Origami robots that reshape and transform themselves | Jamie Paik

229,933 views ใƒป 2019-08-16

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Allon Sasson ืขืจื™ื›ื”: Ido Dekkers
00:13
As a roboticist, I get asked a lot of questions.
0
13944
3721
ื›ืžื•ืžื—ื™ืช ืœืจื•ื‘ื•ื˜ื™ืงื” ืžืคื ื™ื ืืœื™ื™ ืฉืืœื•ืช ืจื‘ื•ืช.
00:17
"When we will they start serving me breakfast?"
1
17689
2304
"ืžืชื™ ื”ื ื™ืชื—ื™ืœื• ืœื”ื’ื™ืฉ ืœื™ ืืจื•ื—ืช ื‘ื•ืงืจ?"
00:21
So I thought the future of robotics would be looking more like us.
2
21049
4676
ื—ืฉื‘ืชื™ ืฉื”ืขืชื™ื“ ืฉืœ ื”ืจื•ื‘ื•ื˜ื™ื ื™ื”ื™ื” ืœื”ืจืื•ืช ื™ื•ืชืจ ื›ืžื•ื ื•,
00:28
I thought they would look like me,
3
28114
1674
ื—ืฉื‘ืชื™ ืฉื”ื ื™ื™ืจืื• ื›ืžื•ื ื™,
00:29
so I built eyes that would simulate my eyes.
4
29812
3747
ืื– ื‘ื ื™ืชื™ ืขื™ื ื™ื™ื ืฉื™ึถื“ึทืžื•ึผ ืืช ื”ืขื™ื ื™ื™ื ืฉืœื™.
00:34
I built fingers that are dextrous enough to serve me ...
5
34813
5056
ื‘ื ื™ืชื™ ืืฆื‘ืขื•ืช ื’ืžื™ืฉื•ืช ืžืกืคื™ืง ื›ื“ื™ ืœืฉืจืช ืื•ืชื™...
00:39
baseballs.
6
39893
1190
ื›ื“ื•ืจื™ ื‘ืกื™ืก.
00:43
Classical robots like this
7
43837
2017
ืจื•ื‘ื•ื˜ื™ื™ื ืงืœืืกื™ื™ื ื›ืžื• ื–ื”
00:45
are built and become functional
8
45878
3176
ื ื‘ื ื™ื ื•ื”ื•ืคื›ื™ื ืœืฉื™ืžื•ืฉื™ื™ื
00:49
based on the fixed number of joints and actuators.
9
49078
3198
ื‘ื”ืชื‘ืกืก ืขืœ ืžืกืคืจ ืงื‘ื•ืข ืฉืœ ืžืคืจืงื™ื ื•ืžื ื•ืขื™ื.
00:52
And this means their functionality and shape are already fixed
10
52780
4335
ื•ื”ืžืฉืžืขื•ืช ื”ื™ื ืฉื”ืฉื™ืžื•ืฉ ื•ื”ืฆื•ืจื” ืฉืœื”ื ื ืงื‘ืขื• ืžืจืืฉ
00:57
at the moment of their conception.
11
57139
1831
ื‘ืจื’ืข ืฉื‘ื• ื”ื ื ื•ืฆืจื•.
00:59
So even though this arm has a really nice throw --
12
59490
2867
ื›ืš ืฉืœืžืจื•ืช ืฉืœื–ืจื•ืข ื”ื–ื• ื™ืฉ ื–ืจื™ืงื” ืžืžืฉ ื˜ื•ื‘ื” --
01:02
it even hit the tripod at the end--
13
62381
2431
ื”ื™ื ืืคื™ืœื• ืคื’ืขื” ื‘ื—ืฆื•ื‘ื” ื‘ืกื™ื•ื --
01:06
it's not meant for cooking you breakfast per se.
14
66015
3163
ื”ื™ื ืœื ื ื•ืขื“ื” ืœื‘ืฉืœ ืขื‘ื•ืจื›ื ืืจื•ื—ืช ื‘ื•ืงืจ ื›ืœืœ ื•ืขื™ืงืจ.
01:09
It's not really suited for scrambled eggs.
15
69202
3637
ื”ื™ื ืœื ืžืžืฉ ืžืชืื™ืžื” ืœื‘ื™ืฆื™ื ืžืงื•ืฉืงืฉื•ืช.
01:12
So this was when I was hit by a new vision of future robotics:
16
72863
4325
ื–ื” ื”ื™ื” ื”ืจื’ืข ืฉื‘ื• ื”ื’ื™ืชื™ ื—ื–ื•ืŸ ื—ื“ืฉ ืœืขืชื™ื“ ื”ืจื•ื‘ื•ื˜ื™ื:
01:18
the transformers.
17
78101
1760
ื”ืžืฉืชื ื™ื (ื”ื˜ืจื ืกืคื•ืจืžืจื™ื).
01:20
They drive, they run, they fly,
18
80989
2547
ื”ื ื ื•ืกืขื™ื, ื”ื ืจืฆื™ื, ื”ื ื˜ืกื™ื,
01:23
all depending on the ever-changing, new environment and task at hand.
19
83560
4869
ื”ื›ืœ ืชืœื•ื™ ื‘ืกื‘ื™ื‘ื” ื”ืžืฉืชื ื” ืชืžื™ื“ื™ืช ื•ื‘ืžืฉื™ืžื” ื”ื ื“ืจืฉืช.
01:29
To make this a reality,
20
89267
1781
ื›ื“ื™ ืœื”ืคื•ืš ื–ืืช ืœืžืฆื™ืื•ืช,
01:31
you really have to rethink how robots are designed.
21
91072
3291
ืฆืจื™ืš ืœื—ืฉื•ื‘ ืžื—ื“ืฉ ืขืœ ื”ื“ืจืš ืฉื‘ื” ืจื•ื‘ื•ื˜ื™ื ืžืขื•ืฆื‘ื™ื.
01:35
So, imagine a robotic module in a polygon shape
22
95448
4014
ื“ืžื™ื™ื ื• ืžื•ื“ื•ืœ ืจื•ื‘ื•ื˜ื™ ื‘ืฆื•ืจืช ืžืฆื•ืœืข.
01:39
and using that simple polygon shape
23
99486
2079
ื•ืขืœ ืฉื™ืžื•ืฉ ื‘ืฆื•ืจืช ื”ืžืฆื•ืœืข ื”ืคืฉื•ื˜ ื”ื–ื”,
01:41
to reconstruct multiple different forms
24
101589
3038
ืœื‘ื ื™ื™ื” ืžื—ื“ืฉ ืฉืœ ืฆื•ืจื•ืช ืฉื•ื ื•ืช ืจื‘ื•ืช
01:44
to create a new form of robot for different tasks.
25
104651
4290
ื›ื“ื™ ืœื™ืฆื•ืจ ืกื•ื’ ื—ื“ืฉ ืฉืœ ืจื•ื‘ื•ื˜ ืœืžืฉื™ืžื•ืช ืฉื•ื ื•ืช.
01:49
In CG, computer graphics, it's not any news --
26
109528
3703
ื‘- CG, ื’ืจืคื™ืงื” ืžืžื•ื—ืฉื‘ืช, ื–ื” ืœื ื—ื“ืฉ ื›ืœืœ --
01:53
it's been done for a while, and that's how most of the movies are made.
27
113255
3431
ื–ื” ืžื‘ื•ืฆืข ื›ื‘ืจ ืžื–ื” ื–ืžืŸ ืจื‘, ื•ื›ืš ืขื•ืฉื™ื ืืช ืจื•ื‘ ื”ืกืจื˜ื™ื.
01:56
But if you're trying to make a robot that's physically moving,
28
116710
3870
ืื‘ืœ ืื ืžื ืกื™ื ืœื‘ื ื•ืช ืจื•ื‘ื•ื˜ ืฉื–ื– ืคื™ื–ื™ืช,
02:00
it's a completely new story.
29
120604
1576
ื–ื” ืกื™ืคื•ืจ ืื—ืจ ืœื’ืžืจื™.
02:02
It's a completely new paradigm.
30
122691
2029
ื–ื•ื”ื™ ืคืจื“ื™ื’ืžื” ื—ื“ืฉื” ืœื’ืžืจื™.
02:06
But you've all done this.
31
126307
1793
ืื‘ืœ ื›ื•ืœื›ื ื›ื‘ืจ ืขืฉื™ืชื ืืช ื–ื”.
02:09
Who hasn't made a paper airplane, paper boat, paper crane?
32
129434
5308
ืžื™ ืœื ื™ืฆืจ ืžื˜ื•ืก ืžื ื™ื™ืจ, ืกื™ืจื” ืžื ื™ื™ืจ, ืขื’ื•ืจ ืžื ื™ื™ืจ?
02:15
Origami is a versatile platform for designers.
33
135893
3844
ืื•ืจื™ื’ืืžื™ ื”ื™ื ืคืœื˜ืคื•ืจืžื” ื•ืจืกื˜ื™ืœื™ืช ืœืžืขืฆื‘ื™ื.
02:19
From a single sheet of paper, you can make multiple shapes,
34
139761
4076
ืžื’ืœื™ื•ืŸ ื ื™ื™ืจ ืื—ื“ ืืคืฉืจ ืœื”ื›ื™ืŸ ืฆื•ืจื•ืช ืจื‘ื•ืช,
02:23
and if you don't like it, you unfold and fold back again.
35
143861
3394
ื•ืื ื”ืฆื•ืจื” ืœื ืžื•ืฆืืช ื—ืŸ ื‘ืขื™ื ื™ื›ื, ืืชื ืคื•ืชื—ื™ื ื•ืžืงืคืœื™ื ืื•ืชื” ืžื—ื“ืฉ.
02:27
Any 3D form can be made from 2D surfaces by folding,
36
147947
6016
ืืคืฉืจ ืœื™ืฆื•ืจ ื›ืœ ืฆื•ืจื” ืชืœืช ืžื™ืžื“ื™ืช ืžืžืฉื˜ื— ื“ื• ืžื™ืžื“ื™ ืขืœ ื™ื“ื™ ืงื™ืคื•ืœ,
02:33
and this is proven mathematically.
37
153987
2529
ื•ื–ื” ืžื•ื›ื— ืžืชืžื˜ื™ืช.
02:38
And imagine if you were to have an intelligent sheet
38
158555
4408
ืชืืจื• ืœืขืฆืžื›ื ืฉื™ืฉ ืœื›ื ื’ืœื™ื•ืŸ ื—ื›ื
02:42
that can self-fold into any form it wants,
39
162987
3559
ืฉื™ื›ื•ืœ ืœื”ืชืงืคืœ ื‘ืขืฆืžื• ืœื›ืœ ืฆื•ืจื” ืฉื”ื•ื ืจื•ืฆื”,
02:46
anytime.
40
166570
1223
ื‘ื›ืœ ื–ืžืŸ.
02:48
And that's what I've been working on.
41
168322
2254
ืขืœ ื–ื” ืื ื™ ืขื•ื‘ื“ืช.
02:50
I call this robotic origami,
42
170600
3182
ืื ื™ ืงื•ืจืืช ืœื–ื” ืื•ืจื™ื’ืืžื™ ืจื•ื‘ื•ื˜ื™,
02:53
"robogami."
43
173806
1498
"ืจื•ื‘ื•ื’ืืžื™".
02:57
This is our first robogami transformation
44
177387
3520
ื–ื• ื”ื˜ืจื ืกืคื•ืจืžืฆื™ื” ื”ืจืืฉื•ื ื” ืฉืœ ืจื•ื‘ื•ื’ืืžื™
03:00
that was made by me about 10 years ago.
45
180931
3309
ืฉื™ืฆืจืชื™ ืœืคื ื™ ื›ืขืฉืจ ืฉื ื™ื.
03:04
From a flat-sheeted robot,
46
184264
1767
ืžืจื•ื‘ื•ื˜ ืฉืœ ื’ืœื™ื•ืŸ ืฉื˜ื•ื—,
03:06
it turns into a pyramid and back into a flat sheet
47
186055
2947
ื”ื•ื ื”ื•ืคืš ืœืคื™ืจืžื™ื“ื” ื•ื—ื–ืจื” ืœื’ืœื™ื•ืŸ ืฉื˜ื•ื—
03:09
and into a space shuttle.
48
189026
2773
ื•ืœืžืขื‘ื•ืจืช ื—ืœืœ.
03:12
Quite cute.
49
192822
1241
ื—ืžื•ื“ ืœืžื“ื™.
03:14
Ten years later, with my group of ninja origami robotic researchers --
50
194789
6870
ืขืฉืจ ืฉื ื™ื ืœืื—ืจ ืžื›ืŸ, ืขื ืงื‘ื•ืฆืช ื—ื•ืงืจื™ ื”ื ื™ื ื’'ื” ืฉืœ ืื•ืจื™ื’ืืžื™ ืจื•ื‘ื•ื˜ื™ -
03:21
about 22 of them right now --
51
201683
1898
ื›- 22 ื›ืืœื• ื ื›ื•ืŸ ืœื”ื™ื•ื --
03:24
we have a new generation of robogamis,
52
204332
3408
ื™ืฉ ืœื ื• ื“ื•ืจ ื—ื“ืฉ ืฉืœ ืจื•ื‘ื•ื’ืืžื™ื,
03:27
and they're a little more effective and they do more than that.
53
207764
3311
ื•ื”ื ืงืฆืช ื™ื•ืชืจ ื™ืขื™ืœื™ื ื•ื”ื ืขื•ืฉื™ื ื™ื•ืชืจ ืžื›ืš.
03:32
So the new generation of robogamis actually serve a purpose.
54
212105
3283
ื”ื“ื•ืจ ื”ื—ื“ืฉ ืฉืœ ื”ืจื•ื‘ื•ื’ืืžื™ื ืžืฉืžืฉื™ื ืœืžื˜ืจื•ืช ืฉื•ื ื•ืช.
03:35
For example, this one actually navigates through different terrains autonomously.
55
215412
5199
ื–ื” ืœืžืฉืœ, ืžื ื•ื•ื˜ ืขืœ ืคื ื™ ืฉื˜ื— ืฉื•ื ื™ื ื‘ืฆื•ืจื” ืขืฆืžืื™ืช.
03:40
So when it's a dry and flat land, it crawls.
56
220635
3335
ื›ืฉืžื“ื•ื‘ืจ ื‘ืžืฉื˜ื— ื™ื‘ืฉ ื•ืฉื˜ื•ื—, ื”ื•ื ื–ื•ื—ืœ.
03:46
And if it meets sudden rough terrain,
57
226256
2479
ื•ืื ื”ื•ื ื ืชืงืœ ื‘ืคื ื™ ืฉื˜ื— ืงืฉื™ื,
03:48
it starts rolling.
58
228759
1237
ื”ื•ื ืžืชื—ื™ืœ ืœื”ืชื’ืœื’ืœ.
03:50
It does this -- it's the same robot --
59
230020
2452
ื”ื•ื ืขื•ืฉื” ืืช ื–ื” -- ื–ื” ืื•ืชื• ืจื•ื‘ื•ื˜ --
03:52
but depending on which terrain it meets,
60
232496
3023
ืื‘ืœ ื‘ื”ืชืื ืœืคื ื™ ื”ืฉื˜ื— ืฉื”ื•ื ื ืชืงืœ ื‘ื”ื,
03:55
it activates a different sequence of actuators that's on board.
61
235543
4765
ื”ื•ื ืžืฉืชืžืฉ ื‘ืจืฆืฃ ืฉื•ื ื” ืฉืœ ืžืคืขื™ืœื™ื ืฉืงื™ื™ืžื™ื ื‘ื•.
04:02
And once it meets an obstacle, it jumps over it.
62
242459
3280
ื•ื›ืืฉืจ ื”ื•ื ื ืชืงืœ ื‘ืžื›ืฉื•ืœ, ื”ื•ื ืงื•ืคืฅ ืžืขืœื™ื•.
04:07
It does this by storing energy in each of its legs
63
247485
3376
ื”ื•ื ืขื•ืฉื” ื–ืืช ืขืœ ื™ื“ื™ ืฆื‘ื™ืจื” ืฉืœ ืื ืจื’ื™ื” ื‘ื›ืœ ืื—ืช ืžื”ืจื’ืœื™ื™ื ืฉืœื•
04:10
and releasing it and catapulting like a slingshot.
64
250885
3876
ืฉื—ืจื•ืจ ืฉืœื” ื•ืฉื™ื’ื•ืจ ืขืฆืžื™ ื›ืžื• ืงืœื™ืข.
04:14
And it even does gymnastics.
65
254785
1887
ื•ื”ื•ื ืืคื™ืœื• ืขื•ืฉื” ื”ืชืขืžืœื•ืช.
04:17
Yay.
66
257688
1171
ื™ืื™ื™.
04:18
(Laughter)
67
258883
1437
(ืฆื—ื•ืง)
04:20
So I just showed you what a single robogami can do.
68
260828
4177
ื›ืจื’ืข ื”ืจืื™ืชื™ ืœื›ื ืžื” ืจื•ื‘ื•ื’ืืžื™ ื™ื—ื™ื“ ื™ื›ื•ืœ ืœืขืฉื•ืช.
04:25
Imagine what they can do as a group.
69
265029
2785
ืชืืจื• ืœืขืฆืžื›ื ืžื” ื”ื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื›ืงื‘ื•ืฆื”.
04:27
They can join forces to tackle more complex tasks.
70
267838
4022
ื”ื ื™ื›ื•ืœื™ื ืœืื—ื“ ื›ื•ื—ื•ืช ื›ื“ื™ ืœื‘ืฆืข ืžืฉื™ืžื•ืช ืžื•ืจื›ื‘ื•ืช ื™ื•ืชืจ.
04:31
Each module, either active or passive,
71
271884
3162
ื›ืœ ืžื•ื“ื•ืœ, ืืงื˜ื™ื‘ื™ ืื• ืคืกื™ื‘ื™,
04:35
we can assemble them to create different shapes.
72
275070
3567
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื”ืจื›ื™ื‘ ืื•ืชื ื›ื“ื™ ืœื™ืฆื•ืจ ืฆื•ืจื•ืช ืฉื•ื ื•ืช.
04:38
Not only that, by controlling the folding joints,
73
278661
2749
ืœื ื–ืืช ื‘ืœื‘ื“, ืขืœ ื™ื“ื™ ืฉืœื™ื˜ื” ื‘ืžืคืจืงื™ื ื”ืžืชืงืคืœื™ื,
04:41
we're able to create and attack different tasks.
74
281434
4548
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ื•ืœื‘ืฆืข ืžืฉื™ืžื•ืช ืฉื•ื ื•ืช.
04:46
The form is making new task space.
75
286006
3175
ื”ืฆื•ืจื” ืžืืคืฉืจืช ืžืจื—ื‘ ื—ื“ืฉ ืฉืœ ืžืฉื™ืžื•ืช.
04:49
And this time, what's most important is the assembly.
76
289736
3839
ื•ื”ืคืขื, ื”ื“ื‘ืจ ื”ื—ืฉื•ื‘ ื‘ื™ื•ืชืจ ื”ื•ื ื”ื”ืจื›ื‘ื”.
04:54
They need to autonomously find each other in a different space,
77
294192
4184
ื”ื ืฆืจื™ื›ื™ื ืœืžืฆื•ื ืื—ื“ ืืช ื”ืฉื ื™ ื‘ืฆื•ืจื” ืขืฆืžืื™ืช ื‘ืžืจื—ื‘ ืฉื•ื ื”,
04:58
attach and detach, depending on the environment and task.
78
298400
4290
ืœื”ืชื—ื‘ืจ ื•ืœื”ืชื ืชืง, ื‘ื”ืชืื ืœืกื‘ื™ื‘ื” ื•ืœืžืฉื™ืžื”.
05:03
And we can do this now.
79
303616
2059
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืืช ื–ื” ืขื›ืฉื™ื•.
05:06
So what's next?
80
306412
1427
ืื– ืžื” ื”ื“ื‘ืจ ื”ื‘ื?
05:07
Our imagination.
81
307863
1310
ื”ื“ืžื™ื•ืŸ ืฉืœื ื•.
05:09
This is a simulation of what you can achieve
82
309704
2401
ื–ื• ืกื™ืžื•ืœืฆื™ื” ืฉืœ ืžื” ืฉืืคืฉืจ ืœื”ืฉื™ื’
05:12
with this type of module.
83
312129
1657
ืขื ืกื•ื’ ื›ื–ื” ืฉืœ ืžื•ื“ื•ืœ.
05:13
We decided that we were going to have a four-legged crawler
84
313810
3172
ื”ื—ืœื˜ื ื• ืฉื™ื”ื™ื” ืœื ื• ื–ื—ืœืŸ ื‘ืขืœ ืืจื‘ืข ืจื’ืœื™ื™ื
05:18
turn into a little dog and make small gaits.
85
318870
3179
ืฉื™ื”ืคื•ืš ืœื›ืœื‘ ืงื˜ืŸ ื•ื™ืขืฉื” ืฆืขื“ื™ื ืงื˜ื ื™ื.
05:22
With the same module, we can actually make it do something else:
86
322073
3834
ืขื ืื•ืชื• ืžื•ื“ื•ืœ, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื’ืจื•ื ืœื• ืœืขืฉื•ืช ืžืฉื”ื• ื ื•ืกืฃ:
05:25
a manipulator, a typical, classical robotic task.
87
325931
3418
ืžื ื™ืคื•ืœื˜ื•ืจ, ืžืฉื™ืžื” ืจื•ื‘ื•ื˜ื™ืช ืงืœืืกื™ืช ื˜ื™ืคื•ืกื™ืช.
05:29
So with a manipulator, it can pick up an object.
88
329373
2699
ื”ืžื ื™ืคื•ืœื˜ื•ืจ ื™ื›ื•ืœ ืœื”ืจื™ื ื—ืคืฅ.
05:32
Of course, you can add more modules to make the manipulator legs longer
89
332096
4044
ืืคืฉืจ ื›ืžื•ื‘ืŸ ืœื”ื•ืกื™ืฃ ืขื•ื“ ืžื•ื“ื•ืœื™ื ื›ื“ื™ ืœื”ืืจื™ืš ืืช ื”ืจื’ืœื™ื™ื ืฉืœ ื”ืžื ื™ืคื•ืœื˜ื•ืจ
05:36
to attack or pick up objects that are bigger or smaller,
90
336164
3723
ืœื”ืกืชืขืจ ืื• ืœื”ืจื™ื ื—ืคืฆื™ื ื’ื“ื•ืœื™ื ืื• ืงื˜ื ื™ื ื™ื•ืชืจ,
05:39
or even have a third arm.
91
339911
1766
ืื• ืืคื™ืœื• ืฉืชื”ื™ื” ืœื• ื–ืจื•ืข ืฉืœื™ืฉื™ืช.
05:43
For robogamis, there's no one fixed shape nor task.
92
343545
4361
ืœืจื•ื‘ื•ื’ืืžื™ื ืื™ืŸ ืฆื•ืจื” ืื• ืžืฉื™ืžื” ืื—ืช ืงื‘ื•ืขื”.
05:48
They can transform into anything, anywhere, anytime.
93
348628
4300
ื”ื ื™ื›ื•ืœื™ื ืœื”ืฉืชื ื•ืช ืœื›ืœ ื“ื‘ืจ, ื‘ื›ืœ ืžืงื•ื, ื‘ื›ืœ ื–ืžืŸ.
05:54
So how do you make them?
94
354408
2676
ืื– ืื™ืš ื™ื•ืฆืจื™ื ืื•ืชื?
05:57
The biggest technical challenge of robogami is keeping them super thin,
95
357108
5317
ื”ืืชื’ืจ ื”ื˜ื›ื ื™ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ืขื‘ื•ืจ ืจื•ื‘ื•ื’ืืžื™ื ื”ื•ื ืœื”ืฉืื™ืจ ืื•ืชื ืกื•ืคืจ-ื“ืงื™ื,
06:02
flexible,
96
362449
1151
ื’ืžื™ืฉื™ื,
06:03
but still remaining functional.
97
363624
2214
ื•ืขื“ื™ืŸ ืฉื™ื™ืฉืืจื• ืฉื™ืžื•ืฉื™ื™ื.
06:06
They're composed of multiple layers of circuits, motors,
98
366562
3812
ื”ื ืžื•ืจื›ื‘ื™ื ืžืžืกืคืจ ืฉื›ื‘ื•ืช ืฉืœ ืžืขื’ืœื™ื, ืžื ื•ืขื™ื,
06:10
microcontrollers and sensors,
99
370398
2418
ืžื™ืงืจื•-ื‘ืงืจื™ื ื•ืกื ืกื•ืจื™ื,
06:12
all in the single body,
100
372840
1854
ื›ื•ืœื ื‘ื’ื•ืฃ ืื—ื“,
06:14
and when you control individual folding joints,
101
374718
3321
ื•ื›ืฉืฉื•ืœื˜ื™ื ื‘ืžืคืจืงื™ ืงื™ืคื•ืœ ื‘ื“ื™ื“ื™ื,
06:18
you'll be able to achieve soft motions like that
102
378063
3526
ืืคืฉืจ ืœื”ืฉื™ื’ ืชื ื•ืขื•ืช ืจื›ื•ืช ื›ืžื• ื–ื•
06:21
upon your command.
103
381613
1480
ืœืคื™ ืคืงื•ื“ื”.
06:26
Instead of being a single robot that is specifically made for a single task,
104
386013
4859
ื‘ืžืงื•ื ืฉื™ื”ื™ื” ืจื•ื‘ื•ื˜ ื‘ื•ื“ื“ ืฉื™ื•ืฆืจ ื‘ืžื™ื•ื—ื“ ืœืžืฉื™ืžื” ื‘ื•ื“ื“ืช,
06:30
robogamis are optimized to do multi-tasks.
105
390896
3895
ืจื•ื‘ื•ื’ืืžื™ื ืžื•ืชืืžื™ื ื‘ืžื™ื•ื—ื“ ืœืจื™ื‘ื•ื™ ืžืฉื™ืžื•ืช.
06:35
And this is quite important
106
395366
1757
ื•ื–ื” ื—ืฉื•ื‘ ืœืžื“ื™
06:37
for the difficult and unique environments on the Earth
107
397147
3831
ื‘ืกื‘ื™ื‘ื” ื”ื™ื™ื—ื•ื“ื™ืช ื•ื”ืงืฉื” ืฉืœ ื›ื“ื•ืจ ื”ืืจืฅ
06:41
as well as in space.
108
401002
2965
ื›ืžื• ื’ื ื‘ื—ืœืœ.
06:45
Space is a perfect environment for robogamis.
109
405782
3174
ื”ื—ืœืœ ื”ื•ื ื”ืกื‘ื™ื‘ื” ื”ืžื•ืฉืœืžืช ืœืจื•ื‘ื•ื’ืืžื™ื.
06:49
You cannot afford to have one robot for one task.
110
409673
4133
ืื™ื ื ื• ื™ื›ื•ืœื™ื ืœื”ืจืฉื•ืช ืœืขืฆืžื ื• ืจื•ื‘ื•ื˜ ืื—ื“ ืœืžืฉื™ืžื” ืื—ืช.
06:54
Who knows how many tasks you will encounter in space?
111
414966
3336
ืžื™ ื™ื•ื“ืข ื‘ื›ืžื” ืžืฉื™ืžื•ืช ื ื™ืชืงืœ ื‘ื—ืœืœ?
06:58
What you want is a single robotic platform that can transform to do multi-tasks.
112
418846
6959
ืžื” ืฉื ืจืฆื” ื”ื•ื ืคืœื˜ืคื•ืจืžื” ืจื•ื‘ื•ื˜ื™ืช ืื—ืช ืฉื™ื›ื•ืœื” ืœื”ืฉืชื ื•ืช ื•ืœื‘ืฆืข ืจื™ื‘ื•ื™ ืžืฉื™ืžื•ืช
07:07
What we want is a deck of thin robogami modules
113
427188
5112
ืžื” ืฉืื ื—ื ื• ืจื•ืฆื™ื ื”ื•ื ืžืฉื˜ื— ืฉืœ ืžื•ื“ื•ืœื™ ืจื•ื‘ื•ื’ืืžื™ ื“ืงื™ื
07:12
that can transform to do multiples of performing tasks.
114
432324
4371
ืฉื™ื›ื•ืœ ืœื”ืฉืชื ื•ืช ื•ืœื‘ืฆืข ืžืฉื™ืžื•ืช ืจื‘ื•ืช.
07:18
And don't take my word for it,
115
438322
3210
ืืœ ืชืืžื™ื ื• ืจืง ืœื™ ื‘ื ื•ืฉื ื”ื–ื”,
07:21
because the European Space Agency and Swiss Space Center
116
441556
3036
ืžืคื ื™ ืฉืกื•ื›ื ื•ืช ื”ื—ืœืœ ื”ืื™ืจื•ืคืื™ืช ื•ืžืจื›ื– ื”ื—ืœืœ ื”ืฉื•ื•ื™ืฆืจื™
07:24
are sponsoring this exact concept.
117
444616
2260
ื ื•ืชื ื™ื ื—ืกื•ืช ืœืงื•ื ืกืคื˜ ื”ื–ื” ื‘ื“ื™ื•ืง.
07:27
So here you see a couple of images of reconfiguration of robogamis,
118
447562
5045
ื›ืืŸ ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืžืกืคืจ ืชืžื•ื ื•ืช ืฉืœ ื”ืจื›ื‘ื” ืžื—ื“ืฉ ืฉืœ ืจื•ื‘ื•ื’ืืžื™ื,
07:32
exploring the foreign land aboveground, on the surface,
119
452631
3778
ื—ื•ืงืจื™ื ืืช ื”ืื“ืžื” ื”ืœื ืžื•ื›ืจืช ืžืขืœ ืคื ื™ ื”ืงืจืงืข, ืขืœ ืคื ื™ ื”ืฉื˜ื—,
07:36
as well as digging into the surface.
120
456433
1922
ื›ืžื• ื’ื ื—ื•ืคืจื™ื ืœืชื•ืš ื”ืงืจืงืข.
07:39
It's not just exploration.
121
459117
2079
ื–ื”ื• ืœื ืจืง ืžื—ืงืจ.
07:41
For astronauts, they need additional help,
122
461220
2588
ืืกื˜ืจื•ื ืื•ื˜ื™ื ื–ืงื•ืงื™ื ืœืขื–ืจื” ื ื•ืกืคืช,
07:43
because you cannot afford to bring interns up there, either.
123
463832
2834
ืžืคื ื™ ืฉืื™ ืืคืฉืจ ืœื”ื‘ื™ื ืœืฉื ืžืชืœืžื“ื™ื.
07:46
(Laughter)
124
466690
1182
(ืฆื—ื•ืง)
07:48
They have to do every tedious task.
125
468357
2881
ื”ื ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืืช ื›ืœ ื”ืขื‘ื•ื“ื•ืช ื”ืžื™ื™ื’ืขื•ืช.
07:51
They may be simple,
126
471262
1218
ื”ื ืื•ืœื™ ืคืฉื•ื˜ื™ื,
07:52
but super interactive.
127
472504
1611
ืื‘ืœ ืกื•ืคืจ ืื™ื ื˜ืจืืงื˜ื™ื‘ื™ื™ื.
07:54
So you need robots to facilitate their experiments,
128
474762
3412
ื™ืฉ ืฆื•ืจืš ื‘ืจื•ื‘ื•ื˜ื™ื ื›ื“ื™ ืœืกื™ื™ืข ืœื”ื ื‘ื ื™ืกื•ื™ื™ื,
07:58
assisting them with the communications
129
478198
2311
ืœืขื–ื•ืจ ืœื”ื ื‘ืชืงืฉื•ืจืช
08:00
and just docking onto surfaces to be their third arm holding different tools.
130
480533
5252
ื•ืœืขื’ืŸ ืืช ืขืฆืžื ืœืžืฉื˜ื—ื™ื ื›ื“ื™ ืœื”ื™ื•ืช ืขื‘ื•ืจื ื™ื“ ืฉืœื™ืฉื™ืช ื•ืœื”ื—ื–ื™ืง ื›ืœื™ื ืฉื•ื ื™ื.
08:07
But how will they be able to control robogamis, for example,
131
487245
3133
ืื‘ืœ ืื™ืš ื”ื ื™ื•ื›ืœื• ืœืฉืœื•ื˜ ื‘ืจื•ื‘ื•ื’ืืžื™ื, ืœืžืฉืœ,
08:10
outside the space station?
132
490402
1553
ืžื—ื•ืฅ ืœืชื—ื ืช ื”ื—ืœืœ?
08:11
In this case, I show a robogami that is holding space debris.
133
491979
4037
ื‘ืžืงืจื” ื”ื–ื” ืื ื™ ืžืจืื” ืจื•ื‘ื•ื’ืืžื™ ืฉืžื—ื–ื™ืง ืคืกื•ืœืช ื—ืœืœ.
08:16
You can work with your vision so that you can control them,
134
496040
3604
ืืคืฉืจ ืœืขื‘ื•ื“ ื‘ืืžืฆืขื•ืช ืžื‘ื˜ ื›ื“ื™ ืœืฉืœื•ื˜ ื‘ื”ื,
08:19
but what would be better is having the sensation of touch
135
499668
4462
ืืš ืžื” ืฉื™ื”ื™ื” ื˜ื•ื‘ ื™ื•ืชืจ ื”ื•ื ืฉืชื”ื™ื” ืชื—ื•ืฉื” ืฉืœ ืžื’ืข
08:24
directly transported onto the hands of the astronauts.
136
504154
3603
ืฉืชื•ืขื‘ืจ ื™ืฉื™ืจื•ืช ืœื™ื“ื™ื™ื ืฉืœ ื”ืืกื˜ืจื•ื ืื•ื˜ื™ื.
08:28
And what you need is a haptic device,
137
508248
2423
ื•ืžื” ืฉืฆืจื™ืš ื”ื•ื ืžื›ืฉื™ืจ ื—ื™ืฉื”,
08:30
a haptic interface that recreates the sensation of touch.
138
510695
3708
ืžืžืฉืง ื—ื™ืฉื” ืฉื™ื•ืฆืจ ืžื—ื“ืฉ ืืช ืชื—ื•ืฉืช ื”ืžื’ืข.
08:35
And using robogamis, we can do this.
139
515051
2524
ื‘ืืžืฆืขื•ืช ืฉื™ืžื•ืฉ ื‘ืจื•ื‘ื•ื’ืืžื™ื ืืคืฉืจ ืœืขืฉื•ืช ื–ืืช.
08:39
This is the world's smallest haptic interface
140
519276
4148
ื–ื” ืžืžืฉืง ื”ื—ื™ืฉื” ื”ืงื˜ืŸ ื‘ื™ื•ืชืจ ื‘ืขื•ืœื
08:44
that can recreate a sensation of touch just underneath your fingertip.
141
524316
5189
ืฉื™ื›ื•ืœ ืœื™ืฆื•ืจ ืžื—ื“ืฉ ืืช ืชื—ื•ืฉืช ื”ืžื’ืข ืžืชื—ืช ืœืงืฆื•ืช ื”ืืฆื‘ืขื•ืช.
08:50
We do this by moving the robogami
142
530104
2577
ืื ื—ื ื• ืขื•ืฉื™ื ื–ืืช ืขืœ ื™ื“ื™ ื”ื–ื–ืช ื”ืจื•ื‘ื•ื’ืืžื™
08:52
by microscopic and macroscopic movements at the stage.
143
532705
4511
ืขืœ ื™ื“ื™ ืชื–ื•ื–ื•ืช ืžื™ืงืจื•ืกืงื•ืคื™ื•ืช ื•ืžืืงืจื•ืกืงื•ืคื™ื•ืช ื‘ื›ืœ ืฉืœื‘.
08:57
And by having this, not only will you be able to feel
144
537812
3630
ื•ื‘ื›ืš ื ื•ื›ืœ ืœื”ืจื’ื™ืฉ ืœื ืจืง
09:01
how big the object is,
145
541466
1739
ื›ืžื” ื’ื“ื•ืœ ื”ื—ืคืฅ,
09:03
the roundness and the lines,
146
543229
2886
ืืช ื”ืขืœื’ืœื•ืช ืฉืœื• ื•ืืช ืงื•ื•ื™ ื”ืžืชืืจ,
09:06
but also the stiffness and the texture.
147
546139
3563
ืืœื ื’ื ืืช ื”ื ื•ืงืฉื•ืช ื•ืืช ื”ืžืจืงื.
09:11
Alex has this interface just underneath his thumb,
148
551019
3989
ืœืืœื›ืก ื™ืฉ ืืช ื”ืžืžืฉืง ื”ื–ื” ืžืžืฉ ืžืชื—ืช ืœื‘ื•ื”ืŸ,
09:15
and if he were to use this with VR goggles and hand controllers,
149
555032
4812
ื•ื›ืืฉืจ ื”ื•ื ืžืฉืชืžืฉ ื‘ื• ื‘ืืžืฆืขื•ืช ืžืฉืงืคื™ ืžืฆื™ืื•ืช ืžื“ื•ืžื” ื•ืฉืœื˜ื™ ื™ื“,
09:19
now the virtual reality is no longer virtual.
150
559868
3629
ื”ืžืฆื™ืื•ืช ื”ืžื“ื•ืžื” ื”ื™ื ื›ื‘ืจ ืœื ืžื“ื•ืžื”.
09:23
It becomes a tangible reality.
151
563521
2268
ื”ื™ื ื”ื•ืคื›ืช ืœืžืฆื™ืื•ืช ืžื•ื—ืฉื™ืช.
09:28
The blue ball, red ball and black ball that he's looking at
152
568529
3687
ื”ื›ื“ื•ืจ ื”ื›ื—ื•ืœ, ื”ื›ื“ื•ืจ ื”ืื“ื•ื ื•ื”ื›ื“ื•ืจ ื”ืฉื—ื•ืจ ืฉื”ื•ื ืžื‘ื™ื˜ ื‘ื”ื
09:32
is no longer differentiated by colors.
153
572240
2466
ื›ื‘ืจ ืื™ื ื ื ื‘ื“ืœื™ื ื‘ืฆื‘ืขื™ื.
09:34
Now it is a rubber blue ball, sponge red ball and billiard black ball.
154
574730
5311
ื›ืขืช ืืœื• ื›ื“ื•ืจ ื’ื•ืžื™ ื›ื—ื•ืœ, ื›ื“ื•ืจ ืกืคื•ื’ ืื“ื•ื ื•ื›ื“ื•ืจ ื‘ื™ืœื™ืืจื“ ืฉื—ื•ืจ.
09:40
This is now possible.
155
580642
1710
ื–ื” ืืคืฉืจื™ ืขื›ืฉื™ื•.
09:43
Let me show you.
156
583263
1202
ื”ืจืฉื• ืœื™ ืœื”ืจืื•ืช ืœื›ื.
09:46
This is really the first time this is shown live
157
586150
4169
ื–ื• ืœืžืขืฉื” ื”ืคืขื ื”ืจืืฉื•ื ื” ืฉื–ื” ืžื•ืฆื’ ื‘ื–ืžืŸ ืืžืช
09:50
in front of a public grand audience,
158
590343
2846
ื‘ืคื ื™ ืงื”ืœ ืฆื™ื‘ื•ืจื™,
09:53
so hopefully this works.
159
593213
1828
ื›ืš ืฉืื ื™ ืžืงื•ื•ื” ืฉื–ื” ื™ืขื‘ื•ื“.
09:55
So what you see here is an atlas of anatomy
160
595668
4301
ืžื” ืฉืืชื ืจื•ืื™ื ื›ืืŸ ื”ื•ื ืื˜ืœืก ืฉืœ ืื ื˜ื•ืžื™ื”
09:59
and the robogami haptic interface.
161
599993
2793
ื•ืžืžืฉืง ื”ื—ื™ืฉื” ืฉืœ ื”ืจื•ื‘ื•ื’ืืžื™.
10:02
So, like all the other reconfigurable robots,
162
602810
2545
ื›ืžื• ื›ืœ ื”ืจื•ื‘ื•ื˜ื™ื ื”ืื—ืจื™ื ืฉื ื™ืชื ื™ื ืœื”ื’ื“ืจื”,
10:05
it multitasks.
163
605379
1175
ื”ื•ื ืชื•ืžืš ื‘ืจื™ื‘ื•ื™ ืžืฉื™ืžื•ืช.
10:06
Not only is it going to serve as a mouse,
164
606578
2023
ื”ื•ื ื™ืฉืžืฉ ืœื ืจืง ื›ืขื›ื‘ืจ,
10:08
but also a haptic interface.
165
608625
2365
ืืœื ื’ื ื›ืžืžืฉืง ื—ื™ืฉื”.
10:11
So for example, we have a white background where there is no object.
166
611381
3774
ืœืžืฉืœ, ื™ืฉ ืœื ื• ืจืงืข ืœื‘ืŸ ืฉืื™ืŸ ืขืœื™ื• ืฉื•ื ื—ืคืฅ.
10:15
That means there is nothing to feel,
167
615179
2052
ื–ื” ืื•ืžืจ ืฉืื™ืŸ ืžื” ืœื”ืจื’ื™ืฉ,
10:17
so we can have a very, very flexible interface.
168
617255
3712
ื›ืš ืฉื™ื›ื•ืœ ืœื”ื™ื•ืช ืœื ื• ืžืžืฉืง ื’ืžื™ืฉ ืžืื“.
10:21
Now, I use this as a mouse to approach skin,
169
621352
3152
ื›ืขืช ืื ื™ ืžืฉืชืžืฉืช ื‘ืขื›ื‘ืจ ื”ื–ื” ื›ื“ื™ ืœื”ืชืงืจื‘ ืœืขื•ืจ,
10:24
a muscular arm,
170
624528
1263
ื–ืจื•ืข ืฉืจื™ืจื™ืช,
10:25
so now let's feel his biceps,
171
625815
2016
ื›ืขืช ื‘ื•ืื• ื ื—ื•ืฉ ืืช ืฉืจื™ืจื™ ื”ื–ืจื•ืข ืฉืœื•,
10:27
or shoulders.
172
627855
1488
ืื• ืืช ื”ื›ืชืคื™ื™ื.
10:29
So now you see how much stiffer it becomes.
173
629367
3010
ื›ืขืช ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื›ืžื” ื ื•ืงืฉื” ื”ื•ื ื ื”ื™ื”.
10:32
Let's explore even more.
174
632401
1371
ื‘ื•ืื• ื ืžืฉื™ืš ืœื—ืงื•ืจ.
10:33
Let's approach the ribcage.
175
633796
2910
ื‘ื•ืื• ื ื™ื’ืฉ ืœื‘ื™ืช ื”ื—ื–ื”.
10:36
And as soon as I move on top of the ribcage
176
636730
2562
ืžื™ื“ ื›ืฉืื ื™ ื ืขื” ืžืขืœ ื‘ื™ืช ื”ื—ื–ื”
10:39
and between the intercostal muscles,
177
639316
2285
ื•ื‘ื™ืŸ ื”ืฉืจื™ืจื™ื ื”ื‘ื™ืŸ-ืฆืœืขื™ื™ื,
10:41
which is softer and harder,
178
641625
1549
ืฉื”ื ืจื›ื™ื ื™ื•ืชืจ ื•ืงืฉื™ื ื™ื•ืชืจ,
10:43
I can feel the difference of the stiffness.
179
643198
2236
ืื ื™ ื™ื›ื•ืœื” ืœื—ื•ืฉ ื‘ื”ื‘ื“ืœ ื‘ื ื•ืงืฉื•ืช.
10:45
Take my word for it.
180
645458
1326
ื”ืืžื™ื ื• ืœื™.
10:46
So now you see, it's much stiffer in terms of the force
181
646808
4203
ื›ืขืช, ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉื”ื•ื ื ื•ืงืฉื” ื™ื•ืชืจ ืžื‘ื—ื™ื ืช ื”ื›ื—
10:51
it's giving back to my fingertip.
182
651035
1845
ืฉื‘ื• ื”ื•ื ืžืชื ื’ื“ ืœืงืฆื” ื”ืืฆื‘ืข ืฉืœื™.
10:53
So I showed you the surfaces that aren't moving.
183
653822
3978
ื”ืจืื™ืชื™ ืœื›ื ืžืฉื˜ื—ื™ื ืฉืœื ื–ื–ื™ื.
10:57
How about if I were to approach something that moves,
184
657824
3553
ืžื” ืื ืขืœื™ื™ ืœื”ืชืงืจื‘ ืœืžืฉื”ื• ืฉื–ื–,
11:01
for example, like a beating heart?
185
661401
2067
ืœืžืฉืœ, ื›ืžื• ืœื‘ ืคื•ืขื?
11:03
What would I feel?
186
663492
1395
ืžื” ืืจื’ื™ืฉ?
11:11
(Applause)
187
671573
6146
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
11:19
This can be your beating heart.
188
679158
2293
ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ื”ืœื‘ ื”ืคื•ืขื ืฉืœื›ื.
11:22
This can actually be inside your pocket
189
682010
3610
ืœืžืขืฉื” ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ื‘ืชื•ืš ื”ื›ื™ืก ืฉืœื›ื
11:25
while you're shopping online.
190
685644
1765
ื‘ื–ืžืŸ ืฉืืชื ืงื•ื ื™ื ื‘ืจืฉืช.
11:28
Now you'll be able to feel the difference of the sweater that you're buying,
191
688361
3789
ื›ืขืช ืืชื ื™ื›ื•ืœื™ื ืœื”ืจื’ื™ืฉ ืืช ื”ืฉื•ื ื™ ืฉืœ ื”ืžื™ื–ืข ืฉืืชื ืงื•ื ื™ื,
11:32
how soft it is,
192
692174
1222
ืขื“ ื›ืžื” ื”ื•ื ืจืš,
11:33
if it's actually cashmere or not,
193
693420
2836
ืื ื–ื” ื‘ืืžืช ืงืฉืžื™ืจ ืื• ืœื,
11:36
or the bagel that you're trying to buy,
194
696280
2056
ืื• ืืช ื”ื›ืขืš ืฉืืชื ืจื•ืฆื™ื ืœืงื ื•ืช,
11:38
how hard it is or how crispy it is.
195
698360
3068
ืขื“ ื›ืžื” ื”ื•ื ืงืฉื” ืื• ืขื“ ื›ืžื” ื”ื•ื ืคืจื™ืš.
11:42
This is now possible.
196
702229
1736
ืขื›ืฉื™ื• ื–ื” ืืคืฉืจื™.
11:46
The robotics technology is advancing to be more personalized and adaptive,
197
706774
5812
ื˜ื›ื ื•ืœื•ื’ื™ืช ื”ืจื•ื‘ื•ื˜ื™ืงื” ืžืชืงื“ืžืช ืœื”ื™ื•ืช ื™ื•ืชืจ ืžื•ืชืืžืช ืื™ืฉื™ืช ื•ืžืกืชื’ืœืช,
11:52
to adapt to our everyday needs.
198
712610
3104
ื›ืš ืฉืชื•ืชืื ืœืฆืจื›ื™ ื”ื™ื•ืžื™ื•ื ืฉืœื ื•.
11:56
This unique specie of reconfigurable robotics
199
716457
3625
ื”ื–ืŸ ื”ื™ื™ื—ื•ื“ื™ ืฉืœ ืจื•ื‘ื•ื˜ื™ื ืฉื ื™ืชื ื™ื ืœื”ื’ื“ืจื”
12:00
is actually the platform to provide this invisible, intuitive interface
200
720106
5978
ื”ื™ื ื”ืคืœื˜ืคื•ืจืžื” ืฉืชืืคืฉืจ ืืช ื”ืžืžืฉืง ื”ื‘ืœืชื™ ื ืจืื”, ื”ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™
12:06
to meet our exact needs.
201
726108
2492
ืฉื™ืขื ื” ืœืฆืจื›ื™ื ื”ืžื“ื•ื™ืงื™ื ืฉืœื ื•.
12:10
These robots will no longer look like the characters from the movies.
202
730169
4006
ื”ืจื•ื‘ื•ื˜ื™ื ื”ืœืœื• ื›ื‘ืจ ืœื ื™ื™ืจืื• ื›ืžื• ื”ื“ืžื•ื™ื•ืช ืžื”ืกืจื˜ื™ื.
12:14
Instead, they will be whatever you want them to be.
203
734843
3848
ื‘ืžืงื•ื ื–ืืช, ื”ื ื™ื”ื™ื• ืžื” ืฉืชืจืฆื• ืฉื™ื”ื™ื•.
12:19
Thank you.
204
739223
1206
ืชื•ื“ื” ืจื‘ื”
12:20
(Applause)
205
740453
3598
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7