redu, Laura, ali bebe vole svoje mame.
11:27
Of course babies give toys to their mommies
199
687950
2182
Naravno da bebe daju igračke svojim mamama
11:30
when they can't make them work.
200
690132
2030
kad ih ne mogu pokrenuti.
11:32
So again, the really important question is what happens when we change
201
692162
3593
Ponovno, ono što je zbilja važno jest što se događa
11:35
the statistical data ever so slightly.
202
695755
3154
kad neznatno izmijenimo statističke podatke.
11:38
This time, babies are going to see the toy work and fail in exactly the same order,
203
698909
4087
Ovog puta bebe će vidjeti istu igračku da radi i ne radi potpuno istim redoslijedom,
11:42
but we're changing the distribution of evidence.
204
702996
2415
ali promijenit ćemo raspored dokaza.
11:45
This time, Hyowon is going to succeed once and fail once, and so am I.
205
705411
4411
Ovog će puta Hyowon jednom uspjeti i jednom ne, kao i ja,
11:49
And this suggests it doesn't matter who tries this toy, the toy is broken.
206
709822
5637
što ukazuje na to da bez obzira na to tko pokuša, igračka je pokvarena.
11:55
It doesn't work all the time.
207
715459
1886
Ne radi stalno.
11:57
Again, the baby's going to have a choice.
208
717345
1965
Beba će ponovno moći birati.
11:59
Her mom is right next to her, so she can change the person,
209
719310
3396
Mama je odmah pokraj nje, pa može promijeniti osobu,
12:02
and there's going to be another toy at the end of the cloth.
210
722706
3204
a na kraju krpe bit će još jedna igračka.
12:05
Let's watch what she does.
211
725910
1378
Pogledajmo što će učiniti.
12:07
(Video) HG: Two, three, go! (Music)
212
727288
4348
HG: Dva, tri, kreni! (Glazba)
12:11
Let me try one more time. One, two, three, go!
213
731636
4984
Daj da još jednom probam. Jedan, dva, tri, kreni!
12:17
Hmm.
214
737460
1697
Hmmm.
12:19
LS: Let me try, Clara.
215
739950
2692
LS: Daj da ja probam, Clara.
12:22
One, two, three, go!
216
742642
3945
Jedan, dva, tri, kreni!
12:27
Hmm, let me try again.
217
747265
1935
Hmm, daj da opet probam.
12:29
One, two, three, go! (Music)
218
749200
5670
Jedan, dva, tri, kreni! (glazba)
12:35
HG: I'm going to put this one over here,
219
755009
2233
HG: Ovu ću staviti ovamo,
12:37
and I'm going to give this one to you.
220
757242
2001
a ovu ću dati tebi.
12:39
You can go ahead and play.
221
759243
3597
Možeš se igrati.
12:58
(Applause)
222
778376
4897
(Pljesak)
13:04
LS: Let me show you the experimental results.
223
784993
2392
LS: Pokazat ću vam rezultate eksperimenta.
13:07
On the vertical axis, you'll see the distribution
224
787385
2475
Na okomitoj osi vidite raspodjelu
13:09
of children's choices in each condition,
225
789860
2577
dječjih odgovora u svakom od slučajeva
13:12
and you'll see that the distribution of the choices children make
226
792437
4551
i kao što vidite, raspodjela dječjih odluka
13:16
depends on the evidence they observe.
227
796988
2787
ovisi o dokazima koje promatraju.
13:19
So in the second year of life,
228
799775
1857
U drugoj godini života
13:21
babies can use a tiny bit of statistical data
229
801632
2577
bebe mogu koristiti djelić statističkih podataka
13:24
to decide between two fundamentally different strategies
230
804209
3367
kako bi odlučili između dvaju znatno različitih strategija
13:27
for acting in the world:
231
807576
1881
pristupa svijetu:
13:29
asking for help and exploring.
232
809457
2743
traženje pomoći i istraživanje.
13:33
I've just shown you two laboratory experiments
233
813700
3434
Upravo sam vam pokazala dva laboratorijska eksperimenta
13:37
out of literally hundreds in the field that make similar points,
234
817134
3691
među stotinama eksperimenata na ovom području koji ukazuju na slične zaključke
13:40
because the really critical point
235
820825
2392
jer ono što je zaista ključno
13:43
is that children's ability to make rich inferences from sparse data
236
823217
5108
jest da dječja sposobnost da donose bogate zaključke iz malo podataka
13:48
underlies all the species-specific cultural learning that we do.
237
828325
5341
temelj je svakog kulturološkog učenja specifičnog za našu vrstu.
13:53
Children learn about new tools from just a few examples.
238
833666
4597
Djeca uče o novim alatima iz tek nekoliko primjera.
13:58
They learn new causal relationships from just a few examples.
239
838263
4717
Uče nove kauzalne odnose iz tek nekoliko primjera.
14:03
They even learn new words, in this case in American Sign Language.
240
843928
4871
Uče čak i nove riječi, u ovom slučaju američki znakovni jeziik.
14:08
I want to close with just two points.
241
848799
2311
Želim završiti s dva zaključka.
14:12
If you've been following my world, the field of brain and cognitive sciences,
242
852050
3688
Ako ste pratili područje mozga i kognitivnih znanosti
14:15
for the past few years,
243
855738
1927
zadnjih nekoliko godina,
14:17
three big ideas will have come to your attention.
244
857665
2415
primijetili ste tri velike ideje.
14:20
The first is that this is the era of the brain.
245
860080
3436
Prva - ovo je era mozga.
14:23
And indeed, there have been staggering discoveries in neuroscience:
246
863516
3669
U neuroznanosti se uistinu dogodio niz zapanjujućih otkrića:
14:27
localizing functionally specialized regions of cortex,
247
867185
3436
lokalizacija funkcionalno specijaliziranih regija korteksa,
14:30
turning mouse brains transparent,
248
870621
2601
transparentnost mišjih mozgova,
14:33
activating neurons with light.
249
873222
3776
aktiviranje neurona pomoću svjetlosti.
14:36
A second big idea
250
876998
1996
Druga velika ideja
14:38
is that this is the era of big data and machine learning,
251
878994
4104
jest da je ovo era velike količine podataka i strojnog učenja,
14:43
and machine learning promises to revolutionize our understanding
252
883098
3141
a strojno učenje obećava revoluciju našeg razumijevanja
14:46
of everything from social networks to epidemiology.
253
886239
4667
svega od društvenih mreža do epidemiologije.
14:50
And maybe, as it tackles problems of scene understanding
254
890906
2693
Budući da se bavi problemima razumijevanja scene
14:53
and natural language processing,
255
893599
1993
i obrade prirodnog jezika,
14:55
to tell us something about human cognition.
256
895592
3324
možda nam može nešto reći o ljudskoj spoznaji.
14:59
And the final big idea you'll have heard
257
899756
1937
Posljednja velika ideja
15:01
is that maybe it's a good idea we're going to know so much about brains
258
901693
3387
jest da je možda dobra stvar to što ćemo znati toliko o mozgovima
15:05
and have so much access to big data,
259
905080
1917
i imati pristup tolikoj bazi podataka
15:06
because left to our own devices,
260
906997
2507
jer kad su prepušteni sami sebi,
15:09
humans are fallible, we take shortcuts,
261
909504
3831
ljudi su grešni, koriste prečace,
15:13
we err, we make mistakes,
262
913335
3437
griješe, čine pogreške,
15:16
we're biased, and in innumerable ways,
263
916772
3684
pristrani su i na nebrojene načine
15:20
we get the world wrong.
264
920456
2969
pogrešno shvaćaju svijet.
15:24
I think these are all important stories,
265
924843
2949
Mislim da su sve ovo važne priče
15:27
and they have a lot to tell us about what it means to be human,
266
927792
3785
i mogu nam puno toga reći o tome što to znači biti čovjek,
15:31
but I want you to note that today I told you a very different story.
267
931577
3529
ali želim da primijetite da sam vam danas ispričala posve drugačiju priču,
15:35
It's a story about minds and not brains,
268
935966
3807
priču o umovima, a ne o mozgovima.
15:39
and in particular, it's a story about the kinds of computations
269
939773
3006
Točnije, to je priča o vrstama računanja
15:42
that uniquely human minds can perform,
270
942779
2590
koje samo ljudski umovi mogu izvršiti,
15:45
which involve rich, structured knowledge and the ability to learn
271
945369
3944
a koji uključuju bogato strukturirano znanje i sposobnost učenja
15:49
from small amounts of data, the evidence of just a few examples.
272
949313
5268
na temelju vrlo malo podataka, dokaza ili primjera.
15:56
And fundamentally, it's a story about how starting as very small children
273
956301
4299
To je u osnovi priča o tome kako se započevši svoj put kao sasvim mala djeca
16:00
and continuing out all the way to the greatest accomplishments
274
960600
4180
razvijamo do najvećih postignuća
16:04
of our culture,
275
964780
3843
naše kulture
16:08
we get the world right.
276
968623
1997
i svijet shvaćamo ispravno.
16:12
Folks, human minds do not only learn from small amounts of data.
277
972433
5267
Ljudi, naši umovi ne uče samo iz malih količina podataka.
16:18
Human minds think of altogether new ideas.
278
978285
2101
Ljudski umovi stvaraju sasvim nove ideje,
16:20
Human minds generate research and discovery,
279
980746
3041
pokreću istraživanja i otkrića,
16:23
and human minds generate art and literature and poetry and theater,
280
983787
5273
stvaraju umjetnost, književnost, povijest, kazalište
16:29
and human minds take care of other humans:
281
989070
3760
te brinu za druge ljude:
16:32
our old, our young, our sick.
282
992830
3427
naše stare, naše mlade, naše bolesne.
16:36
We even heal them.
283
996517
2367
Liječimo ih.
16:39
In the years to come, we're going to see technological innovations
284
999564
3103
U predstojećim godinama svjedočit ćemo tehnološkim inovacijama
16:42
beyond anything I can even envision,
285
1002667
3797
iznad svih mojih očekivanja,
16:46
but we are very unlikely
286
1006464
2150
ali teško da ćemo
16:48
to see anything even approximating the computational power of a human child
287
1008614
5709
svjedočiti ičemu što je približno djetetovoj moći računanja
16:54
in my lifetime or in yours.
288
1014323
4298
- za mog života ili za vaših života.
16:58
If we invest in these most powerful learners and their development,
289
1018621
5047
Uložimo li u ove najmoćnije učenike i u njihov razvoj,
17:03
in babies and children
290
1023668
2917
u bebe i djecu,
17:06
and mothers and fathers
291
1026585
1826
majke i očeve,
17:08
and caregivers and teachers
292
1028411
2699
skrbnike i nastavnike
17:11
the ways we invest in our other most powerful and elegant forms
293
1031110
4170
onoliko koliko ulažemo u druge najmoćnije i najelegantnije oblike
17:15
of technology, engineering and design,
294
1035280
3218
tehnologije, inženjeringa i dizajna,
17:18
we will not just be dreaming of a better future,
295
1038498
2939
nećemo samo sanjati o boljoj budućnosti
17:21
we will be planning for one.
296
1041437
2127
već ćemo je i planirati.
17:23
Thank you very much.
297
1043564
2345
Puno vam hvala.
17:25
(Applause)
298
1045909
3421
(Pljesak)
17:29
Chris Anderson: Laura, thank you. I do actually have a question for you.
299
1049810
4426
Chris Anderson: Laura, hvala ti, ali imam pitanje za tebe.
17:34
First of all, the research is insane.
300
1054236
2359
Kao prvo, istraživanje je preludo.
17:36
I mean, who would design an experiment like that? (Laughter)
301
1056595
3725
Mislim, tko bi uopće osmislio takav eksperiment? (Smijeh)
17:41
I've seen that a couple of times,
302
1061150
1790
Nekoliko sam to puta vidio,
17:42
and I still don't honestly believe that that can truly be happening,
303
1062940
3222
i još uvijek ne vjerujem da se to stvarno događa,
17:46
but other people have done similar experiments; it checks out.
304
1066162
3158
ali drugi su ljudi provodili slične eksperimente - drži vodu.
17:49
The babies really are that genius.
305
1069320
1633
Bebe uistinu jesu geniji.
17:50
LS: You know, they look really impressive in our experiments,
306
1070953
3007
LS: U našim eksperimentima doista izgledaju impresivno,
17:53
but think about what they look like in real life, right?
307
1073960
2652
ali razmisli o tome kako izgledaju u stvarnom životu.
17:56
It starts out as a baby.
308
1076612
1150
Počinje kao beba,
17:57
Eighteen months later, it's talking to you,
309
1077762
2007
osamnaest mjeseci kasnije priča s vama,
17:59
and babies' first words aren't just things like balls and ducks,
310
1079769
3041
a njihove prve riječi nisu samo stvari poput loptica i patkica
18:02
they're things like "all gone," which refer to disappearance,
311
1082810
2881
već i stvari poput "nema više", koji se odnosi na nestajanje.
18:05
or "uh-oh," which refer to unintentional actions.
312
1085691
2283
Ili "uh-oh" koji se odnosi na nenamjerne radnje.
18:07
It has to be that powerful.
313
1087974
1562
Mora biti toliko moćno.
18:09
It has to be much more powerful than anything I showed you.
314
1089536
2775
Mora biti moćnije od svega što sam vam pokazala.
18:12
They're figuring out the entire world.
315
1092311
1974
Pokušavaju shvatiti cijeli svijet.
18:14
A four-year-old can talk to you about almost anything.
316
1094285
3144
Četverogodišnjak s vama može razgovarati gotovo o bilo čemu.
18:17
(Applause)
317
1097429
1601
(Pljesak)
18:19
CA: And if I understand you right, the other key point you're making is,
318
1099030
3414
CA: A ako sam vas dobro razumio, vaš drugi ključni argument jest
18:22
we've been through these years where there's all this talk
319
1102444
2754
da se godinama priča o tome
18:25
of how quirky and buggy our minds are,
320
1105198
1932
koliko su naši umovi čudni i grešni,
18:27
that behavioral economics and the whole theories behind that
321
1107130
2867
da bihevioralna ekonomija i teorije o tome govore
18:29
that we're not rational agents.
322
1109997
1603
da nismo racionalni agenti.
18:31
You're really saying that the bigger story is how extraordinary,
323
1111600
4216
Vi zapravo govorite o većoj priči o tome koliko smo nevjerojatni
18:35
and there really is genius there that is underappreciated.
324
1115816
4944
i da se tu negdje zaista krije podcijenjeni genij.
18:40
LS: One of my favorite quotes in psychology
325
1120760
2070
LS: Jedan od najdražih mi psiholoških citata
18:42
comes from the social psychologist Solomon Asch,
326
1122830
2290
dolazi od socijalnog psihologa Solomona Ascha
18:45
and he said the fundamental task of psychology is to remove
327
1125120
2807
koji je rekao da je temeljna zadaća psihologije ukloniti
18:47
the veil of self-evidence from things.
328
1127927
2626
veo očiglednosti sa stvari.
18:50
There are orders of magnitude more decisions you make every day
329
1130553
4551
Postoji niz odluka koje donosite svakog dana,
18:55
that get the world right.
330
1135104
1347
a kojima shvaćate svijet.
18:56
You know about objects and their properties.
331
1136451
2132
Znate o objektima i njihovim svojstvima.
18:58
You know them when they're occluded. You know them in the dark.
332
1138583
3029
Prepoznajete ih kad su skriveni, prepoznajete ih u mraku.
19:01
You can walk through rooms.
333
1141612
1308
Prolazite sobama.
19:02
You can figure out what other people are thinking. You can talk to them.
334
1142920
3532
Možete shvatiti što drugi ljudi misle, možete razgovarati s njima.
19:06
You can navigate space. You know about numbers.
335
1146452
2230
Možete se kretati prostorom, znate za brojeve.
19:08
You know causal relationships. You know about moral reasoning.
336
1148682
3022
Znate o posljedičnim vezama, znate o moralnosti.
19:11
You do this effortlessly, so we don't see it,
337
1151704
2356
To činite bez napora, pa to ni ne primjećujemo,
19:14
but that is how we get the world right, and it's a remarkable
338
1154060
2912
ali tako ispravno shvaćamo svijet i to je nevjerojatno
19:16
and very difficult-to-understand accomplishment.
339
1156972
2318
i teško razumljivo postignuće.
19:19
CA: I suspect there are people in the audience who have
340
1159290
2628
CA: Vjerujem da u publici ima ljudi
19:21
this view of accelerating technological power
341
1161918
2238
koji vjeruju u ubrzanje tehnološke moći
19:24
who might dispute your statement that never in our lifetimes
342
1164156
2958
i koji bi mogli osporavati vašu izjavu da nikad za naših života
19:27
will a computer do what a three-year-old child can do,
343
1167114
2618
računalo neće moći raditi ono što trogodišnjak može,
19:29
but what's clear is that in any scenario,
344
1169732
3248
ali jasno je da u bilo kojem scenarju
19:32
our machines have so much to learn from our toddlers.
345
1172980
3770
naši strojevi imaju puno za učiti od djece.
19:38
LS: I think so. You'll have some machine learning folks up here.
346
1178230
3216
LS: Mislim da da. Imat ćete ovdje i strojeve koji poučavaju ljude,
19:41
I mean, you should never bet against babies or chimpanzees
347
1181446
4203
ali nikad se ne biste trebali kladiti protiv djece ili čimpanzi
19:45
or technology as a matter of practice,
348
1185649
3645
ili tehnologije općenito,
19:49
but it's not just a difference in quantity,
349
1189294
4528
ali ne radi se tu samo o razlici u kvantiteti,
19:53
it's a difference in kind.
350
1193822
1764
postoji i razlika u vrsti.
19:55
We have incredibly powerful computers,
351
1195586
2160
Imamo nevjerojatno moćna računala
19:57
and they do do amazingly sophisticated things,
352
1197746
2391
koja rade nevjerojatne i sofisticirane stvari,
20:00
often with very big amounts of data.
353
1200137
3204
često s velikim količinama podataka.
20:03
Human minds do, I think, something quite different,
354
1203341
2607
Ljudski umovi čine nešto sasvim drugačije
20:05
and I think it's the structured, hierarchical nature of human knowledge
355
1205948
3895
i mislim da strukturirana hijerajhijska narav ljudskog znanja
20:09
that remains a real challenge.
356
1209843
2032
nastavlja predstavljati pravi izazov.
20:11
CA: Laura Schulz, wonderful food for thought. Thank you so much.
357
1211875
3061
CA: Laura Schulz, dali ste nam na razmišljanje. Hvala vam.
20:14
LS: Thank you. (Applause)
358
1214936
2922
LS: Hvala vama. (Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7