Sendhil Mullainathan: Solving social problems with a nudge

70,429 views ใƒป 2010-02-02

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Avi Cohen ืžื‘ืงืจ: Sigal Tifferet
00:15
As a researcher, every once in a while
0
15260
3000
ื‘ืชื•ืจ ื—ื•ืงืจ, ืžืคืขื ืœืคืขื,
00:18
you encounter something
1
18260
2000
ืืชื” ื ืชืงืœ ื‘ืžืฉื”ื•
00:20
a little disconcerting.
2
20260
2000
ืžืขื˜ ืžื˜ืจื™ื“.
00:22
And this is something that changes your understanding of the world around you,
3
22260
3000
ื•ื–ื” ืžืฉื”ื• ืฉืžืฉื ื” ืืช ื”ื”ื‘ื ื” ืฉืœืš ืœื’ื‘ื™ ื”ืขื•ืœื ืฉืžืกื‘ื™ื‘ืš,
00:25
and teaches you that you're very wrong
4
25260
2000
ื•ืžืœืžื“ ืื•ืชืš ืฉื˜ืขื™ืช ื‘ื’ื“ื•ืœ
00:27
about something that you really believed firmly in.
5
27260
4000
ื›ืฉื”ืืžื ืช ืฉืžืฉื”ื• ืžืกื•ื™ื ื”ื•ื ื ื›ื•ืŸ.
00:31
And these are unfortunate moments,
6
31260
3000
ื•ืืœื• ืจื’ืขื™ื ื—ืกืจื™ ืžื–ืœ,
00:34
because you go to sleep that night
7
34260
2000
ืžื›ื™ื•ื•ืŸ ืฉืืชื” ื”ื•ืœืš ืœื™ืฉื•ืŸ ื‘ืื•ืชื• ื”ืœื™ืœื”
00:36
dumber than when you woke up.
8
36260
3000
ื˜ื™ืคืฉ ื™ื•ืชืจ ืžืฉื”ื™ื™ืช ื›ืฉืงืžืช.
00:39
So, that's really the goal of my talk,
9
39260
2000
ืื–, ื–ื•ื”ื™ ืœืžืขืฉื” ื”ืžื˜ืจื” ืฉืœ ื”ื”ืจืฆืื” ืฉืœื™,
00:41
is to A, communicate that moment to you
10
41260
2000
ื', ืœื”ืขื‘ื™ืจ ืœื›ื ืืช ื”ืจื’ืข ื”ื–ื”,
00:43
and B, have you leave this session
11
43260
2000
ื•-ื‘', ืœื’ืจื•ื ืœื›ื ืœืขื–ื•ื‘ ืืช ื”ืžืคื’ืฉ ื”ื–ื”
00:45
a little dumber than when you entered.
12
45260
2000
ืงืฆืช ื™ื•ืชืจ ื˜ื™ืคืฉื™ื ืžืฉื”ื™ื™ืชื.
00:47
So, I hope I can really accomplish that.
13
47260
3000
ืื–, ืื ื™ ืžืงื•ื•ื” ืฉืื•ื›ืœ ืœื”ืฉื™ื’ ื–ืืช.
00:50
So, this incident that I'm going to describe
14
50260
3000
ื”ืชืงืจื™ืช ื”ื–ื•, ืฉืื ื™ ื”ื•ืœืš ืœืชืืจ
00:53
really began with some diarrhea.
15
53260
3000
ื”ืชื—ื™ืœื” ื‘ืขืฆื ืขื ืงืฆืช ืฉืœืฉื•ืœ.
00:56
Now, we've known for a long time the cause of diarrhea.
16
56260
3000
ืขื›ืฉื™ื•, ืื ื• ื™ื•ื“ืขื™ื ื›ื‘ืจ ื–ืžืŸ ืจื‘ ืืช ื”ืกื™ื‘ื” ืœืฉืœืฉื•ืœ.
00:59
That's why there's a glass of water up there.
17
59260
3000
ื–ื• ื”ืกื™ื‘ื” ืฉื™ืฉ ืฉื ืชืžื•ื ื” ืฉืœ ื›ื•ืก ืžื™ื.
01:02
For us, it's a problem, the people in this room.
18
62260
2000
ื‘ืฉื‘ื™ืœื ื•, ื”ืื ืฉื™ื ื‘ื—ื“ืจ ื”ื–ื”, ื–ื• ื‘ืขื™ื”.
01:04
For babies, it's deadly.
19
64260
3000
ืื‘ืœ ื‘ืฉื‘ื™ืœ ื™ืœื“ื™ื, ื–ื” ืงื˜ืœื ื™.
01:07
They lack nutrients, and diarrhea dehydrates them.
20
67260
4000
ื—ืกืจื™ื ืœื”ื ื—ื•ืžืจื™ื ืžื–ื™ื ื™ื, ื•ืฉืœืฉื•ืœ ื’ื•ืจื ืœื”ื ืœื”ืชื™ื™ื‘ืฉื•ืช.
01:11
And so, as a result, there is a lot of death,
21
71260
2000
ื•ื›ืชื•ืฆืื” ืžื›ืš, ื™ืฉ ืชืžื•ืชื” ื’ื“ื•ืœื”,
01:13
a lot of death.
22
73260
3000
ืชืžื•ืชื” ื’ื“ื•ืœื”.
01:16
In India in 1960,
23
76260
2000
ื‘ื”ื•ื“ื• ืฉืœ 1960,
01:18
there was a 24 percent child mortality rate,
24
78260
2000
ืฉื™ืขื•ืจ ืชืžื•ืชืช ื”ื™ืœื“ื™ื ื”ื™ื” 24 ืื—ื•ื–,
01:20
lots of people didn't make it. This is incredibly unfortunate.
25
80260
4000
ื”ืจื‘ื” ืื ืฉื™ื ืœื ืฉืจื“ื•. ืžืฆืขืจ ืžืื•ื“.
01:24
One of the big reasons this happened was
26
84260
2000
ืื—ืช ื”ืกื™ื‘ื•ืช ื”ืขื™ืงืจื™ื•ืช ืœื–ื”
01:26
because of diarrhea.
27
86260
2000
ื”ื™ื™ืชื” ืฉืœืฉื•ืœ.
01:28
Now, there was a big effort to solve this problem,
28
88260
3000
ื›ืขืช, ื ืขืฉื” ืžืืžืฅ ื’ื“ื•ืœ ืœืคืชื•ืจ ืืช ื”ื‘ืขื™ื” ื”ื–ืืช.
01:31
and there was actually a big solution.
29
91260
4000
ื•ืœืžืขืฉื” ื ืžืฆื ืคืชืจื•ืŸ ื’ื“ื•ืœ.
01:35
This solution has been called, by some,
30
95260
2000
ื•ื”ืคืชืจื•ืŸ ื”ื–ื” ื›ื•ื ื”, ืขืœ ื™ื“ื™ ื›ืžื” ืื ืฉื™ื,
01:37
"potentially the most important medical
31
97260
2000
"ืคื•ื˜ื ืฆื™ืืœ ื”ื”ืชืงื“ืžื•ืช ื”ืจืคื•ืื™ืช ื”ื—ืฉื•ื‘ื” ื‘ื™ื•ืชืจ
01:39
advance this century."
32
99260
3000
ื‘ืžืื” ื”ื ื•ื›ื—ื™ืช"
01:42
Now, the solution turned out to be simple.
33
102260
3000
ืขื›ืฉื™ื•, ื”ืคืชืจื•ืŸ ื”ืชื‘ืจืจ ื›ืคืฉื•ื˜.
01:45
And what it was was oral rehydration salts.
34
105260
4000
ื•ื”ื•ื ื”ื™ื” ืžืœื—ื™ ื”ื–ื ื” ืœื ื˜ื™ืœื” ื“ืจืš ื”ืคื”.
01:49
Many of you have probably used this.
35
109260
2000
ืจื‘ื™ื ืžื›ื ื›ื ืจืื” ื”ืฉืชืžืฉื• ื‘ื”ื.
01:51
It's brilliant. It's a way to get sodium
36
111260
2000
ื–ื” ืžื‘ืจื™ืง. ื–ื• ื“ืจืš ืœื”ื›ื ื™ืก ื ืชืจืŸ
01:53
and glucose together so that when you add it to water
37
113260
3000
ื•ื’ืœื•ืงื•ื– ื‘ื™ื—ื“ ื›ืš ืฉื›ืฉืžื•ืกื™ืคื™ื ืื•ืชื ืœืžื™ื
01:56
the child is able to absorb it even during situations of diarrhea.
38
116260
3000
ื”ื™ืœื“ ื™ื›ื•ืœ ืœืกืคื•ื’ ืื•ืชื ื’ื ื‘ืžืงืจื” ืฉืœ ืฉืœืฉื•ืœ.
01:59
Remarkable impact on mortality.
39
119260
4000
ื”ืฉืคืขื” ืžืฉืžืขื•ืชื™ืช ืขืœ ื”ืชืžื•ืชื”.
02:03
Massive solution to the problem.
40
123260
2000
ืคืชืจื•ืŸ ืขืฆื•ื ืœื‘ืขื™ื”.
02:05
Flash forward: 1960, 24 percent child mortality
41
125260
3000
ื ืจื•ืฅ ืงื“ื™ืžื”, 24 ืื—ื•ื–ื™ ืชืžื•ืชืช ื”ื™ืœื“ื™ื ืž-1960
02:08
has dropped to 6.5 percent today.
42
128260
2000
ืฆื ื—ื• ืœ- 6.5 ืื—ื•ื–ื™ื ื›ื™ื•ื.
02:10
Still a big number, but a big drop.
43
130260
3000
ืขื“ื™ื™ืŸ ืžืกืคืจ ื’ื“ื•ืœ, ืื‘ืœ ื™ืจื™ื“ื” ื—ื–ืงื”.
02:13
It looks like the technological problem is solved.
44
133260
3000
ื ืจืื” ืฉื”ื‘ืขื™ื” ื”ื˜ื›ื ื•ืœื•ื’ื™ืช ื ืคืชืจื”.
02:16
But if you look, even today
45
136260
2000
ืืš ืื ื ืกืชื›ืœ, ืืคื™ืœื• ื›ื™ื•ื
02:18
there are about 400,000 diarrhea-related deaths
46
138260
2000
ื™ืฉ ื‘ืขืจืš 400,000 ืžืงืจื™ ืžื•ื•ืช
02:20
in India alone.
47
140260
2000
ืขืงื‘ ืฉืœืฉื•ืœื™ื ื‘ื”ื•ื“ื• ื‘ืœื‘ื“.
02:22
What's going on here?
48
142260
2000
ืžื” ืงื•ืจื” ื›ืืŸ?
02:24
Well the easy answer is, we just haven't gotten those salts
49
144260
3000
ื•ื‘ื›ืŸ, ื”ืชืฉื•ื‘ื” ื”ืงืœื” ื”ื™ื, ืคืฉื•ื˜ ืœื ื”ื‘ืื ื• ืืช ื”ืžืœื—ื™ื ื”ืืœื”
02:27
to those people.
50
147260
2000
ืืœ ื”ืื ืฉื™ื ื”ืืœื”.
02:29
That's actually not true.
51
149260
2000
ื–ื” ,ืœืืžื™ืชื• ืฉืœ ื“ื‘ืจ, ืœื ื ื›ื•ืŸ.
02:31
If you look in areas where these salts are completely available,
52
151260
3000
ืื ื ืกืชื›ืœ ื‘ืื–ื•ืจื™ื ื‘ื”ื ื”ืžืœื—ื™ื ื”ืืœื” ื–ืžื™ื ื™ื ืœื—ืœื•ื˜ื™ืŸ
02:34
the price is low or zero, these deaths still continue abated.
53
154260
3000
ื•ื”ืžื—ื™ืจ ื”ื•ื ืืคืกื™, ืžืงืจื™ ื”ืžื•ื•ืช ื”ืืœื• ืžืžืฉื™ื›ื™ื ืœื”ืชืจื—ืฉ ืฉื.
02:37
Maybe there's a biological answer.
54
157260
2000
ืื•ืœื™ ื™ืฉ ืชืฉื•ื‘ื” ื‘ื™ืœื•ื’ื™ืช ืœื–ื”.
02:39
Maybe these are the deaths that simple rehydration
55
159260
2000
ืื•ืœื™ ืืœื• ืžืงืจื™ื ื‘ื”ื ื”ืฉื‘ืช ื ื•ื–ืœื™ื
02:41
alone doesn't solve. That's not true either.
56
161260
3000
ื›ืฉืœืขืฆืžื” ืื™ื ื” ื™ื›ื•ืœื” ืœืคืชื•ืจ. ืื‘ืœ ื’ื ื–ื” ืœื ื”ื”ืกื‘ืจ ื”ื ื›ื•ืŸ.
02:44
Many of these deaths were completely preventable,
57
164260
5000
ื”ืจื‘ื” ืžืžืงืจื™ ื”ืžื•ื•ืช ื”ืืœื” ืœื’ืžืจื™ ื ื™ืชื ื™ื ืœืžื ื™ืขื”.
02:49
and this what I want to think of as the disconcerting thing,
58
169260
3000
ื•ืขืœ ื–ื” ืื ื™ ืจื•ืฆื” ืœื—ืฉื•ื‘ ื›ื“ื‘ืจ ื”ืžืฆื™ืง,
02:52
what I want to call "the last mile" problem.
59
172260
2000
ืื•ืชื• ืื ื™ ืจื•ืฆื” ืœื›ื ื•ืช ื‘ืขื™ื™ืช "ื”ืžื™ื™ืœ ื”ืื—ืจื•ืŸ".
02:54
See, we spent a lot of energy, in many domains --
60
174260
4000
ืืชื ืจื•ืื™ื, ืื ื—ื ื• ืžื‘ื–ื‘ื–ื™ื ื”ืจื‘ื” ืื ืจื’ื™ื” , ื‘ื”ืจื‘ื” ืชื—ื•ืžื™ื.
02:58
technological, scientific, hard work,
61
178260
2000
ื˜ื›ื ื•ืœื•ื’ื™ื™ื, ืžื“ืขื™ื™ื, ืขื‘ื•ื“ื” ืงืฉื”,
03:00
creativity, human ingenuity --
62
180260
2000
ื™ืฆื™ืจืชื™ื•ืช, ื›ื•ืฉืจ ื”ืžืฆืื” ืื ื•ืฉื™,
03:02
to crack important social problems with technology solutions.
63
182260
4000
ื›ื“ื™ ืœืคืฆื— ื‘ืขื™ื•ืช ื—ื‘ืจืชื™ื•ืช ื—ืฉื•ื‘ื•ืช ื‘ืขื–ืจืช ืคืชืจื•ื ื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื™ื.
03:06
That's been the discoveries of the last 2,000 years,
64
186260
2000
ืืœื• ื”ื™ื• ื”ืชื’ืœื™ื•ืช ืฉืœ 2,000 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช.
03:08
that's mankind moving forward.
65
188260
2000
ื–ื”ื• ื”ื’ื–ืข ื”ืื ื•ืฉื™ ืฉืžืชืคืชื—.
03:10
But in this case we cracked it,
66
190260
3000
ืื‘ืœ ื‘ืžืงืจื” ื–ื” ืคื™ืฆื—ื ื• ืืช ื–ื”,
03:13
but a big part of the problem still remains.
67
193260
2000
ืื‘ืœ ื—ืœืง ื’ื“ื•ืœ ืžื”ื‘ืขื™ื” ืขื“ื™ื™ืŸ ืงื™ื™ื.
03:15
Nine hundred and ninety-nine miles went well,
68
195260
2000
999 ืžื™ื™ืœื™ื ื”ืœื›ื• ื˜ื•ื‘.
03:17
the last mile's proving incredibly stubborn.
69
197260
3000
ื”ืžื™ื™ืœ ื”ืื—ืจื•ืŸ ืžื•ื›ื™ื— ืขืงืฉื ื•ืช ืžื“ื”ื™ืžื”.
03:20
Now, that's for oral rehydration therapy.
70
200260
4000
ื›ืขืช, ื–ื” ืœื’ื‘ื™ ื˜ื™ืคื•ืœ ื”ื”ื–ื ื” ื‘ืขื–ืจืช ืžืœื—ื™ื.
03:24
Maybe this is something unique about diarrhea.
71
204260
2000
ืื•ืœื™ ื™ืฉ ื“ื‘ืจ ื™ื—ื•ื“ื™ ื‘ืฉืœืฉื•ืœื™ื
03:26
Well, it turns out -- and this is where things get really disconcerting --
72
206260
2000
ื•ื‘ื›ืŸ, ืžืกืชื‘ืจ, ื•ื›ืืŸ ื”ืขื ื™ื™ื ื™ื ื”ื•ืคื›ื™ื ืœื”ื™ื•ืช ืžืฆื™ืงื™ื ื‘ืืžืช.
03:28
it's not unique to diarrhea.
73
208260
2000
ื–ื” ืœื ื™ื™ื—ื•ื“ื™ ืจืง ืœืฉืœืฉื•ืœื™ื
03:30
It's not even unique to poor people in India.
74
210260
2000
ื–ื” ืืคื™ืœื• ืœื ื™ื™ื—ื•ื“ื™ ืจืง ืœืขื ื™ื™ื ื‘ื”ื•ื“ื•.
03:32
Here's an example from a variety of contexts.
75
212260
3000
ื”ื ื” ื“ื•ื’ืžื” ืžืื•ืกืฃ ืฉืœ ื”ืงืฉืจื™ื.
03:35
I've put a bunch of examples up here.
76
215260
2000
ืื ื™ ืžืฆื™ื’ ืฆืจื•ืจ ื“ื•ื’ืžืื•ืช ื›ืืŸ ืœืžืขืœื”.
03:37
I'll start with insulin, diabetes
77
217260
3000
ืืชื—ื™ืœ ื‘ืื™ื ืกื•ืœื™ืŸ, ื”ืชืจื•ืคื”
03:40
medication in the U.S.
78
220260
2000
ืœืกื•ื›ืจืช ื‘ืืจื”"ื‘
03:42
OK, the American population.
79
222260
2000
ืื•.ืงื™ื™, ื”ืื•ื›ืœื•ืกื™ื” ื”ืืžืจื™ืงืื™ืช.
03:44
On Medicaid -- if you're fairly poor you get Medicaid,
80
224260
2000
ืื ืืชื” ื“ืœ ืืžืฆืขื™ื ื™ืฉ ืœืš ื‘ื™ื˜ื•ื— ื‘ืจื™ืื•ืช ืžืžืœื›ืชื™
03:46
or if you have health insurance -- insulin is pretty straightforward.
81
226260
2000
ืื• ืื ื™ืฉ ืœืš ื‘ื™ื˜ื•ื— ื‘ืจืื™ื•ืช ืคืจื˜ื™, ืื™ื ืกื•ืœื™ืŸ ืžืื“ ื–ืžื™ืŸ
03:48
You get it, either in pill form or you get it as an injection;
82
228260
4000
ื™ืฉ ืœืš ืืช ื–ื” ืื• ื‘ืฆื•ืจืช ื’ืœื•ืœื” ืื• ื›ื–ืจื™ืงื”.
03:52
you have to take it every day to maintain your blood sugar levels.
83
232260
2000
ืืชื” ืฆืจื™ืš ืœืงื—ืช ื›ืœ ื›ื™ื•ื ื›ื“ื™ ืœืฉืžื•ืจ ืืช ืจืžืช ื”ืกื•ื›ืจ ื‘ื“ื
03:54
Massive technological advance:
84
234260
2000
ื”ืชืงื“ืžื•ืช ื˜ื›ื ื•ืœื•ื’ื™ืช ืขืฆื•ืžื”
03:56
took an incredibly deadly disease, made it solvable.
85
236260
2000
ืœืงื—ื• ืžื—ืœื” ืงื˜ืœื ื™ืช ื‘ื™ื•ืชืจ, ืžืฆืื• ืœื” ืคืชืจื•ืŸ.
03:58
Adherence rates. How many people are taking their insulin every day?
86
238260
3000
ืฉืขื•ืจื™ ื—ื“ื™ืจื”. ื›ืžื” ืื ืฉื™ื ืœื•ืงื—ื™ื ืื™ื ืกื•ืœื™ืŸ ื›ืœ ื™ื•ื?
04:01
About on average, a typical person is taking it 75 percent of the time.
87
241260
4000
ื‘ืžืžื•ืฆืข, ืื“ื ืจื’ื™ืœ ืœื•ืงื— 75 ืื—ื•ื–ื™ื ืžื”ื–ืžืŸ.
04:05
As a result, 25,000 people a year go blind,
88
245260
5000
ื›ืชื•ืฆืื” ืžื›ืš, 25,000 ืื™ืฉ ืžืชืขื•ื•ืจื™ื ื›ืœ ืฉื ื”.
04:10
hundreds of thousands lose limbs, every year,
89
250260
2000
ืžืื•ืช ืืœืคื™ื ืžืื‘ื“ื™ื ืื™ื‘ืจื™ื, ื›ืœ ืฉื ื”
04:12
for something that's solvable.
90
252260
2000
ื‘ืขืงื‘ื•ืช ื“ื‘ืจ ืฉื”ื•ื ืคืชื™ืจ.
04:14
Here I have a bunch of other examples,
91
254260
2000
ื”ื ื” ืขื•ื“ ื›ืžื” ื“ื•ื’ืžืื•ืช ืื—ืจื•ืช,
04:16
all suffer from the last mile problem.
92
256260
2000
ื›ื•ืœืŸ ืกื•ื‘ืœื•ืช ืžื‘ืขื™ื™ืช ื”ืžื™ื™ืœ ื”ืื—ืจื•ืŸ
04:18
It's not just medicine.
93
258260
2000
ื–ื” ืœื ืจืง ืชืจื•ืคื”.
04:20
Here's another example from technology:
94
260260
2000
ื”ื ื” ืขื•ื“ ื“ื•ื’ืžื” ื˜ื›ื ื•ืœื•ื’ื™ืช.
04:22
agriculture. We think
95
262260
2000
ื—ืงืœืื•ืช. ืื ื• ื—ื•ืฉื‘ื™ื
04:24
there's a food problem, so we create new seeds.
96
264260
2000
ื™ืฉ ืœื ื• ื‘ืขื™ื™ืช ืžื–ื•ืŸ, ืื– ืื ื• ื™ื•ืฆืจื™ื ื–ืจืขื™ื ื—ื“ืฉื™ื.
04:26
We think there's an income problem, so we create
97
266260
2000
ื™ืฉ ืœื ื• ื‘ืขื™ื™ืช ื”ื›ื ืกื”, ืื ื• ื™ื•ืฆืจื™ื
04:28
new ways of farming that increase income.
98
268260
3000
ื“ืจื›ื™ ื’ื™ื“ื•ืœ ื—ื“ืฉื•ืช ืฉื™ื’ื“ื™ืœื• ื”ื›ื ืกื•ืช.
04:31
Well, look at some old ways, some ways that we'd already cracked.
99
271260
3000
ื•ื‘ื›ืŸ, ื”ืกืชื›ืœื• ืขืœ ื“ืจื›ื™ื ื™ืฉื ื•ืช, ื›ืืœื• ืฉื›ื‘ืจ ืคื™ืฆื—ื ื•.
04:34
Intercropping. Intercropping really increases income.
100
274260
2000
ื’ื™ื“ื•ืœ ื‘ืžืงื‘ื™ืœ. ื–ื” ื‘ืืžืช ืžื’ื“ื™ืœ ื”ื›ื ืกื”
04:36
Sometimes in rice we found incredible increases in yield
101
276260
3000
ืœืคืขืžื™ื ื‘ืื•ืจื– ืื ื• ืžื•ืฆืื™ื ื’ื™ื“ื•ืœ ืžื“ื”ื™ื ื‘ืชื ื•ื‘ื”
04:39
when you mix different varieties of rice side by side.
102
279260
2000
ื›ืฉืžืขืจื‘ื‘ื™ื ืกื•ื’ื™ื ืฉื•ื ื™ื ืฉืœ ืื•ืจื– ื–ื” ืœืฆื“ ื–ื”
04:41
Some people are doing that,
103
281260
2000
ืื ืฉื™ื ืขื•ืฉื™ื ื–ืืช,
04:43
many are not. What's going on?
104
283260
2000
ื”ืจื‘ื” ืžืื“ ืœื. ืžื” ืงื•ืจื” ืคื”?
04:45
This is the last mile.
105
285260
2000
ื–ื”ื• ื”ืžื™ื™ืœ ื”ืื—ืจื•ืŸ.
04:47
The last mile is, everywhere, problematic.
106
287260
2000
ื”ืžื™ื™ืœ ื”ืื—ืจื•ืŸ, ื‘ื›ืœ ืžืงื•ื, ื”ื•ื ื‘ืขื™ื™ืชื™.
04:49
Alright, what's the problem?
107
289260
2000
ื‘ืกื“ืจ. ืžื” ื”ื‘ืขื™ื”?
04:51
The problem is this little three-pound machine
108
291260
3000
ื”ื‘ืขื™ื” ื”ื™ื ื”ืžื›ื•ื ื” ื”ื–ื• ืฉืฉื•ืงืœืช ืงื™ืœื• ื—ืฆื™
04:54
that's behind your eyes and between your ears.
109
294260
4000
ื–ืืช ืฉืžืื—ื•ืจื™ ืขื™ื ื™ื›ื ื•ื‘ื™ืŸ ืื–ื ื™ื›ื.
04:58
This machine is really strange,
110
298260
2000
ื”ืžื›ื•ื ื” ื”ื–ืืช ื”ื™ื ื‘ืืžืช ืžื•ื–ืจื”.
05:00
and one of the consequences is that people are weird.
111
300260
4000
ื•ืื—ืช ื”ืชื•ืฆืื•ืช ื”ื™ื ืฉืื ืฉื™ื ื”ื ืžื•ื–ืจื™ื.
05:04
They do lots of inconsistent things.
112
304260
4000
ื”ื ืขื•ืฉื™ื ื”ืจื‘ื” ืžืขืฉื™ื ืœื ืขืงื‘ื™ื™ื.
05:08
(Applause)
113
308260
2000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
05:10
They do lots of inconsistent things.
114
310260
3000
ื”ื ืขื•ืฉื™ื ื”ืจื‘ื” ืžืขืฉื™ื ืœื ืขืงื‘ื™ื™ื.
05:13
And the inconsistencies
115
313260
2000
ื•ื—ื•ืกืจ ื”ืขืงื‘ื™ื•ืช
05:15
create, fundamentally, this last mile problem.
116
315260
3000
ื™ื•ืฆืจืช, ื‘ื‘ืกื™ืก, ืืช ื‘ืขื™ื™ืช ื”ืžื™ื™ืœ ื”ืื—ืจื•ืŸ.
05:18
See, when we were dealing with our biology, bacteria,
117
318260
3000
ืืชื ืžื‘ื™ื ื™ื, ื›ืฉืขื•ืกืงื™ื ื‘ื‘ื™ื•ืœื•ื’ื™ื” ืฉืœื ื•, ื‘ืงื˜ืจื™ื”,
05:21
the genes, the things inside here, the blood?
118
321260
3000
ื”ื’ื ื™ื, ื“ื‘ืจื™ื ืฉื›ืืŸ ื‘ืคื ื™ื, ื”ื“ื,
05:24
That's complex, but it's manageable.
119
324260
3000
ื–ื” ืžื•ืจื›ื‘, ืื‘ืœ ื ื™ืชืŸ ืœื”ืชืžื•ื“ื“ื•ืช.
05:27
When we're dealing with people like this?
120
327260
3000
ื›ืฉืขื•ืกืงื™ื ื‘ืื ืฉื™ื ื›ืืœื”,
05:30
The mind is more complex.
121
330260
2000
ื”ืžื•ื— ื™ื•ืชืจ ืžื•ืจื›ื‘.
05:32
That's not as manageable, and that's what we're struggling with.
122
332260
2000
ื–ื” ืงืฉื” ื™ื•ืชืจ ืœื”ืชืžื•ื“ื“ื•ืช, ื•ืขื ื–ื” ืื ื—ื ื• ื ืื‘ืงื™ื.
05:34
Let me go back to diarrhea for a second.
123
334260
3000
ื‘ื•ืื• ื ื—ื–ื•ืจ ืœืฉื™ืœืฉื•ืœื™ื ืœืจื’ืข.
05:37
Here's a question that was asked in the National Sample Survey,
124
337260
3000
ืœืคื ื™ื›ื ืฉืืœื” ืฉื ืฉืืœื” ื‘ืกืงืจ ืœืื•ืžื™
05:40
which is a survey asked of many Indian women:
125
340260
2000
ื–ื”ื• ืกืงืจ ืฉื”ืงื™ืฃ ื”ืจื‘ื” ื ืฉื™ื ื”ื•ื“ื™ื•ืช
05:42
"Your child has diarrhea.
126
342260
2000
"ืœื™ืœื“ืš ื™ืฉ ืฉืœืฉื•ืœ.
05:44
Should you increase, maintain or decrease the number of fluids?"
127
344260
3000
ื”ืื ืชื’ื“ื™ืœื™, ืชืฉืžืจื™ ืงื‘ื•ืข ืื• ืชืงื˜ื™ื ื™ ืืช ื›ืžื•ืช ื”ื ื•ื–ืœื™ื?"
05:47
Just so you don't embarrass yourselves, I'll give you the right answer:
128
347260
3000
ืจืง ื›ื“ื™ ืฉืœื ืชื•ื‘ื›ื•, ืื’ืœื” ืœื›ื ืืช ื”ืชืฉื•ื‘ื” ื”ื ื›ื•ื ื”.
05:50
It's increase.
129
350260
2000
ื”ืชืฉื•ื‘ื” ื”ื™ื ืœื”ื’ื“ื™ืœ.
05:54
Now, diarrhea's interesting
130
354260
1000
ื›ืขืช, ืฉืœืฉื•ืœ ื”ื•ื ืžืขื ื™ื™ืŸ
05:55
because it's been around for thousands of years,
131
355260
2000
ื›ื™ื•ื•ืŸ ืฉื”ื•ื ืชื•ืคืขื” ืงื™ื™ืžืช ื›ื‘ืจ ืืœืคื™ ืฉื ื™ื,
05:57
ever since humankind really
132
357260
3000
ืžืื– ืฉื”ืื ืฉื™ื
06:00
lived side by side enough to have really polluted water.
133
360260
3000
ื’ืจื• ื‘ืฆื•ื•ืชื ื•ื™ืฆืจื• ืžื™ื ืžื–ื•ื”ืžื™ื
06:03
One Roman strategy that was very interesting
134
363260
2000
ืืกื˜ืจื˜ื’ื™ื” ืจื•ืžืื™ืช ืื—ืช ื”ื™ืชื” ืžืื“ ืžืขื ื™ื™ื ืช,
06:05
was that -- and it really gave them a comparative advantage --
135
365260
2000
ื›ื–ืืช ืฉื ืชื ื” ืœื”ื ื™ืชืจื•ืŸ ืชื—ืจื•ืชื™,
06:07
they made sure their soldiers didn't drink
136
367260
3000
ื”ื ื•ื™ื“ืื• ืฉื—ื™ื™ืœื™ื”ื ืœื ื™ืฉืชื•
06:10
even remotely muddied waters.
137
370260
2000
ืžื™ื ืฉืœื•ื›ืœื›ื•, ืืคื™ืœื• ื‘ืžืงืฆืช, ื‘ื‘ื•ืฅ.
06:12
Because if some of your troops get diarrhea they're not that effective
138
372260
3000
ืžื›ื™ื•ื•ืŸ ืฉืื ื—ืœืง ืžื›ื•ื—ื•ืชื™ืš ืกื•ื‘ืœื™ื ืžืฉืœืฉื•ืœ, ื”ื ืœื ืืคืงื˜ื™ื‘ื™ื™ื
06:15
on the battlefield.
139
375260
2000
ื‘ืฉื“ื” ื”ืงืจื‘
06:17
So, if you think of Roman comparative advantage part of it was the breast shields,
140
377260
2000
ืœื›ืŸ, ืื•ืœื™ ื—ืฉื‘ืชื ืฉื”ื™ืชืจื•ืŸ ื”ืจื•ืžืื™ ื‘ื—ืœืงื• ื ื‘ืข ืžืžื’ื™ื ื™ ื”ื—ื–ื”,
06:19
the breastplates, but part of it was drinking the right water.
141
379260
4000
ืœื•ื—ื•ืช ื”ืžืชื›ืช, ืื‘ืœ ื—ืœืง ืžื–ื” ื ื‘ืข ืžื›ืš ืฉื”ื ืฉืชื• ืืช ื”ืžื™ื ื”ื ื›ื•ื ื™ื.
06:23
So, here are these women. They've seen their parents
142
383260
2000
ืื– ื”ื ื” ื ืฉื™ื ืฉืจืื• ืืช ื”ื•ืจื™ื”ืŸ
06:25
have struggled with diarrhea, they've struggled with diarrhea,
143
385260
2000
ื ืื‘ืงื™ื ื‘ืฉืœืฉื•ืœื™ื, ื”ื ื ืื‘ืงื• ื‘ืฉืœืฉื•ืœื™ื.
06:27
they've seen lots of deaths. How do they answer this question?
144
387260
3000
ื”ืŸ ืจืื• ื”ืžื•ืŸ ืžื™ืชื•ืช. ืื™ืš ื”ืŸ ืขื•ื ื•ืช ืœืฉืืœื” ื”ื–ืืช?
06:30
In India, 35 to 50 percent say "Reduce."
145
390260
4000
ื‘ื”ื•ื“ื•, 35 ืขื“ 50 ืื—ื•ื– ืื•ืžืจื•ืช "ืœื”ืงื˜ื™ืŸ."
06:34
Think about what that means for a second.
146
394260
2000
ืชื—ืฉื‘ื• ืœืฉื ื™ื™ื” ืžื” ื–ื” ืื•ืžืจ.
06:36
Thirty-five to 50 percent of women
147
396260
2000
35 ืขื“ 50 ืื—ื•ื– ืžื”ื ืฉื™ื
06:38
forget oral rehydration therapy,
148
398260
2000
ืฉื•ื›ื—ื™ื ืžื”ื–ื ืช ื”ืžืœื—ื™ื ื“ืจืš ื”ืคื”
06:40
they are increasing --
149
400260
2000
ื”ืŸ ืžืขืœื•ืช,
06:42
they are actually making their child
150
402260
3000
ื”ืŸ ื‘ืขืฆื ื’ื•ืจืžื•ืช ืœื™ืœื“ืŸ
06:45
more likely to die through their actions.
151
405260
3000
ืกื™ื›ื•ื™ ื’ื“ื•ืœ ื™ื•ืชืจ ืœืžื•ืช ื‘ื’ืœืœ ืคืขื•ืœืชืŸ.
06:48
How is that possible?
152
408260
2000
ืื™ืš ื–ื” ื™ืชื›ืŸ?
06:50
Well, one possibility -- I think that's how most people respond to this --
153
410260
3000
ื•ื‘ื›ืŸ - ืืคืฉืจื•ืช ืื—ืช - ืื ื™ ื—ื•ืฉื‘ ืฉืจื‘ ื”ืื ืฉื™ื ืžื’ื™ื‘ื™ื ืœื›ืš -
06:53
is to say, "That's just stupid."
154
413260
4000
ื”ื™ื ืœื•ืžืจ "ื–ื•ื”ื™ ื˜ื™ืคืฉื•ืช."
06:57
I don't think that's stupid.
155
417260
2000
ืื ื™ ืœื ื—ื•ืฉื‘ ืฉื–ื•ื”ื™ ื˜ื™ืคืฉื•ืช.
06:59
I think there is something very profoundly right in what these women are doing.
156
419260
3000
ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ื“ื‘ืจ ื ื›ื•ืŸ ื‘ื‘ืกื™ืกื• ืžื” ืฉื ืฉื™ื ืืœื• ืขื•ืฉื•ืช.
07:02
And that is, you don't put water
157
422260
2000
ื•ื–ื”, ืฉืœื ืžื•ืกื™ืคื™ื ืžื™ื
07:04
into a leaky bucket.
158
424260
2000
ืœืชื•ืš ื“ืœื™ ื“ื•ืœืฃ.
07:06
So, think of the mental model that goes behind reducing the intake.
159
426260
4000
ืื– ืชื—ืฉื‘ื• ืขืœ ืžื•ื“ืœ ืžื—ืฉื‘ืชื™ ืฉื”ื•ื ืžืขื‘ืจ ืœื”ืงื˜ื ืช ื”ืฆืจื™ื›ื”.
07:10
Just doesn't make sense.
160
430260
2000
ืคืฉื•ื˜ ืœื ื”ื’ื™ื•ื ื™
07:12
Now, the model is intuitively right.
161
432260
3000
ื›ืขืช, ื”ืžื•ื“ืœ ื”ื•ื ื ื›ื•ืŸ ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™ืช.
07:15
It just doesn't happen to be right about the world.
162
435260
4000
ื”ื•ื ืจืง ืœื ื ื›ื•ืŸ ืœื’ื‘ื™ ื”ืขื•ืœื.
07:19
But it makes a whole lot of sense at some deep level.
163
439260
3000
ืื‘ืœ ื–ื” ืžืื“ ื”ื’ื™ื•ื ื™ ื‘ืจืžื” ืขืžื•ืงื”
07:22
And that, to me, is the fundamental challenge
164
442260
3000
ื•ื–ื”, ื‘ืฉื‘ื™ืœื™, ื”ื•ื ื”ืืชื’ืจ ื”ื‘ืกื™ืกื™
07:25
of the last mile.
165
445260
5000
ืฉืœ ื”ืžื™ื™ืœ ื”ืื—ืจื•ืŸ.
07:30
This first challenge is what I refer to as the persuasion challenge.
166
450260
3000
ื”ืืชื’ืจ ื”ืจืืฉื•ืŸ ืžืชื™ื™ื—ืก ืœืืชื’ืจ ื”ืฉื›ื ื•ืข.
07:33
Convincing people to do something --
167
453260
2000
ืœืฉื›ื ืข ืื ืฉื™ื ืœืขืฉื•ืช ืžืขืฉื”.
07:35
take oral rehydration therapy, intercrop, whatever it might be --
168
455260
2000
ืœืงื—ืช ื”ื–ื ืช ืžืœื—ื™ื ื“ืจืš ื”ืคื”, ืœืขืจื‘ ื’ื™ื“ื•ืœื™ื, ืžื” ืฉื–ื” ืœื ื™ื”ื™ื”.
07:37
is not an act of information:
169
457260
3000
ื–ื•ื”ื™ ืœื ืคืขื•ืœืช ืžื™ื“ืข.
07:40
"Let's give them the data,
170
460260
2000
"ื‘ื•ื ื ื™ืชืŸ ืœื”ื ืืช ื”ื ืชื•ื ื™ื,
07:42
and when they have data they'll do the right thing."
171
462260
2000
ื•ื›ืฉื™ื”ื™ื• ืœื”ื ื”ื ืชื•ื ื™ื, ื”ื ื™ืขืฉื• ืืช ื”ื“ื‘ืจ ื”ื ื›ื•ืŸ."
07:44
It's more complex than that.
172
464260
2000
ื–ื” ื”ืจื‘ื” ื™ื•ืชืจ ืžื•ืจื›ื‘ ืžื›ืš.
07:46
And if you want to understand how it's more complex
173
466260
2000
ื•ืื ื‘ืจืฆื•ื ื›ื ืœื”ื‘ื™ืŸ ืื™ืš ื–ื” ื™ื•ืชืจ ืžื•ืจื›ื‘
07:48
let me start with something kind of interesting.
174
468260
4000
ืืชื—ื™ืœ ืขื ืžืฉื”ื• ื“ื™ ืžืขื ื™ื™ืŸ.
07:52
I'm going to give you a little math problem,
175
472260
2000
ืื ื™ ืืชืŸ ืœื›ื ื‘ืขื™ื” ืžืชืžื˜ื™ืช ืงื˜ื ื”.
07:54
and I want you to just yell out the answer as fast as possible.
176
474260
3000
ื•ืื ื™ ืจื•ืฆื” ืฉืชืฆืขืงื• ืืช ื”ืชืฉื•ื‘ื” ืžื”ืจ ื›ื›ืœ ื”ืืคืฉืจ.
07:57
A bat and a ball together cost $1.10.
177
477260
2000
ืžื—ื‘ื˜ ื•ื›ื“ื•ืจ ืขื•ืœื™ื ื™ื—ื“ $1.10.
07:59
The bat costs a dollar more than the ball.
178
479260
3000
ื”ืžื—ื‘ื˜ ืขื•ืœื” ื“ื•ืœืจ ืื—ื“ ื™ื•ืชืจ ืžื”ื›ื“ื•ืจ.
08:02
How much does the ball cost? Quick.
179
482260
3000
ื›ืžื” ืขื•ืœื” ื”ื›ื“ื•ืจ? ืžื”ืจ.
08:05
So, somebody out there says, "Five."
180
485260
2000
ืื– ืžื™ืฉื”ื• ืฉื ืื•ืžืจ ื—ืžืฉ.
08:07
A lot of you said, "Ten."
181
487260
2000
ื”ืจื‘ื” ืžื›ื ืืžืจื• 10.
08:09
Let's think about 10 for a second.
182
489260
3000
ื‘ื•ืื• ื ื—ืฉื•ื‘ ืขืœ 10 ืœืฉื ื™ื™ื”.
08:12
If the ball costs 10, the bat costs...
183
492260
4000
ืื ื”ื›ื“ื•ืจ ืขื•ืœื” 10, ื”ืžื—ื‘ื˜ ืขื•ืœื”...
08:16
this is easy, $1.10.
184
496260
2000
ื–ื” ืงืœ, $1.10.
08:18
Yeah. So, together they would cost $1.20.
185
498260
3000
ื›ืŸ. ืื– ื‘ื™ื—ื“ ื–ื” ื™ืขืœื” $1.20.
08:21
So, here you all are, ostensibly educated people.
186
501260
3000
ืื– ื”ื ื” ืืชื ื›ื•ืœื›ื, ืœื›ืื•ืจื” ืื ืฉื™ื ืžืฉื›ื™ืœื™ื.
08:24
Most of you look smart.
187
504260
3000
ืจื•ื‘ื›ื ื ืจืื™ื ื—ื›ืžื™ื.
08:27
The combination of that produces
188
507260
3000
ื”ืงื•ืžื‘ื™ื ืฆื™ื” ื”ื–ืืช ื™ื•ืฆืจืช
08:30
something that is actually, you got this thing wrong.
189
510260
2000
ืžืฉื”ื• ืฉื”ื•ื ืœืžืขืฉื”, ื”ื‘ื ืชื ื–ืืช ืœื ื ื›ื•ืŸ.
08:32
How is that possible? Let's go to something else.
190
512260
3000
ืื™ืš ื–ื” ื™ืชื›ืŸ? ื‘ื•ืื• ื ืœืš ืœืžืฉื”ื• ืื—ืจ.
08:35
I know algebra can be complicated.
191
515260
3000
ืื ื™ ื™ื•ื“ืข ืฉืืœื’ื‘ืจื” ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืžืกื•ื‘ื›ืช.
08:38
So, let's dial this back. That's what? Fifth grade? Fourth grade?
192
518260
3000
ื‘ื•ืื• ื ืกื•ื‘ื‘ ืืช ื”ื’ืœื’ืœ ืœืื—ื•ืจ. ืžื” ื–ื” ื™ื”ื™ื”? ื›ื™ืชื” ื”'? ื›ื™ืชื” ื“'?
08:41
Let's go back to kindergarten. OK?
193
521260
3000
ื‘ื•ืื• ื ื—ื–ื•ืจ ืœื’ืŸ ื”ื™ืœื“ื™ื. ื‘ืกื“ืจ?
08:44
There's a great show on American television that you have to watch.
194
524260
2000
ื™ืฉ ืชื•ื›ื ื™ืช ืžืขื•ืœื” ื‘ื˜ืœื•ื™ื–ื™ื” ื”ืืžืจื™ืงืื™ืช ืฉืืชื ื—ื™ื™ื‘ื™ื ืœืจืื•ืช.
08:46
It's called "Are You Smarter Than a Fifth Grader?"
195
526260
2000
ื”ื™ื ื ืงืจืืช "ื”ืื ืืชื” ื—ื›ื ื™ื•ืชืจ ืžืชืœืžื™ื“ ื›ื™ืชื” ื”'?"
08:48
I think we've learned the answer to that here.
196
528260
3000
ืื ื™ ื—ื•ืฉื‘ ืฉืœืžื“ื ื• ืืช ื”ืชืฉื•ื‘ื” ืœื›ืš ื›ืืŸ.
08:51
Let's move to kindergarten. Let's see if we can beat five-year-olds.
197
531260
3000
ื‘ื•ืื• ื ืขื‘ื•ืจ ืœื’ืŸ ื”ื™ืœื“ื™ื. ื‘ื•ืื• ื ืจืื” ืื ืชื ืฆื—ื• ื™ืœื“ ื‘ืŸ ื—ืžืฉ.
08:54
Here's what I'm going to do: I'm going to put objects on the screen.
198
534260
3000
ื”ื ื” ืžื” ืฉืื ื™ ื”ื•ืœืš ืœืขืฉื•ืช. ืื ื™ ื”ื•ืœืš ืœื”ืฆื™ื’ ืขืฆืžื™ื ืขืœ ื”ืžืกืš.
08:57
I just want you to name the color of the object.
199
537260
4000
ืื ื™ ืจืง ืจื•ืฆื” ืฉืชื’ื™ื“ื• ืžื” ื”ืฆื‘ืข ืฉืœ ื”ืขืฆื.
09:01
That's all it is. OK?
200
541260
2000
ื–ื” ื”ื›ืœ. ื‘ืกื“ืจ?
09:03
I want you to do it fast, and say it out loud with me,
201
543260
3000
ืื ื™ ืจื•ืฆื” ืฉืชืขืฉื• ืืช ื–ื” ืžื”ืจ. ื•ืชื’ื™ื“ื• ืœื™ ืืช ื–ื” ื‘ืงื•ืœ ืจื.
09:06
and do it quickly. I'll make the first one easy for you.
202
546260
2000
ื•ืชืขืฉื• ื–ืืช ื‘ื–ืจื™ื–ื•ืช. ืื ื™ ืืงืœ ืขืœื™ื›ื ื‘ืจืืฉื•ืŸ.
09:08
Ready? Black.
203
548260
2000
ืžื•ื›ื ื™ื? ืฉื—ื•ืจ.
09:10
Now the next ones I want you to do quickly and say it out loud.
204
550260
2000
ืขื›ืฉื™ื• ืืช ื”ื‘ื ืื ื™ ืจื•ืฆื” ืฉืชืขืฉื• ืžื”ืจ ื•ื‘ืงื•ืœ ืจื
09:12
Ready? Go.
205
552260
2000
ืžื•ื›ื ื™ื? ืขื›ืฉื™ื•.
09:14
Audience: Red. Green.
206
554260
2000
ืงื”ืœ: ืื“ื•ื, ื™ืจื•ืง
09:16
Yellow. Blue. Red.
207
556260
2000
ืฆื”ื•ื‘, ื›ื—ื•ืœ, ืื“ื•ื
09:18
(Laughter)
208
558260
3000
(ืฆื—ื•ืง)
09:21
Sendhil Mullainathan: That's pretty good.
209
561260
4000
ืกื ื“ื”ื™ืœ ืžื•ืœืื™ื ื˜'ืืŸ: ื˜ื•ื‘ ืžืื“.
09:25
Almost out of kindergarten.
210
565260
2000
ื›ืžืขื˜ ื›ืžื• ื‘ื’ืŸ.
09:27
What is all this telling us?
211
567260
2000
ืžื” ื–ื” ืื•ืžืจ ืœื ื•?
09:29
You see, what's going on here, and in the bat and ball problem
212
569260
3000
ืืชื ืจื•ืื™ื, ืžื” ื”ื•ืœืš ืคื”, ื•ื‘ืขื™ื™ืช ื”ืžื—ื‘ื˜ ื•ื”ื›ื“ื•ืจ
09:32
is that you have some intuitive ways of interacting with the world,
213
572260
3000
ื”ื™ื ืฉื™ืฉ ืœื›ื ื“ืจื›ื™ื ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™ื•ืช ืœื”ืชืžื•ื“ื“ื•ืช ืขื ื”ืขื•ืœื,
09:35
some models that you use to understand the world.
214
575260
2000
ื›ืžื” ืžื•ื“ืœื™ื ืฉืืชื ืžืฉืชืžืฉื™ื ืœื”ื‘ื™ืŸ ืืช ื”ืขื•ืœื.
09:37
These models, like the leaky bucket,
215
577260
2000
ื”ืžื•ื“ืœื™ื ื”ืืœื•, ื›ืžื• ื”ื“ืœื™ ื”ื“ื•ืœืฃ,
09:39
work well in most situations.
216
579260
2000
ืขื•ื‘ื“ื™ื ื˜ื•ื‘ ื‘ืจื‘ ื”ืžืงืจื™ื.
09:41
I suspect most of you --
217
581260
2000
ืื ื™ ื—ื•ืฉืฉ ืฉืจื•ื‘ื›ื,
09:43
I hope that's true for the rest of you --
218
583260
2000
ืื ื™ ืžืงื•ื•ื” ืฉื–ื” ื ื›ื•ืŸ ืœืฉืืจ ื”ืื ืฉื™ื ืฉื‘ื™ื ื™ื›ื,
09:45
actually do pretty well with addition and subtraction in the real world.
219
585260
4000
ืœืžืขืฉื” ืžืกืชื“ืจื™ื ื™ืคื” ืขื ื—ื™ื‘ื•ืจ ื•ื—ื™ืกื•ืจ ื‘ืขื•ืœื ื”ืืžื™ืชื™
09:49
I found a problem, a specific problem
220
589260
2000
ืžืฆืืชื™ ื‘ืขื™ื”, ื‘ืขื™ื” ืกืคืฆื™ืคื™ืช
09:51
that actually found an error with that.
221
591260
3000
ืฉืœืžืขืฉื” ืžืฆืื” ื˜ืขื•ืช ื‘ืžื•ื“ืœ.
09:54
Diarrhea, and many last mile problems, are like that.
222
594260
2000
ืฉืœืฉื•ืœ, ื•ื”ืจื‘ื” ื‘ืขื™ื•ืช ืฉืœ ื”ืžื™ื™ืœ ื”ืื—ืจื•ืŸ, ื”ืŸ ื›ืืœื”.
09:56
They are situations where the mental model
223
596260
2000
ืืœื• ืกื™ื˜ื•ืืฆื™ื•ืช ื‘ื”ืŸ ื”ืžื•ื“ืœ ื”ืžื—ืฉื‘ืชื™
09:58
doesn't match the reality.
224
598260
2000
ืœื ืชื•ืื ืืช ื”ืžืฆื™ืื•ืช.
10:00
Same thing here:
225
600260
2000
ืื•ืชื• ื”ื“ื‘ืจ ื›ืืŸ,
10:02
You had an intuitive response to this that was very quick.
226
602260
2000
ื”ื™ืชื” ืœื›ื ืชื’ื•ื‘ื” ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™ืช ืฉื”ื™ื™ืชื” ืžืื“ ืžื”ื™ืจื”.
10:04
You read "blue" and you wanted to say "blue," even though you knew your task was red.
227
604260
3000
ืงืจืืชื ื›ื—ื•ืœ ื•ืจืฆื™ืชื ืœื”ื’ื™ื“ ื›ื—ื•ืœ, ืœืžืจื•ืช ืฉืจืื™ืชื ืฉื”ืขืฆื ื‘ืฆื‘ืข ืื“ื•ื.
10:07
Now, I do this stuff because it's fun.
228
607260
2000
ืขื›ืฉื™ื•, ืื ื™ ืขื•ืฉื” ืืช ื–ื” ื›ื™ ื–ื” ื›ื™ืฃ.
10:09
But it's more profound than fun.
229
609260
4000
ืื‘ืœ ื–ื” ื™ื•ืชืจ ืขืžื•ืง ืžื›ื™ืฃ.
10:13
I'll give you a good example of how it actually effects persuasion.
230
613260
3000
ืื ื™ ืืชืŸ ืœื›ื ื“ื•ื’ืžื” ื˜ื•ื‘ื” ืื™ืš ื–ื” ืžืฉืคื™ืข ืขืœ ืฉื›ื ื•ืข
10:16
BMW is a pretty safe car.
231
616260
3000
ื‘.ืž.ื•ื•. ื”ื™ื ืžื›ื•ื ื™ืช ื‘ื˜ื•ื—ื” ืœืžื“ื™.
10:19
And they are trying to figure out, "Safety is good.
232
619260
2000
ื•ื”ื ืžื ืกื™ื ืœื”ืฆื™ื’, "ื‘ื˜ื™ื—ื•ืช ื–ื” ื˜ื•ื‘.
10:21
I want to advertise safety. How am I going to advertise safety?"
233
621260
2000
ืื ื™ ืจื•ืฆื” ืœืคืจืกื ื‘ื˜ื™ื—ื•ืช. ืื™ืš ืื ื™ ืืคืจืกื ื‘ื˜ื™ื—ื•ืช?"
10:23
"I could give people numbers. We do well on crash tests."
234
623260
3000
"ืื ื™ ื™ื›ื•ืœ ืœืชืช ืœืื ืฉื™ื ืžืกืคืจื™ื. ืื ื—ื ื• ืžืฆืœื™ื—ื™ื ื‘ืžื‘ื—ื ื™ ืจื™ืกื•ืง."
10:26
But the truth of the matter is, you look at that car,
235
626260
2000
ืื‘ืœ ื”ืืžืช ื”ื™ื, ืฉื›ืฉืืชื” ืžืกืชื›ืœ ืขืœ ื”ืจื›ื‘ ื”ื–ื”,
10:28
it doesn't look like a Volvo,
236
628260
2000
ื”ื•ื ืœื ื ืจืื” ื›ืžื• ื•ื•ืœื•ื•.
10:30
and it doesn't look like a Hummer.
237
630260
2000
ื•ื”ื•ื ืœื ื ืจืื” ื›ืžื• ื”ืืžืจ.
10:32
So, what I want you to think about for a few minutes
238
632260
2000
ื•ืœื›ืŸ, ืžื” ืฉื‘ืจืฆื•ื ื™ ืœื—ืฉื•ื‘ ืขืœื™ื• ื›ืžื” ื“ืงื•ืช
10:34
is: How would you convey safety of the BMW? Okay?
239
634260
3000
ืื™ืš ืชืขื‘ื™ืจ ืžืกืจ ืฉืœ ื”ื‘ื˜ื™ื—ื•ืช ืฉืœ ื‘.ืž.ื•ื•? ื˜ื•ื‘?
10:37
So now, while you're thinking about that let's move to a second task.
240
637260
3000
ื•ืขื›ืฉื™ื•, ื‘ื–ืžืŸ ืฉืืชื ื—ื•ืฉื‘ื™ื ืขืœ ื–ื” ื‘ื•ืื• ื ืขื‘ื•ืจ ืœืžืฉื™ืžื” ืฉื ื™ื™ื”.
10:40
The second task is fuel efficiency. Okay?
241
640260
3000
ื”ืžืฉื™ืžื” ื”ื‘ืื” ื”ื™ื ืฆืจื™ื›ืช ื“ืœืง ื™ืขื™ืœื”. ืื• ืงื™ื™?
10:43
Here's another puzzle for all of you.
242
643260
2000
ื”ื ื” ืขื•ื“ ื—ื™ื“ื” ื‘ืฉื‘ื™ืœ ื›ื•ืœื›ื.
10:45
One person walks into a car lot,
243
645260
2000
ืื“ื ื ื›ื ืก ืœืžื’ืจืฉ ืžื›ื•ื ื™ื•ืช,
10:47
and they're thinking about buying this Toyota Yaris.
244
647260
3000
ื•ื”ื•ื ื—ื•ืฉื‘ ืขืœ ืงื ื™ื™ื” ืฉืœ ื˜ื•ื™ื•ื˜ื” ื™ืืจื™ืก.
10:50
They are saying, "This is 35 miles per gallon. I'm going to do
245
650260
2000
ื”ื ืื•ืžืจื™ื: "ื–ื” ื™ืขืฉื” 35 ืžื™ื™ืœ ืœื’ืœื•ืŸ. ืื ื™ ืืขืฉื”
10:52
the environmentally right thing, I'm going to buy the Prius,
246
652260
2000
ืืช ื”ื“ื‘ืจ ื”ื ื›ื•ืŸ ืœืกื‘ื™ื‘ื”, ืื ื™ ืืงื ื” ืคืจื™ื•ืก,
10:54
50 miles per gallon."
247
654260
2000
50 ืžื™ื™ืœ ืœื’ืœื•ืŸ".
10:56
Another person walks into the lot,
248
656260
2000
ืื“ื ืื—ืจ ื ื›ื ืก ืœืžื’ืจืฉ ื”ืžื›ื•ื ื™ื•ืช.
10:58
and they're about to buy a Hummer, nine miles per gallon,
249
658260
2000
ื•ื”ื•ื ืžืชื›ื•ื•ืŸ ืœืงื ื•ืช ื”ืืžืจ. 9 ืžื™ื™ืœ ืœื’ืœื•ืŸ.
11:00
fully loaded, luxury.
250
660260
2000
ืžืื•ื‘ื–ืจ ืœื’ืžืจื™, ืžืคื•ืืจ.
11:02
And they say, "You know what? Do I need turbo? Do I need this heavyweight car?"
251
662260
4000
ื•ื”ื•ื ืื•ืžืจ:"ื™ื•ื“ืข ืžื”? ืื ื™ ืฆืจื™ืš ื˜ื•ืจื‘ื•? ื”ืื ืื ื™ ืฆืจื™ืš ืืช ื”ืžื›ื•ื ื™ืช ื”ื›ื‘ื“ื” ื”ื–ืืช?"
11:06
I'm going to do something good for the environment.
252
666260
2000
ืื ื™ ืืขืฉื” ืžืฉื”ื• ื˜ื•ื‘ ืœืกื‘ื™ื‘ื”.
11:08
I'm going to take off some of that weight,
253
668260
2000
ืื ื™ ืืฆืžืฆื ืงืฆืช ืืช ื”ืžืฉืงืœ ื”ื–ื”
11:10
and I'm going to buy a Hummer that's 11 miles per gallon."
254
670260
3000
ื•ืืงื ื” ื”ืืžืจ ืฉื™ืขืฉื” 11 ืžื™ื™ืœ ืœื’ืœื•ืŸ."
11:13
Which one of these people has done more for the environment?
255
673260
3000
ืžื™ ืžืฉื ื™ ื”ืื ืฉื™ื ื”ืืœื• ืขืฉื” ื™ื•ืชืจ ืœืžืขืŸ ื”ืกื‘ื™ื‘ื”?
11:16
See, you have a mental model.
256
676260
2000
ืืชื ืžื‘ื™ื ื™ื, ื™ืฉ ืœื›ื ืžื•ื“ืœ ืžื—ืฉื‘ืชื™.
11:18
Fifty versus 35, that's a big move. Eleven versus nine? Come on.
257
678260
3000
50 ืžื•ืœ 35, ื–ื” ืฆืขื“ ื’ื“ื•ืœ. 11 ืžื•ืœ 9? ื‘ื—ื™ื™ืš...
11:21
Turns out, go home and do the math,
258
681260
3000
ื™ื•ืฆื, ืชืขืฉื• ืืช ื”ื—ืฉื‘ื•ืŸ ื‘ื‘ื™ืช,
11:24
the nine to 11 is a bigger change. That person has saved more gallons.
259
684260
3000
ืฉื”ืชืฉืข ืžื•ืœ 11 ื”ื•ื ืฉื™ื ื•ื™ ื’ื“ื•ืœ ื™ื•ืชืจ. ื”ืื“ื ื—ืกืš ื™ื•ืชืจ ื’ืœื•ื ื™ื ืฉืœ ื“ืœืง.
11:27
Why? Because we don't care about miles per gallon, we care about
260
687260
2000
ืœืžื”? ื›ื™ ืœื ืื›ืคืช ืœื ื• ืžืžื™ื™ืœื™ื ืœื’ืœื•ืŸ, ืื›ืคืช ืœื ื•
11:29
gallons per mile.
261
689260
2000
ืžื’ืœื•ื ื™ื ืœืžื™ื™ืœ.
11:31
Think about how powerful that is if you're trying to encourage fuel efficiency.
262
691260
3000
ืชื—ืฉื‘ื• ืขืœ ื›ืžื” ื–ื” ืขื•ืฆืžืชื™ ืื ืืชื” ืžื ืกื” ืœืขื•ื“ื“ ืฆืจื™ื›ื” ื™ืขื™ืœื” ืฉืœ ื“ืœืง
11:34
Miles per gallon is the way we present things.
263
694260
2000
ืžื™ื™ืœื™ื ืœื’ืœื•ืŸ ื”ื™ื ื”ื“ืจืš ื‘ื” ืื ื• ืžืฆื™ื’ื™ื ื“ื‘ืจื™ื.
11:36
If we want to encourage change of behavior,
264
696260
3000
ืื ืื ื• ืจื•ืฆื™ื ืœืขื•ื“ื“ ืฉื™ื ื•ื™ ื‘ื”ืชื ื”ื’ื•ืช,
11:39
gallons per mile would have far more effectiveness.
265
699260
2000
ื’ืœื•ื ื™ื ืœืžื™ื™ืœ ื™ื”ื™ื” ื”ืจื‘ื” ื™ื•ืชืจ ืืคืงื˜ื™ื‘ื™.
11:41
Researchers have found these type of anomalies.
266
701260
3000
ืžื—ืงืจื™ื ืžืฆืื• ืกื•ื’ื™ื ื›ืืœื• ืฉืœ ืื ื•ืžืœื™ื•ืช.
11:44
Okay, back to BMW. What should they do?
267
704260
3000
ื˜ื•ื‘, ื—ื–ืจื” ืœื‘.ืž.ื•ื•.. ืžื” ืชืขืฉื•?
11:47
The problem BMW faces is this car looks safe.
268
707260
3000
ื”ื‘ืขื™ื” ืฉื‘.ืž.ื•ื• ื ืชืงืœื• ื‘ื” ืฉื”ืžื›ื•ื ื™ืช ื ืจืื™ืช ื‘ื˜ื•ื—ื”.
11:50
This car, which is my Mini, doesn't look that safe.
269
710260
4000
ื”ืžื›ื•ื ื™ืช ื”ื–ืืช. ืžื™ื ื™, ืœื ื ืจืื™ืช ื‘ื˜ื•ื—ื”.
11:54
Here was BMW's brilliant insight, which they embodied into an ad campaign.
270
714260
3000
ื•ื”ื ื” ื”ืชื•ื‘ื ื” ื”ืžื‘ืจื™ืงื” ืฉืœ ื‘.ืž.ื•ื• ืฉื”ื ื”ื›ืœื™ืœื• ื‘ืชื•ืš ื”ืงืžืคื™ื™ืŸ.
11:57
They showed a BMW driving down the street.
271
717260
2000
ื”ื ื”ืจืื• ื‘.ืž.ื•ื•. ื ื•ืกืขืช ื‘ืžื•ืจื“ ื”ืจื—ื•ื‘.
11:59
There's a truck on the right. Boxes fall out of the truck.
272
719260
3000
ื™ืฉ ืžืฉืื™ืช ืžื™ืžื™ืŸ. ืงื•ืคืกืื•ืช ื ื•ืคืœื•ืช ืžื”ืžืฉืื™ืช.
12:02
The car swerves to avoid it, and therefore doesn't get into an accident.
273
722260
5000
ื”ืžื›ื•ื ื™ืช ืกื•ื˜ื” ืขืœ ืžื ืช ืœื”ืชื—ืžืง ืžื”ืŸ ื•ืœื›ืŸ ืœื ื ื’ืจืžืช ืชืื•ื ืช ื“ืจื›ื™ื.
12:07
BWM realizes safety, in people's minds, has two components.
274
727260
4000
ื‘.ืž.ื•ื•. ื”ื‘ื—ื™ื ื” ืฉืœื‘ื˜ื™ื—ื•ืช, ื‘ืžื•ื—ื•ืช ื”ืื ืฉื™ื, ื™ืฉ ืฉื ื™ ืžืจื›ื™ื‘ื™ื.
12:11
You can be safe because when you're hit, you survive,
275
731260
4000
ืืชื ื™ื›ื•ืœื™ื ืœื—ื•ืฉ ื‘ื˜ื—ื•ืŸ ื›ื™ ืืชื ืชืฉืจื“ื• ืื—ืจื™ ืคื’ื™ืขื”,
12:15
or you can be safe because you avoid accidents.
276
735260
2000
ืื• ืฉืืชื ื™ื›ื•ืœื™ื ืœื—ื•ืฉ ื‘ื˜ื—ื•ืŸ ื›ื™ ืืชื ื ืžื ืขื™ื ืžืชืื•ื ื•ืช.
12:17
Remarkably successful campaign, but notice the power of it.
277
737260
2000
ืงืžืคื™ื™ืŸ ืžื•ืฆืœื— ื‘ืžื™ื•ื—ื“. ืื‘ืœ ืฉื™ืžื• ืœื‘ ืœื›ื•ื— ืฉืœ ื–ื”.
12:19
It harnesses something you already believe.
278
739260
3000
ื–ื” ืžื—ื–ืง ืžืฉื”ื• ืฉืืชื ื›ื‘ืจ ืžืืžื™ื ื™ื ื‘ื•.
12:22
Now, even if I persuaded you to do something,
279
742260
4000
ื›ืขืช, ื’ื ืื ืื ื™ ืžืฉื›ื ืข ืืชื›ื ืœืขืฉื•ืช ืžืฉื”ื•
12:26
it's hard sometimes to actually get action as a result.
280
746260
4000
ืœืคืขืžื™ื ื–ื” ืงืฉื” ืœืงื‘ืœ ืคืขื™ืœื•ืช ื›ืชื•ืฆืื” ืžื›ืš.
12:30
You all probably intended to wake up,
281
750260
2000
ื›ื•ืœื›ื ื›ื ืจืื” ืžืชื›ื•ื•ื ื™ื ืœืงื•ื
12:32
I don't know, 6:30, 7 a.m.
282
752260
3000
ืื ื™ ืœื ื™ื•ื“ืข, 6:30, 7 ื‘ื‘ื•ืงืจ.
12:35
This is a battle we all fight every day,
283
755260
2000
ื–ื”ื• ืงืจื‘ ืฉื›ื•ืœื ื• ื ืœื—ืžื™ื ื‘ื• ื›ืœ ื™ื•ื,
12:37
along with trying to get to the gym.
284
757260
3000
ื™ื—ื“ ืขื ื”ืœื™ื›ื” ืœืžื›ื•ืŸ ื”ื›ื•ืฉืจ.
12:40
Now, this is an example of that battle,
285
760260
3000
ื”ื ื” ื“ื•ื’ืžื” ืœืงืจื‘ ื”ื–ื”,
12:43
and makes us realize intentions don't always translate into action,
286
763260
3000
ืฉื’ื•ืจืžืช ืœื ื• ืœื”ื‘ื™ืŸ ืฉื›ื•ื•ื ื•ืช ืœื ื‘ื”ื›ืจื— ืžื‘ื™ืื•ืช ืœืคืขื•ืœื•ืช,
12:46
and so one of the fundamental challenges
287
766260
2000
ื•ืฉืื—ื“ ื”ืืชื’ืจื™ื ื”ื‘ืกื™ืกื™ื™ื
12:48
is how we would actually do that. OK?
288
768260
4000
ื”ื•ื ืื™ืš ื‘ืืžืช ื ืขืฉื” ื–ืืช. ื‘ืกื“ืจ?
12:52
So, let me now talk about the last mile problem.
289
772260
3000
ืื– ืชื ื• ืœื™ ืœื“ื‘ืจ ืขืœ ื‘ืขื™ื™ืช ื”ืžื™ื™ืœ ื”ืื—ืจื•ืŸ.
12:55
So far, I've been pretty negative.
290
775260
3000
ืขื“ ื›ื”, ื”ื™ื™ืชื™ ื“ื™ ืฉืœื™ืœื™.
12:58
I've been trying to show you the oddities of human behavior.
291
778260
3000
ื ื™ืกื™ืชื™ ืœื”ืจืื•ืช ืœื›ื ืžื•ื–ืจื•ื™ื•ืช ืฉืœ ื”ื”ืชื ื”ื’ื•ืช ื”ืื ื•ืฉื™ืช.
13:01
And I think maybe I'm being too negative.
292
781260
2000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉืื•ืœื™ ื”ื™ื™ืชื™ ืฉืœื™ืœื™ ืžื“ื™.
13:03
Maybe it's the diarrhea.
293
783260
2000
ืื•ืœื™ ื–ื” ื”ืฉืœืฉื•ืœ.
13:05
Maybe the last mile problem really should be thought of
294
785260
2000
ืื•ืœื™ ื‘ืขื™ื™ืช ื”ืžื™ื™ืœ ื”ืื—ืจื•ืŸ ืฆืจื™ื›ื” ืœื”ื™ื•ืช
13:07
as the last mile opportunity.
295
787260
2000
ืžื•ืฆื’ืช ื›ื”ื–ื“ืžื ื•ืช ื”ืžื™ื™ืœ ื”ืื—ืจื•ืŸ.
13:09
Let's go back to diabetes.
296
789260
2000
ื‘ื•ืื• ื ื—ื–ื•ืจ ืœืกื•ื›ืจืช.
13:11
This is a typical insulin injection.
297
791260
3000
ื–ื•ื”ื™ ื–ืจื™ืงืช ืื™ื ืกื•ืœื™ืŸ ื˜ื™ืคื•ืกื™ืช.
13:14
Now, carrying this thing around is complicated.
298
794260
3000
ืขื›ืฉื™ื•, ืœืฉืืช ืืช ื–ื” ืื™ืชื ื• ื–ื” ืงืฆืช ืžืกื•ื‘ืš.
13:17
You gotta carry the bottle, you gotta carry the syringe.
299
797260
4000
ืฆืจื™ืš ืœืกื—ื•ื‘ ืืช ื”ื‘ืงื‘ื•ืง, ืฆืจื™ืš ืืช ื”ืžื—ื˜.
13:21
It's also painful.
300
801260
2000
ื–ื” ื’ื ื›ื•ืื‘.
13:23
Now, you may think to yourself, "Well, if my eyes depended on it,
301
803260
4000
ืขื›ืฉื™ื•, ืืชื ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘ ืœืขืฆืžื›ื, "ื•ื‘ื›ืŸ, ืื ืขื™ื ื™ื™ ืชืœื•ื™ื•ืช ื‘ื–ื”
13:27
you know, I would obviously use it every day."
302
807260
2000
ื‘ื˜ื— ืืฉืชืžืฉ ื‘ื–ื” ื›ืœ ื™ื•ื."
13:29
But the pain, the discomfort,
303
809260
2000
ืื‘ืœ ื”ื›ืื‘, ื—ื•ืกืจ ื”ื ื•ื—ื•ืช,
13:31
you know, paying attention, remembering to put it in your purse
304
811260
2000
ืœื–ื›ื•ืจ ืœืฉื™ื ืืช ื–ื” ื‘ืืจื ืง
13:33
when you go on a long trip:
305
813260
2000
ื›ืฉืืชื ื™ื•ืฆืื™ื ืœื ืกื™ืขื” ืืจื•ื›ื”,
13:35
These are the day-to-day of life, and they do pose problems.
306
815260
4000
ืืœื• ื”ื—ื™ื™ื ื”ื™ื•ืžื™ื•ืžื™ื™ื, ื•ื”ื ื™ื•ืฆืจื™ื ื‘ืขื™ื•ืช.
13:39
Here is an innovation, a design innovation.
307
819260
3000
ื”ื ื” ื”ืžืฆืื”, ื”ืžืฆืื” ืขื™ืฆื•ื‘ื™ืช.
13:42
This is a pen, it's called an insulin pen, preloaded.
308
822260
4000
ื–ื”ื• ืขื˜, ื”ื•ื ื ืงืจื ืขื˜ ืื™ื ืกื•ืœื™ืŸ, ื˜ืขื•ืŸ ืžืจืืฉ.
13:46
The needle is particularly sharp.
309
826260
1000
ื”ืžื—ื˜ ื”ื™ื ื—ื“ื” ื‘ืžื™ื•ื—ื“.
13:47
You just gotta carry this thing around.
310
827260
2000
ืืชื ืจืง ืฆืจื™ื›ื™ื ืœืฉืืช ืืช ื–ื” ืื™ืชื›ื
13:49
It's much easier to use, much less painful.
311
829260
2000
ื–ื” ื”ืจื‘ื” ื™ื•ืชืจ ืคืฉื•ื˜ ืœืฉื™ืžื•ืฉ, ื”ืจื‘ื” ืคื—ื•ืช ื›ื•ืื‘.
13:51
Anywhere between five and 10 percent increase in adherence,
312
831260
4000
ื‘ื™ืŸ 5 ืœ 10 ืื—ื•ื– ืขืœื™ื™ื” ื‘ืื—ื•ื– ื”ื—ื“ื™ืจื”,
13:55
just as a result of this.
313
835260
2000
ืจืง ื›ืชื•ืฆืื” ืžื›ืš.
13:57
That's what I'm talking about as a last mile opportunity.
314
837260
3000
ืœื–ื” ืื ื™ ืžืชื›ื•ื•ืŸ ื›ืฉืื ื™ ืžื“ื‘ืจ ืขืœ ื”ื–ื“ืžื ื•ืช ื”ืžื™ื™ืœ ื”ืื—ืจื•ืŸ.
14:00
You see, we tend to think the problem is solved
315
840260
3000
ืืชื ืžื‘ื™ื ื™ื, ืื ื• ื ื•ื˜ื™ื ืœื—ืฉื•ื‘ ืฉื”ื‘ืขื™ื” ืคืชื•ืจื”
14:03
when we solve the technology problem.
316
843260
2000
ื›ืฉืื ื• ืคื•ืชืจื™ื ืืช ื”ื‘ืขื™ื” ื”ื˜ื›ื ื•ืœื•ื’ื™ืช.
14:05
But the human innovation, the human problem
317
845260
2000
ืื‘ืœ ื”ื—ื“ืฉื ื•ืช ื”ืื ื•ืฉื™ืช, ื”ื‘ืขื™ื” ื”ืื ื•ืฉื™ืช
14:07
still remains, and that's a great frontier that we have left.
318
847260
4000
ืขื“ื™ื™ืŸ ื ืฉืืจืช, ื•ื–ื•ื”ื™ ื”ืชืžื•ื“ื“ื•ืช ื’ื“ื•ืœื” ืฉื ื•ืชืจื” ืœื ื•.
14:11
This isn't about the biology of people;
319
851260
2000
ืœื ืžื“ื•ื‘ืจ ืขืœ ื”ื‘ื™ื•ืœื•ื’ื™ื” ืฉืœ ื”ืื ืฉื™ื,
14:13
this is now about the brains, the psychology of people,
320
853260
4000
ืขื›ืฉื™ื• ืžื“ื•ื‘ืจ ืขืœ ื”ืžื•ื—, ืขืœ ื”ืคืกื™ื›ื•ืœื•ื’ื™ื” ืฉืœ ื”ืื ืฉื™ื.
14:17
and innovation needs to continue all the way through
321
857260
2000
ื•ื”ื—ื“ืฉื ื•ืช ืฆืจื™ื›ื” ืœื”ืžืฉื™ืš ื›ืœ ื”ื“ืจืš
14:19
the last mile.
322
859260
2000
ืขื“ ืœืžื™ื™ืœ ื”ืื—ืจื•ืŸ.
14:21
Here's another example of this.
323
861260
2000
ื”ื ื” ืขื•ื“ ื“ื•ื’ืžื ืœื›ืš.
14:23
This is from a company called Positive Energy.
324
863260
3000
ืžื—ื‘ืจื” ืฉื ืงืจืืช "ืื ืจื’ื™ื” ื—ื™ื•ื‘ื™ืช".
14:26
This is about energy efficiency.
325
866260
2000
ืžื“ื•ื‘ืจ ืขืœ ื™ืขื™ืœื•ืช ื‘ืื ืจื’ื™ื”.
14:28
We're spending a lot of time on fuel cells right now.
326
868260
3000
ืื ื• ืžืฉืงื™ืขื™ื ื”ืจื‘ื” ื–ืžืŸ ืขืœ ืชืื™ ื“ืœืง ื‘ื™ืžื™ื ืืœื•.
14:31
What this company does is they send a letter
327
871260
2000
ืžื” ืฉื”ื—ื‘ืจื” ืขื•ืฉื” ื–ื” ืœืฉืœื•ื— ืžื›ืชื‘
14:33
to households that say, "Here's your energy use,
328
873260
2000
ืœื‘ืชื™ ืื‘ ืฉืื•ืžืจื™ื: "ื–ื•ื”ื™ ืฆืจื™ื›ืช ื”ืื ืจื’ื™ื” ืฉืœื›ื,
14:35
here's your neighbor's energy use: You're doing well." Smiley face.
329
875260
3000
ื–ื•ื”ื™ ื”ืฆืจื™ื›ื” ืฉืœ ืฉื›ื ื›ื, ืืชื ื‘ืกื“ืจ". ืคืจืฆื•ืฃ ืฉืœ ืกืžื™ื™ืœื™.
14:38
"You're doing worse." Frown.
330
878260
2000
"ืืชื ืคื—ื•ืช ื˜ื•ื‘ื™ื" . ืคืจืฆื•ืฃ ื–ื•ืขืฃ.
14:40
And what they find is just this letter, nothing else,
331
880260
3000
ื•ื”ื ืžืฆืื• ืฉื”ืžื›ืชื‘ ืœื‘ื“ื•, ืฉื•ื ื“ื‘ืจ ืื—ืจ,
14:43
has a two to three percent reduction in electricity use.
332
883260
2000
ื’ืจื ืœืฉื ื™ื™ื ืฉืœื•ืฉื” ืื—ื•ื–ื™ื ืฉืœ ื™ืจื™ื“ื” ื‘ืฆืจื™ื›ืช ื—ืฉืžืœ.
14:45
And you want to think about the social value of that
333
885260
2000
ื•ืชื—ืฉื‘ื• ืขืœ ื”ืขืจืš ื”ื—ื‘ืจืชื™ ืฉืœ ื–ื”
14:47
in terms of carbon offsets, reduced electricity,
334
887260
2000
ื‘ืžื•ื ื—ื™ ื™ืจื™ื“ื” ื‘ืคืœื™ื˜ืช ืคื—ืžืŸ, ื™ืจื™ื“ื” ื‘ืฆืจื™ื›ืช ื”ื—ืฉืžืœ,
14:49
900 million dollars per year.
335
889260
2000
900 ืžื™ืœื™ื•ืŸ ื“ื•ืœืจ ื‘ืฉื ื”.
14:51
Why? Because for free,
336
891260
2000
ืœืžื”? ื‘ื’ืœืœ ืฉื–ื•ื”ื™
14:53
this isn't a new technology, this is a letter --
337
893260
2000
ืื™ื ื” ื˜ื›ื ื•ืœื•ื’ื™ื” ื—ื“ืฉื”. ื–ื”ื• ืžื›ืชื‘,
14:55
we're getting a Big Bang in behavior.
338
895260
2000
ืื ื• ืžืงื‘ืœื™ื ืžื”ืœื•ืžื” ื’ื“ื•ืœื” ืœื”ืชื ื”ื’ื•ืช.
14:57
So, how do we tackle the last mile?
339
897260
4000
ืื– ืื™ืš ืื ื• ืชื•ืงืคื™ื ืืช ื”ืžื™ื™ืœ ื”ืื—ืจื•ืŸ?
15:01
I think this tells us there is an opportunity.
340
901260
3000
ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืื•ืžืจ ืœื ื• ืฉื™ืฉ ืฉื ื”ื–ื“ืžื ื•ืช.
15:04
And I think to tackle it, we need to combine
341
904260
2000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉืœืชืงื•ืฃ ืืช ื–ื” ืื ื• ืฆืจื™ื›ื™ื ืœืฉืœื‘
15:06
psychology,
342
906260
2000
ืคืกื™ื›ื•ืœื•ื’ื™ื”,
15:08
marketing,
343
908260
2000
ืฉื™ื•ื•ืง,
15:10
art, we've seen that.
344
910260
2000
ืืžื ื•ืช, ืจืื™ื ื• ื–ืืช.
15:12
But you know what we need to combine it with?
345
912260
2000
ืื‘ืœ ืืชื ื™ื•ื“ืขื™ื ื‘ืžื” ืื ื—ื ื• ืขื•ื“ ืฆืจื™ื›ื™ื ืœืฉืœื‘ ืืช ื–ื”?
15:14
We need to combine this with the scientific method.
346
914260
2000
ืื ื• ืฆืจื™ื›ื™ื ืœืฉืœื‘ ื–ืืช ื‘ืฉื™ื˜ื” ืžื“ืขื™ืช.
15:16
See what's really puzzling and frustrating about the last mile, to me,
347
916260
4000
ืืชื ืžื‘ื™ื ื™ื, ืžื” ืฉืžื‘ืœื‘ืœ ื•ืžืชืกื›ืœ ืื•ืชื™ ื‘ืžื™ื™ืœ ื”ืื—ืจื•ืŸ,
15:20
is that the first 999 miles are all about science.
348
920260
3000
ื”ื•ื ืฉื” 999 ืžื™ื™ืœื™ื ื”ืจืืฉื•ื ื™ื ื”ื ืœื’ืžืจื™ ืžื“ืข.
15:23
No one would say, "Hey, I think this medicine works, go ahead and use it."
349
923260
4000
ืืฃ ืื—ื“ ืœื ื™ื’ื™ื“, "ื”ื™ื™, ืื ื™ ื—ื•ืฉื‘ ืฉื”ืชืจื•ืคื” ืขื•ื‘ื“ืช, ืชืชื—ื™ืœ ืœื”ืฉืชืžืฉ."
15:27
We have testing, we go to the lab, we try it again, we have refinement.
350
927260
2000
ืื ื• ื‘ื•ื“ืงื™ื, ื”ื•ืœื›ื™ื ืœืžืขื‘ื“ื”, ืžื ืกื™ื ืฉื•ื‘, ืžืฉืคืจื™ื.
15:29
But you know what we do on the last mile?
351
929260
3000
ืื‘ืœ ืืชื ื™ื•ื“ืขื™ื ืžื” ืื ื• ืขื•ืฉื™ื ื‘ืžื™ื™ืœ ื”ืื—ืจื•ืŸ?
15:32
"Oh, this is a good idea. People will like this. Let's put it out there."
352
932260
3000
"ื”ื•, ื–ื” ืจืขื™ื•ืŸ ื˜ื•ื‘. ืื ืฉื™ื ื™ืื”ื‘ื• ืืช ื–ื”. ื‘ื•ืื• ื ื•ืฆื™ื ืืช ื–ื”."
15:35
The amount of resources we put in are disparate.
353
935260
2000
ื›ืžื•ืช ื”ืžืฉืื‘ื™ื ื”ืžื•ืฉืงืขื™ื ืœื ื“ื•ืžื” ื‘ื›ืœืœ.
15:37
We put billions of dollars into fuel-efficient technologies.
354
937260
3000
ืื ื• ืžืฉืงื™ืขื™ื ืžื™ืœื™ืืจื“ื™ ื“ื•ืœืจื™ื ื‘ืžืฆื™ืืช ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืœื™ืขื™ืœื•ืช ืฆืจื™ื›ืช ื“ืœืง
15:40
How much are we putting into
355
940260
2000
ื›ืžื” ืื ื• ืžืฉืงื™ืขื™ื
15:42
energy behavior change
356
942260
2000
ื‘ืฉื™ื ื•ื™ ื”ืชื ื”ื’ื•ืช ืฆืจื™ื›ื”,
15:44
in a credible, systematic, testing way?
357
944260
3000
ื‘ื“ืจืš ืืžื™ื ื”, ืฉื™ื˜ืชื™ืช, ืžื‘ื•ืงืจืช?
15:47
Now, I think that we're on the verge of something big.
358
947260
3000
ื›ืขืช, ืื ื™ ื—ื•ืฉื‘ ืฉืื ื• ืขืœ ืกืฃ ืฉืœ ืžืฉื”ื• ื’ื“ื•ืœ.
15:50
We're on the verge of a whole new social science.
359
950260
3000
ืื ื• ืขืœ ืกื™ืคื• ืฉืœ ืžื“ืข ื—ื‘ืจืชื™ ื—ื“ืฉ ืœื’ืžืจื™.
15:53
It's a social science that recognizes --
360
953260
2000
ื–ื”ื• ืžื“ืข ื—ื‘ืจืชื™ ืฉืžื–ื”ื”,
15:55
much like science recognizes the complexity of the body,
361
955260
3000
ื›ืžื• ืฉืžื“ืข ืžื–ื”ื” ืืช ืžื•ืจื›ื‘ื•ืช ื”ื’ื•ืฃ,
15:58
biology recognizes the complexity of the body -- we'll recognize
362
958260
2000
ื‘ื™ื•ืœื•ื’ื™ื” ืžื–ื”ื” ืืช ืžื•ืจื›ื‘ื•ืช ื”ื’ื•ืฃ, ืื ื• ื ื–ื”ื”
16:00
the complexity of the human mind.
363
960260
2000
ืืช ืžื•ืจื›ื‘ื•ืช ื”ืžื•ื— ื”ืื ื•ืฉื™
16:02
The careful testing, retesting, design,
364
962260
2000
ื”ื‘ื“ื™ืงื” ื”ื–ื”ื™ืจื”, ื‘ื“ื™ืงื” ื—ื•ื–ืจืช, ืชื›ื ื•ืŸ,
16:04
are going to open up vistas of understanding,
365
964260
3000
ืื ื• ื”ื•ืœื›ื™ื ืœืคืชื•ื— ื ืงื•ื“ื•ืช ืžื‘ื˜ ืฉืœ ื”ื‘ื ื”,
16:07
complexities, difficult things.
366
967260
2000
ืžื•ืจื›ื‘ื•ื™ื•ืช, ื“ื‘ืจื™ื ืงืฉื™ื.
16:09
And those vistas will both create new science,
367
969260
3000
ื•ื ืงื•ื“ื•ืช ืžื‘ื˜ ืืœื• ื™ื™ืฆืจื• ืžื“ืข ื—ื“ืฉ,
16:12
and fundamental change in the world as we see it, in the next hundred years.
368
972260
4000
ื•ืฉื™ื ื•ื™ ื‘ืกื™ืกื™ ืฉืœ ื”ืขื•ืœื ื›ืคื™ ืฉืื ื• ืจื•ืื™ื ืื•ืชื•, ื‘ืžืื” ื”ืฉื ื™ื ื”ื‘ืื•ืช.
16:16
All right. Thank you very much.
369
976260
2000
ื‘ืกื“ืจ ื’ืžื•ืจ. ืชื•ื“ื” ืจื‘ื” ืœื›ื.
16:18
(Applause)
370
978260
2000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
16:20
Chris Anderson: Sendhil, thank you so much.
371
980260
2000
ื›ืจื™ืก ืื ื“ืจืกื•ืŸ: ืกื ื“ื”ื™ืœ, ืชื•ื“ื” ืจื‘ื” ืœืš.
16:22
So, this whole area is so fascinating.
372
982260
3000
ื”ื ื•ืฉื ื”ื–ื” ื”ื•ื ื›ืœ ื›ืš ืžืจืชืง.
16:25
I mean, it sometimes feels, listening to behavioral economists
373
985260
3000
ื›ืœื•ืžืจ, ืœืคืขืžื™ื ืื ื™ ืžืจื’ื™ืฉ, ื‘ื”ืื–ื ื” ืœื›ืœื›ืœื ื™ื ื”ืชื ื”ื’ื•ืชื™ื™ื
16:28
that they are kind of putting into place
374
988260
3000
ืฉื”ื ืžืืจื’ื ื™ื ื‘ืฆื•ืจื”
16:31
academically, what great marketers
375
991260
2000
ืืงื“ืžื™ืช, ืžื” ืฉืื ืฉื™ ืฉื™ื•ื•ืง ื’ื“ื•ืœื™ื
16:33
have sort of intuitively known for a long time.
376
993260
3000
ื™ื•ื“ืขื™ื ืœืžืขืฉื” ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™ืช ื›ื‘ืจ ื–ืžืŸ ืจื‘.
16:36
How much is your field talking to great marketers
377
996260
4000
ื›ืžื” ื”ื ื•ืฉื ืžื“ื‘ืจ ืืœ ืื ืฉื™ ื”ืฉื™ื•ื•ืง ื”ื’ื“ื•ืœื™ื
16:40
about their insights into human psychology?
378
1000260
2000
ืœื’ื‘ื™ ื”ืชื•ื‘ื ื•ืช ืฉืœื”ื ืขืœ ืคืกื™ื›ื•ืœื•ื’ื™ื” ืื ื•ืฉื™ืช?
16:42
Because they've seen it on the ground.
379
1002260
2000
ื›ื™ ื”ื ืจืื• ื–ืืช ื‘ืฉื˜ื—.
16:44
Sendhil Mullainathan: Yeah, we spend a lot of time talking to marketers,
380
1004260
2000
ืกื ื“ื”ื™ืœ ืžื•ืœืื™ื ืื˜'ืืŸ: ื›ืŸ, ื”ืฉืงืขื ื• ื”ืจื‘ื” ื–ืžืŸ ื‘ืฉื™ื—ื•ืช ืขื ืื ืฉื™ ืฉื™ื•ื•ืง.
16:46
and I think 60 percent of it is exactly what you say,
381
1006260
3000
ื•ืื ื™ ื—ื•ืฉื‘ ืฉ 60 ืื—ื•ื– ืžื–ื” ื”ื•ื ื‘ื“ื™ื•ืง ื›ืžื• ืฉืืžืจืช.
16:49
there are insights to be gleaned there.
382
1009260
2000
ื™ืฉ ื›ืืŸ ืชื•ื‘ื ื•ืช ืœืืกื•ืฃ,
16:51
Forty percent of it is about what marketing is.
383
1011260
2000
40 ืื—ื•ื– ื–ื” ืžื”ื• ืœืžืขืฉื” ืฉื™ื•ื•ืง.
16:53
Marketing is selling an ad to a firm.
384
1013260
5000
ืฉื™ื•ื•ืง ื–ื” ืœืžื›ื•ืจ ืžื•ื“ืขื” ืœื—ื‘ืจื”.
16:58
So, in some sense, a lot of marketing is about
385
1018260
2000
ื•ืœื›ืŸ, ื‘ืžื™ื“ื” ืžืกื•ื™ื™ืžืช, ื”ืจื‘ื” ืžื”ืฉื™ื•ื•ืง ื–ื”
17:00
convincing a CEO, "This is a good ad campaign."
386
1020260
3000
ืœืฉื›ื ืข ืืช ื”ืžื ื›"ืœ ืฉื–ื” ืงืžืคื™ื™ืŸ ืžื•ืฆืœื—.
17:03
So, there is a little bit of slippage there.
387
1023260
2000
ืื– ื™ืฉ ื›ืืŸ ืงืฆืช ืžื“ืจื•ืŸ ื—ืœืงืœืง.
17:05
That's just a caveat. That's different from actually having an effective ad campaign.
388
1025260
4000
ื–ื•ื”ื™ ืจืง ืื–ื”ืจื”. ืื– ื–ื” ืฉื•ื ื” ืžืœื ื”ืœ ืงืžืคื™ื™ืŸ ืžื•ื“ืขื•ืช ืืคืงื˜ื™ื‘ื™.
17:09
And one of the new movements in marketing is: How do we actually
389
1029260
2000
ื•ืื—ืช ื”ืชื ื•ืขื•ืช ื”ื—ื“ืฉื•ืช ื‘ืฉื™ื•ื•ืง ื”ื™ื ืื™ืš ืœืžืขืฉื”
17:11
measure effectiveness? Are we effective?
390
1031260
2000
ืœืžื“ื•ื“ ืืช ื”ืืคืงื˜ื™ื‘ื™ื•ืช? ื”ืื ืื ื• ืืคืงื˜ื™ื‘ื™ื™ื?
17:13
CA: How you take your insights here
391
1033260
4000
ื›.ื.: ืื™ืš ืืชื” ืžื™ื™ืฉื ืืช ื”ืชื•ื‘ื ื•ืช ื›ืืŸ
17:17
and actually get them integrated
392
1037260
3000
ื•ืœืžืขืฉื” ืžืžื–ื’ ืื•ืชืŸ
17:20
into working business models on the ground,
393
1040260
3000
ื‘ืžื•ื“ืœื™ื ืขืกืงื™ื™ื, ื‘ืฉื˜ื—,
17:23
in Indian villages, for example?
394
1043260
2000
ื‘ื›ืคืจื™ื ื”ื•ื“ื™ื™ื, ืœื“ื•ื’ืžื”.
17:25
SM: So, the scientific method I alluded to is pretty important.
395
1045260
3000
ืก.ืž.: ื”ืฉื™ื˜ื” ื”ืžื“ืขื™ืช ืฉืจืžื–ืชื™ ืขืœื™ื” ื”ื™ื ื“ื™ ื—ืฉื•ื‘ื”.
17:28
We work closely with companies that have operational capacity,
396
1048260
2000
ืื ื• ืขื•ื‘ื“ื™ื ืฆืžื•ื“ ืขื ื—ื‘ืจื•ืช ืขื ื™ื›ื•ืœื•ืช ืชืคืขื•ืœื™ื•ืช,
17:30
or nonprofits that have operational capacity.
397
1050260
2000
ืื• ืžืœื›"ืจื™ื ืขื ื™ื›ื•ืœื•ืช ืชืคืขื•ืœื™ื•ืช.
17:32
And then we say, "Well, you want to get this behavior change.
398
1052260
2000
ื•ืื– ืื ื• ืื•ืžืจื™ื, ื•ื‘ื›ืŸ, ืืชื” ืจื•ืฆื” ืœื’ืจื•ื ืœืฉื™ื ื•ื™ ื”ื”ืชื ื”ื’ื•ืชื™ ื”ื–ื”.
17:34
Let's come up with a few ideas, test them,
399
1054260
3000
ื‘ื•ื ื ืขืœื” ื›ืžื” ืจืขื™ื•ื ื•ืช, ื ื‘ื—ืŸ ืื•ืชื,
17:37
see which is working, go back, synthesize,
400
1057260
2000
ื ืจืื” ืžื” ืขื•ื‘ื“, ื ื—ื–ื•ืจ, ื ื‘ื—ืŸ
17:39
and try to come up with a thing that works,"
401
1059260
2000
ื•ื ื ืกื” ืœื—ื–ื•ืจ ืขื ืžืฉื”ื• ืฉืขื•ื‘ื“,
17:41
and then we're able to scale with partners.
402
1061260
2000
ื•ืื– ื ื•ื›ืœ ืœื”ืชืงื“ื ืขื ืฉื•ืชืคื™ื.
17:43
It's kind of the model that has worked in other contexts.
403
1063260
2000
ื–ื”ื• ืกื•ื’ ืฉืœ ืžื•ื“ืœ ืฉืขื‘ื“ ื‘ื”ืงืฉืจื™ื ืื—ืจื™ื.
17:45
If you have biological problems
404
1065260
2000
ืื ื™ืฉ ืœืš ื‘ืขื™ื•ืช ื‘ื™ื•ืœื•ื’ื™ื•ืช
17:47
we try and fix it, see if it works, and then work the scale.
405
1067260
2000
ืื ื• ืžื ืกื™ื ืœืชืงืŸ ืื•ืชืŸ, ืจื•ืื™ื ืื ืขื•ื‘ื“, ื•ืื– ืžืชืงื“ืžื™ื.
17:49
CA: Alright Sendhil, thanks so much for coming to TED. Thank you.
406
1069260
3000
ื›.ื: ื‘ืกื“ืจ ืกื ื“ื”ื™ืœ, ืชื•ื“ื” ืจื‘ื” ืฉื‘ืืช ืœ TED. ืชื•ื“ื” ืœืš.
17:52
(Applause)
407
1072260
3000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7